Σχετικά έγγραφα
Σχετικό συστηματικό σφάλμα Το σφάλμα του γινομένου 2 μεταβλητών με επιμέρους συστηματικά σφάλματα.

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

!n k. Ιστογράμματα. n k. x = N = x k

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Πρακτική µε στοιχεία στατιστικής ανάλυσης

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Περί σφαλμάτων και γραφικών παραστάσεων

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Μ.ΠΗΛΑΚΟΥΤΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Κεφάλαιο 1: Κινηματική

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

Κεφάλαιο 1. Κίνηση σε μία διάσταση

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Μια παρουσίαση από το Φυσικό Τμήμα του Παν.Αθήνας (Kαθ. Χ. Τρικαλινός)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

4.3 Δραστηριότητα: Θεώρημα Fermat

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Α.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις:

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

Τοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

lim f ( x) x + f ( x) x a x a x a 2x 1

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

f(x) = και στην συνέχεια

II. Συναρτήσεις. math-gr

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Transcript:

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής παράστασης είναι να διαλέξετε αρχικά την ανεξάρτητη μεταβλητή σας (στη προκειμένη περίπτωση οι φάσεις της σελήνης) και να την τοποθετήσετε στον οριζόντιο άξονα, ενώ στο κατακόρυφο άξονα τοποθετείτε την εξαρτημένη μεταβλητή (το μήκος της σανίδας) Αν χρησιμοποιήσουμε κάποιο γραφικό λογισμικό ενός υπολογιστή και κάνουμε το γράφημα θα μοιάζει όπως Data 1 στο σχήμα. Β Υπάρχουν ωστόσο πολλά λάθη στο τρόπο που σχεδιάσαμε τη γραφική αυτή παράσταση. Α Αρχικά κάθε παράσταση θα πρέπει να έχει ένα σωστό τίτλο και οι άξονες να έχουν Ονομασίες αντιπροσωπευτικές των μεγεθών που αντιπροσωπεύουν Ο τίτλος θα μπορούσε να είναι συσχετισμός φάσεων σελήνης και μήκους σανίδας Με το τρόπο αυτό ο αναγνώστης ξέρει τι να περιμένει να δει στη παράσταση. O οριζόντιος άξονας θα πρέπει να έχει το τίτλο φάσεις σελήνης (τέταρτα) ενώ ο κατακόρυφος άξονας θα είχε το τίτλο Μήκος σανίδας (cm)

Γραφικές παραστάσεις - Υποδιαιρέσεις αξ όνων Ο x -άξονας μπορεί να αναπαρασταθεί μόνο με ακέραιες (οι φάσεις της σελήνης) επομένως δεν χρειαζόμαστε πολλές υποδιαιρέσεις) Πόσες όμως υποδιαιρέσειs; Αρκετές ώστε ο x -άξονας να περιέχει όλα τα δεδομένα και τουλάχιστον μια επιπλέον σαν ανώτερο και κατώτερο όριο ώστε να δίνουν τη σιγουριά στον αναγνώστη ότι δεν υπάρχουν άλλα σημεία. Ποιά η κλίμακα του y- άξονα και το εύρος της; Δε θέλουμε μια κλίμακα στην οποία τα ακρώτατα σημεία να μοιάζουν ότι συμπίπτουν. Ένας πρακτικός Κανόνας είναι να συμπεριλαμβάνουμε πάντοτε τη τιμή 0 εφόσον η τιμή αυτή μπορεί να ληφθεί σε μια μέτρηση. Παρόλο το μήκος της σανίδας δεν είναι 0 για πολύ μικρές σανίδες μπορεί να πάρουμε τέτοια τιμή. +1 Τυπική απόκλιση -1 Τ υπική απόκλιση error bar Μέτρηση Δεν θα πρέπει το εύρος της υποδιαίρεσης της κλίμακας να είναι πολύ μεγάλο ώστε όλες οι μετρήσεις τεχνικά να πέφτουν σε μια υποδιαίρεση. Στα περισσότερα γραφήματα που θα έχετε να κάνετε Τα δεδομένα στο προηγούμενο γράφημα φαίνονται να μην έχουν κάποια συσχέτιση και ότι είναι τυχαία. Αυτό γιατί οι τυχαίες διακυμάνσεις στις μετρήσεις δημιουργεί την αβεβαιότητα της κάθε μέτρησης. Αν σχεδιάζαμε μια κατακόρυφη γραμμή με μήκος όσο το μέγεθος της ±1 τυπικής απόκλισης κάθε μέτρησης θα μπορούσαμε να δείξουμε γραφικά την ακρίβεια του πειράματος

Μήκος, L(cm) Γραφικές παραστάσεις - Διορθωμένο γράφημα Σχέση μεταξύ μήκους σανίδας και φάσεων της σελήνης Φάση σελήνης (τέταρτο) Η γραφική παράσταση στη τελικής της μορφή δείχνει ότι οι διακυμάνσεις στις μετρούμενες τιμές του μήκους της σανίδας δεν είναι σημαντικά μεγαλύτερες από την αβεβαιότητα της κάθε μέτρησης. Δηλαδή το μήκος της σανίδας είναι ανεξάρτητο των φάσεων της σελήνης όπως και περιμέναμε Αν όλα τα δεδομένα μας έχουν τιμές οι οποίες είναι μέσα στο εύρος της ±1 τυπικής απόκλισης γύρω από την ίδια κεντρική τιμή δεν έχουμε κάποιο λόγο να ισχυριζόμαστε ότι οι μετρήσεις μας είναι διαφορετικές. Βλέπουμε επομένως ότι η σωστή εκτίμηση προκύπτει με το να βρούμε τη μέση τιμή όλων των μετρήσεων του μήκους της σανίδας. Πάντοτε όταν κάνετε μια γραφική παράσταση σκεφθείτε τις αβεβαιότητες των μετρήσεων και σχεδιάστε την λογικά. Η αρχική γραφική παράσταση μπορεί να σας οδηγούσε στο συμπέρασμα ότι υπάρχει όντως συσχέτιση μεταξύ του μήκους της σανίδας και των φάσεων της σελήνης.

Κανόνες για τη δημιουργία γραφικών παραστάσεων Όταν σας ζητείτε να κάνετε τη γραφική παράσταση του Μεγέθους 1 ως προς το Μέγεθος 2 σημαίνει ότι το Μέγεθος 2 είναι στον άξονα x και το Μέγεθος 1 στο y-άξονα Ποτέ μη χαράζετε καμπύλες οι οποίες συνδέουν τα σημεία των μετρήσεών σας. Κάθε καμπύλη έχει μια φυσική ερμηνεία. Κάθε γραφική παράσταση θα πρέπει να έχει κάποιο τίτλο περιγραφής που εξηγεί σύντομα τη σημασία της παράστασης. Κάθε γραφική παράσταση θα πρέπει να έχει επιγραφές στους άξονες ανάλογα με το μέγεθος που αντιστοιχείτε καθώς και τις απαραίτητες μονάδες μέτρησης. Ο οριζόντιος άξονας θα πρέπει να έχει υποδιαιρέσεις πέρα από το εύρος των μετρήσεων (αριστερά και δεξιά του διαστήματος) ώστε να διασφαλίσετε τη μη ύπαρξη σημείων έξω από το εύρος που ορίζετε. Εξαίρεση σε αυτό υπάρχει όταν η επιπλέον υποδιαίρεση αντιστοιχεί σε αρνητική τιμή χωρίς φυσική σημασία οπότε σταματούμε στη τιμή x=0.

Απόσταση, L(m) Προσαρμογή σε ευθεία γραμμή Μια από τις περισσότερες χρήσιμες τεχνικές είναι αυτή της περιγραφής των πειραματικών δεδομένων με μια ευθεία γραμμή. Υποθέστε ότι έχετε μια σειρά μετρήσεων σε μια γραφική παράσταση y ως προς x και από τη γραφική παράσταση βλέπουμε ότι αντιστοιχεί σε μια ευθεία γραμμή Για την περιγραφή αυτής της ευθείας χρειάζονται 2 παράμετροι: η κλίση της, m, και η τετμημένη της ευθείας με τον άξονα των y, b Τη στιγμή που θα προσδιορίσουμε τις δύο αυτές παραμέτρους μπορούμε να υπολογίσουμε την τιμή y που αντιστοιχεί σε οποιαδήποτε τιμή του x. Κλίση=m= Δ y Δ x Δ y = 1m y = ax + b Προσέξτε ότι είναι ακριβώς η κλίση και η τετμημένη b που παίζουν σημαντικό ρόλο στη θεωρία Δ x = 2 sec y-τετμημένη=b=5m απόσταση από την αρχή t=0 Χρόνος, t(sec) H κλίση είναι η ταχύτητα ενώ η τετμημένη μας δίνει την αρχική θέση του σώματος Επομένως το πρόβλημά μας ανάγεται στην εύρεση των παραμέτρων της ευθείας καθώς και των αβεβαιοτήτων που συνοδεύουν τις εκτιμήσεις αυτών

Ευθεία γραμμή καλύτερης προσαρμογής Σημεία με μεγάλες αβεβαιότητες περιέχουν και τη λιγότερο σημαντικότητας πληροφορία και επομένως θα πρέπει να δώσουμε τη λιγότερο σημασία Η τετμημένη με το y- άξονα μπορεί να βρεθεί διαβάζοντας απλά τη τιμή από τη γραφική παράσταση. Στη περίπτωσή μας είναι περίπου 13m Για να βρούμε τη κλίση χρησιμοποιούμε το ορθογώνιο τρίγωνο της διαφ. 8 και υπολογίζουμε κάποιο διάστημα Δx και το αντίστοιχο Δy m = y 2 - y 1 x 2 - x 1 Όπου τα σημεία x 1, x 2, y 1 και y 2 είναι κάποια σημεία της ευθείας γραμμής και όχι απαραίτητα πειραματικά σημεία Αυτό είναι σημαντικό γιατί από τη στιγμή που σχεδιάσατε τη καλύτερη ευθεία δεν ενδιαφερόμαστε πλέον για τα πειραματικά σημεία αλλά για την κλίση και τη τετμημένη της ευθείας Προσέξτε ότι για τη περίπτωσή μας κανένα από τα σημεία δεν βρίσκεται ακριβώς πάνω στην ευθεία Χρησιμοποιούμε επομένως τα δεδομένα για να βρούμε τη καμπύλη και τη καμπύλη για να βρούμε τη θεωρία Για το παράδειγμά μας έχουμε: m = 32m - 140m = 11.25m / s 11m / s 1.7s - 11.3s Στο τελευταίο βήμα γράφουμε το αποτέλεσμα σύμφωνα με τα σημαντικά ψηφία που επιτρέπονται από τις μετρήσεις μας στο πίνακα 1 (δύο σημαντικά ψηφία)

Απόσταση, L(m) Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Ξεκινάμε σχεδιάζοντας ένα παραλληλόγραμμο το οποίο περικλείει όλα τα πειραματικά σημεία συμπεριλαμβανομένης της αβεβαιότητάς τους Το παραλληλόγραμμα της αβεβαιότητας φαίνεται στο παρακάτω σχήμα Δεδομένα από το πίνακα 1 Xρόνος, t(sec) H πάνω και κάτω γραμμή αυτού του παρ/μου σχεδιάζονται παράλληλα προς την ευθεία της καλύτερης προσαρμογής Tα άκρα σχεδιάζονται παρ/λα προς τον y -άξονα Οποιαδήποτε εκτίμηση της αβεβαιότητας της κλίσης και τετμημένης της ευθείας θα πρέπει να έχει σαν αποτέλεσμα μια ευθεία η οποία περνά από τα άκρα του παρ/μου και δεν τέμνει τις πλάγιες πλευρές Μπορούμε επομένως να χαράξουμε τις 2 διαγωνίους του παρ/μου και οι κλίσεις και τετμημένες των 2 αυτών ευθειών δίνουν την αβεβαιότητα στη κλίση και τετμημένη της ευθείας της καλύτερης προσαρμογής

Eύρεση της αβεβαιότητας της κλίσης και τετμημένης Όπως και στην περίπτωση της καλύτερης ευθείας προσαρμογής υπολογίζουμε τη κλίση και τετμημένη των 2 διαγωνίων του παρ/μου Επομένως η αβεβαιότητα της κλίσης της καλύτερης ευθείας είναι: Επειδή εκφράζουμε την αβεβαιότητα συνήθως συμμετρικά θα έχουμε ότι η αβεβαιότητα του πειράματος είναι Βλέποντας τις 2 ευθείες της αβεβαιότητας καταλαβαίνουμε ότι είναι αρκετά απίθανο να επιλέξουμε είτε την ευθεία Α ή την ευθεία Β σαν την ευθεία της καλύτερης προσαρμογής. Επομένως έχουμε υπερεκτιμήσει την αβεβαιότητα Μια προσεκτικότερη ανάλυση δείχνει ότι θα πάρουμε μια πιο καλή εκτίμηση της αβεβαιότητας αν διαιρέσουμε την προηγούμενη εκτίμησή μας με τη τετραγωνική ρίζα του αριθμού των μετρήσεών μας

H εξίσωση αυτή δίνει την εκτίμηση της πιο πιθανής αβεβαιότητας. Στο παρονομαστή, για Ν=1, Δm= και αυτό είναι λογικό μια και από ένα σημείο μπορούμε να έχουμε οποιαδήποτε ευθεία Για Ν=2 μια γραμμή μόνο μπορεί να χαραχθεί από 2 σημεία. Στην περίπτωση αυτή το παρ/μο της αβεβαιότητας προέρχεται μόνο από τις αβεβαιότητες των δύο αυτών σημείων και επομένως είναι λογικό Δm = (m A -m B )/2 Για Ν>>2 η αβεβαιότητα ελλατώνεται σύμφωνα με τη ρίζα του αριθμού των μετρήσεων Ν και αυτό είναι το αποτέλεσμα που βρήκαμε όταν υπολογίσαμε του σφάλματος της μέσης τιμής Αυτό δεν αποτελεί τη λύση του προβλήματος αλλά είναι κάποια πολυ λογική και καλή προσέγγιση Η εύρεση της αβεβαιότητας της τετμημένης προχωρά σύμφωνα με τα όσα αναπτύξαμε για την αβεβαιότητα της κλίσης της ευθείας. Κάνοντας τις πράξεις έχουμε ότι Η αβεβαιότητα της κλίσης είναι ίδιας τάξης με τα δεδομένα αλλά η αβεβαιότητα της τετμημένης είναι περίπου 50%

Στη περίπτωση της κλίσης παίρνουμε μια μέση τιμή ενώ για τη τετμημένη προεκτείνουμε σε περιοχή μακριά από τα δεδομένα και σε χρόνους που δεν έχουμε πειραματικές μετρήσεις και είναι επόμενο να έχουμε μεγαλύτερη αβεβαιότητα Σε κάποιο σημείο όχι πολύ μακριά από τα δεδομένα η αβεβαιότητα σχετικά με τη θέση του σώματος τη χρονική στιγμή t=0 μπορεί να γίνει ίση με 100% και μεγαλύτερη ακόμα. Αυτό σημαίνει ότι το πείραμά μας είναι πολύ δύσκολο να προσδιορίσει το τι κάνει το σώμα σε μια προγενέστερη χρονική στιγμή στην οποία δεν υπάρχουν μετρήσεις Μπορούμε δηλαδή να εκφράσουμε άποψη μόνο σχετικά με τη κίνηση στο διάστημα που μετρήσαμε αλλά όχι πέρα από αυτό Μπορεί να προσπαθήσει κάποιος να επιχειρηματολογήσει ότι αν το σώμα κινείται με σταθερή ταχύτητα κατά τη διάρκεια του διαστήματος ότι κινείται με τον ίδιο τρόπο έξω από το χρονικό διάστημα της μέτρησής μας. Αυτό μπορεί να είναι σωστό αλλά δεν έχουμε μετρήσεις οι οποίες μπορούν να δείξουν ότι αυτό συμβαίνει. Για να ελαττώσουμε την αβεβαιότητα χρειαζόμαστε περισσότερες μετρήσεις. Ένα τελευταίο σημείο. Ακόμα και αν υπήρχε πειραματικό σημείο στον y -άξονα αυτό δεν σημαίνει ότι δεν υπάρχει αβεβαιότητα στη τιμή της τετμημένης. Αυτό γιατί η ευθεία καλύτερης προσαρμογής δεν είναι απαραίτητο να περνά από όλα τα πειραματικά σημεία όπως συμβαίνει και στο παράδειγμά μας

Εύρεση καλύτερης ευθείας προσαρμογής Μέθοδος ελαχίστων τετραγώνων (μέθοδος χ 2 ) Όπως είδαμε στη γραφική εύρεση της καλύτερης ευθείας προσαρμογής, αυτό που ενδιαφερόμαστε είναι ο καθορισμός των παραμέτρων της συνάρτησης (π.χ. μιας ευθείας) που περιγράφει τα δεδομένα Δύο μεθόδοι: Ελαχίστων τετραγώνων ή χ 2 Μέγιστης πιθανότητας - maximum likelihood Υποθέτουμε ότι έχουμε μια συνάρτηση y μιας μεταβλητής x και μια σειρά παραμέτρων Έστω ότι μετρήσαμε διάφορες τιμές του y για κάποιες τιμές της ανεξάρτητης μεταβλητής x. Επομένως θα έχουμε Ν ζεύγη τιμών Ορίζουμε σαν χ 2 τη ποσότητα: H μέθοδος των ελαχίστων τετραγώνων δηλώνει ότι η καλύτερη εκτίμηση των παραμέτρων θ i επιτυγχάνεται όταν βρεθεί μια ομάδα τιμών θ i για τις οποίες η συνάρτηση χ 2 είναι ελάχιστη

Μέθοδος ελαχίστων τετραγώνων - χ 2 Αν οι αποκλίσεις κάθε μέτρησης, σ i, είναι ίσες τότε η σχέση απλουστεύεται Είναι σημαντικό να προσέξετε ότι η μέθοδος όπως ορίστηκε χρειάζεται τη γνώση των αβεβαιοτήτων σ i και ότι υποθέτει ότι δεν υπάρχουν αβεβαιότητες στη γνώση της ανεξάρτητης μεταβλητής x. Aβεβαιότητες στις τιμές x i μπορούν να αγνοηθούν εφόσον: Αγνοώντας τις αβεβαιότητες, η μέθοδος ελαχίστων τετραγώνων είναι απλά το άθροισμα των αποστάσεων κάθε μέτρησης y i από τα σημεία της θεωρητικής καμπύλης (x i,y i (x i )). Ελαχιστοποιώντας τη συνάρτηση ψάχνουμε τα σημεία της καλύτερης καμπύλης για τα οποία αυτή η απόσταση ελαχιστοποιείται H εισαγωγή των αβεβαιοτήτων είναι απαραίτητη αν θέλουμε να κάνουμε στατιστική ανάλυση των αποτελεσμάτων διαφορετικά είναι απλό γεωμετρικό πρόβλημα

Εφαρμογή χ 2 - εύρεση παραμέτρων ευθείας Ας υποθέσουμε ότι η συνάρτηση την οποία θέλουμε να προσαρμόσουμε στα σημεία των μετρήσεων μας είναι της μορφής y(x) = ax + b Θα υποθέσουμε ακόμα ότι οι αβεβαιότητες σ i των y i είναι όλες ίσες μεταξύ τους Επομένως το πρόβλημα εύρεσης των παραμέτρων α και b έγγυται στην ελαχιστοποίησης της συνάρτησης χ 2 ως προς α και b Η ελαχιστοποίηση γίνεται πέρνοντας τη μερική παράγωγο της χ 2 ως προς α και b και εξισώνοντας με μηδέν: και λύνοντας το σύστημα των γραμμικών εξισώσεων που προκύπτει προς α και b

=

Παράδειγμα Έστω ότι έχουμε ένα ανεξάρτητο δείγμα x = 0.89, 0.03, 0.50, 0.36, 0.49 έχουν δημιουργηθεί από μια συνάρτηση: x, 1. 0 x 0. 5 x 0, 1 P(x) 0 0 1 Για α =+1.0 τότε ln(1.39)+ln(0.53)+ln(1.0)+ln(0.86)+ln(0.99) = -0.47 Για α =-1.0 τότε ln(0.61)+ln(1.47)+ln(1.0)+ln(1.14)+ln(1.01) = 0.03 Βλέπουμε ότι maximum Likelihood εμφανίζεται για α = -0.6, άρα αυτή η τιμή είναι το maximum Likelihood estimate