ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ

Σχετικά έγγραφα
ÓÕÍÏÐÔÉÊÅÓ ÁÐÁÍÔÇÓÅÉÓ ÈÅÌÁÔÙÍ

ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ

10.1 (ÕÐÏ)ÏÑÈÏÈÅÔÅÓ ÊÁÉ ÓÕÍÈÅÔÉÊÅÓ ÓÅÉÑÅÓ

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

Ìáèáßíïõìå ôéò áðïäåßîåéò

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

ÏÌÏËÏÃÉÊÇ ÁËÃÅÂÑÁ: 4oò ÊÁÔÁËÏÃÏÓ ÐÑÏÔÅÉÍÏÌÅÍÙÍ ÁÓÊÇÓÅÙÍ

ΕΝ ΙΑΜΕΣΗ ΕΞΕΤΑΣΗ. 23 Νοεμβρίου (Χειμερινό εξάμηνο ) ΚΑΝΟΝΕΣ ΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

Íá èõìçèïýìå ôç èåùñßá...

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

Estimation Theory Exercises*

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

Ç íýá Ýííïéá ôïõ ýðíïõ!

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá

Åîéóþóåéò 1ïõ âáèìïý

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

ΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ. Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT

Κίνδυνοι στο facebook WebQuest Description Grade Level Curriculum Keywords

¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.

6 s(s 1)(s 3) = A s + B. 3. Íá âñåèåß ï ìåô/ìüò Laplace ôùí ðáñáêüôù óõíáñôþóåùí

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç

Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá

Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí

(Á 154). Amitraz.

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

Chi-Square Goodness-of-Fit Test*

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

Ramsey's Theory or something like that.

Union of Pure and Applied Chemistry).

ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009

ΙΣΤΙΟΠΛΟΪΚΟΣ ΑΓΩΝΑΣ : ΑΣΠΡΟΝΗΣΟΣ Ο ΗΓΙΕΣ ΠΛΟΥ

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -

ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο.

ΑΝΑΚΟΙΝΩΣΗ ΠΡΟΣ ΤΑ ΜΕΛΗ

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Πραγματικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ

ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í.

ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá

ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ

ÄåóìåõìÝíç ðéèáíüôçôá êáé áíåîáñôçóßá ÁóêÞóåéò

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος

Αφίσα με μήνυμα Ολυμπισμού

1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 2ο) Νίκος Παπασπύου, Κωστής Σαγώνας

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας

ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ

spiroxamine, azimsulfuron, fluroxypyr, metsulfuron-methyl,

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÕÄÑÏËÇØÉÅÓ ÔÕÐÏÕ Á2 - Á4 ÌÅ ÁÍÔÉÐÁÃÅÔÉÊÇ ÐÑÏÓÔÁÓÉÁ

ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô

* ΣΧΕΔΙΟ ΕΚΘΕΣΗΣ. EL Eνωμένη στην πολυμορφία EL 2014/0321(NLE)

Transcript:

ÐáíåðéóôÞìéï ÊñÞôçò, ÔìÞìá Ìáèçìáôéêþí Èåùñßá Äáêôõëßùí êáé Modules (M ) ÅîÝôáóç Éïõíßïõ 010 ÅîåôáóôÞò: ÄçìÞôñéïò ÍôáÞò ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ ÈÅÌÁ 1ï Âë. èåþñçìá.5.0 (óôéò óçìåéþóåéò). ÈÅÌÁ ï Âë. åäüöéá 3.3.1, 3.3., 3.3.14 êáé 3.3.19. ÈÅÌÁ 3ï Âë. èåþñçìá 4.1.15. ÈÅÌÁ 4ï (i) Âë. ðñüôáóç.3.5. (ii) Âë. èåþñçìá 5.4.1. ÈÅÌÁ 5ï Âë. èåþñçìá 5.6.3. ÈÅÌÁ 6ï Áò õðïèýóïõìå üôé õðüñ åé êüðïéïò ìåôáèåôéêüò äáêôýëéïò R ìå ìïíáäéáßï óôïé åßï, ìå ôçí ðïëëáðëáóéáóôéêþ ïìüäá ôùí áíôéóôåøßìùí óôïé åßùí ôïõ (R, ) Ý ïõóá ôüîç R =5. ÅðåéäÞ ôï 5 åßíáé ðñþôïò áñéèìüò, êáôü ôï (iii) (ôþò äïèåßóáò óçìåéþóåùò) ç R åßíáé êõêëéêþ ïìüäá. Áò õðïèýóïõìå üôé ôï a R åßíáé Ýíáò ãåííþôïñáò áõôþò. Ðñïöáíþò, a 5 =1 R êáé a 6= 1 R (äéüôé ç (R, ) åßíáé ìç ôåôñéììýíç) êáé R = {1 R,a,a,a 3,a 4 }. Ùò ãíùóôüí, 0 R / R êáé {±1 R} R (âë. åäüöéï 1..9). ÅðåéäÞ ( 1 R ) =1 R, Ý ïõìå ord( 1 R ) {1, } (âüóåé ôïý ïñéóìïý ôþò ôüîåùò óôïé åßïõ êáé ôïý (i) ôþò äïèåßóáò óçìåéþóåùò). ÅðåéäÞ ord( 1 R) 5 (âë. ôï (ii) ôþò äïèåßóáò óçìåéþóåùò), Ý ïõìå êáô' áíüãêçí ord( 1 R )=1, ïðüôå 1 R =1 R (= ôï ïõäýôåñï óôïé åßï ôþò (R, )). Áõôü óçìáßíåé üôé 1 R =0 R, áð' üðïõ Ýðåôáé üôé áñ(r) =(âë. 1.4. (iii) êáé ðñüôáóç 1.4.3). ÐñïêåéìÝíïõ íá êáôáëþîïõìå óå Üôïðï, áñêåß íá ðñïóäéïñßóïõìå êüðïéï óôïé åßï b R ôþò ìïñöþò b =1 R +c(a+1 R ),c R r{1}, ìå b k =1 R, ãéá êüðïéï k {, 3, 4}. ÐñÜãìáôé õðïèýôïíôáò üôé õðüñ åé Ýíá ôýôïéï b, èá éó ýåé ord(b) k (âë. ôï (i) ôþò äïèåßóáò óçìåéþóåùò) êáé, ùò åê ôïýôïõ, ord(b) {1,, 3, 4}. Çðåñßðôùóçüðïõord(b) 6= 1áðïêëåßåôáé, êáèüóïí ôïýôï èá áíôýöáóêå ðñïò ôï (ii) ôþò äïèåßóáò óçìåéþóåùò (áöïý - 5, 3-5 êáé 4-5). ñá ord(b) = 1 b =1 R c(a +1 R )=0 R a +1 R = c 1 (c(a +1 R )) = c 1 0 R =0 R a = 1 R =1 R, ðñüãìá Üôïðï, áöïýa 6= 1 R. Ï ðñïóäéïñéóìüò åíüò ôýôïéïõ b ãßíåôáé ìå äïêéìýòãéáôéòôéìýòôïýc, õøþóåéòóåêüðïéááðüôéòôñåéòåðéôñåðôýòäõíüìåéò êáé ñþóç ôïý ãåãïíüôïò üôé ï äáêôýëéüò ìáò Ý åé áñáêôçñéóôéêþ. Åðß ðáñáäåßãìáôé, ïñßæïíôáò ùò b ôï b := 1 R + a (a +1 R) (ìå c := a R r{1}, êáé ùñßò íá ãíùñßæïõìå åê ôùí ðñïôýñùí üôé ôï åí ëüãù b áíþêåé óôçí R ), ëáìâüíïõìå (ýóôåñá áðü ýøùóç óôçí ôñßôç äýíáìç) b 3 = 1 R + a + a 3 3 =1R +3a +3a 3 +3a 4 +6a 5 +4a 6 +3a 7 +3a 8 + a 9 = 1 R + a + a 3 + a 4 + a 7 + a 8 + a 9 =1 R + a + a 3 + a 4 + a + a 3 + a 4 = 1 R +(a + a 3 + a 4 )=1 R. ÅðåéäÞ b 3 = b b =1 R, Ý ïõìå b R ìå b 1 = b. Åäþ áðïðåñáôïýôáé ç áðüäåéîç! ÈÅÌÁ 7ï (i) Ãéá êüèå a + b 5 Z[ 5] (a, b Z) ïñßæïõìå ôçí åðéññéðôéêþ áðåéêüíéóç f : Z[ 5] Z 7, f(a + b 5) := [a +4b] 7. 1

Ãéá ïéïõóäþðïôå a, b, c, d Z Ý ïõìå êáé f((a + b 5) + (c + d 5)) = f((a + c)+(b + d) 5) = [(a + c)+4(b + d)] 7 = [a +4b] 7 +[c +4d] 7 = f(a + b 5) + f(c + d 5) f((a + b 5)(c + d 5)) = f((ac 5bd)+(ad + bc) 5) = [(ac 5bd)+4(ad + bc)] 7 = [ac 5bd] 7 +[4(ad + bc)] 7 = [ac] 7 +([ 5] 7 [bd] 7 )+[4(ad + bc)] 7 = [ac] 7 +([16] 7 [bd] 7 )+[4(ad + bc)] 7 = [ac +16bd] 7 +[4(ad + bc)] 7 = [(ac +16bd)+4(ad + bc)] 7 = [(a +4b)(c +4d)] 7 = [a +4b] 7 [c +4d] 7 = f(a + b 5)f(c + d 5), ïðüôå ç f åßíáé Ýíáò åðéìïñöéóìüò äáêôõëßùí. Óýìöùíá ìå ôï 1ï èåþñçìá éóïìïñöéóìþí äáêôõëßùí 3.3., Z[ 5]/Ker(f) = Z 7. ÅðåéäÞ f(7) = [7 + 4 0] 7 =[7] 7 =[0] 7 êáé f(4 5) = [4 + 4 ( 1)] 7 =[0] 7, Ý ïõìå 7 Ker(f), 4 5 Ker(f) 7, 4 5 Ker(f). Êáé áíôéóôñüöùò ãéá ôõ üí a + b 5 Ker(f) (a, b Z)Ý ïõìå7 a +4b, ïðüôå a + b µ a +4b 5=7 4 5 b, 7 áð' üðïõ Ýðåôáé êáé ï áíôßóôñïöïò åãêëåéóìüò Ker(f) 7, 4 5. (ii) Áò õðïèýóïõìå üôé õðüñ åé êüðïéïò éóïìïñöéóìüò äáêôõëßùí ϑ : Z[X] Q[X]. ÅðåéäÞ Ý ïõìå ðñïöáíþò ϑ(1) Q[X] 1 ϑ(1) Q[X] êáé åðåéäþ ç áðåéêüíéóç f åßíáé åðéññéðôéêþ, õðüñ åé êüðïéï f(x) Z[X], ôýôïéï þóôå íá éó ýåé ç éóüôçôá ϑ(f(x)) = 1 ϑ(1). ÅðïìÝíùò, ϑ(f(x)) = ϑ(f(x)+f(x)) = ϑ(f(x)) + ϑ(f(x)) = 1 ϑ(1) + 1 ϑ(1) = ϑ(1). ÅðåéäÞ ç áðåéêüíéóç åßíáé åíñéðôéêþ, Ý ïõìå f(x) =1. ÅÜí f(x) = mx a i X i Z[X], ôüôå a 0 =1 a 0 = 1 QrZ. ôïðï! ÈÅÌÁ 8ï (á) (i) (ii) ÅÜí n Zr{0} êáé I n = hf(x)i, ãéá êüðïéï f(x) Z[X], ôüôå õðüñ ïõí ðïëõþíõìá g(x),h(x) Z[X], ôýôïéá þóôå íá éó ýïõí ïé éóüôçôåò n = f(x)g(x) êáé X = f(x)h(x). ÅðåéäÞ ï Z êáé, êáô' åðýêôáóéí êáé ï Z[X], åßíáé áêåñáßá ðåñéï Þ, Ý ïõìå 0=deg(f(X)g(X)) = deg(f(x)) + deg(g(x)) deg(f(x)) = deg(g(x)) = 0 (âë. ðñüôáóç 1.3.9), ïðüôå f(x) =a Zr{0}. ÅðéðñïóèÝôùò, 1=deg(f(X)h(X)) = deg(f(x)) + deg(h(x)) = deg(h(x)),

ïðüôå b, c Z : h(x) =bx + c. ÊáôÜ óõíýðåéáí, X = f(x)h(x) X = a(bx + c) ab =1,c=0 a Z = {±1}. Áðü ôçí Üëëç ìåñéü, f(x) I n := hn, Xi, ïðüôå θ 1 (X),θ (X) Z[X] : ñá {±1} 3a = f(x) =nd n, d {±1}. f(x) =nθ 1 (X)+Xθ (X) θ (X) =0 Z[X],θ 1 (X) =d Z. (ii) (i) ÅÜí n =0, ôüôå I n = hxi. ÅÜí n {±1}, ôüôå I n = Z[X]. ñá óå áìöüôåñåò ôéò ðåñéðôþóåéò ôï I n åßíáé êýñéï éäåþäåò ôïý Z[X]. (â) óôù n N, n. Èåùñïýìå ôïõò åðéìïñöéóìïýò äáêôõëßùí Z[X] 3 mx a ix i β 7 a 0 Z, Z 3 k γ 7 [k] n Z n. Ç óýíèåóþ ôïõò γ β : Z[X] Z n åßíáé Ýíáò åðéìïñöéóìüò äáêôõëßùí Ý ùí ùò ðõñþíá ôïõ ôï éäåþäåò ( m ) X Ker(γ β) = a i X i Z[X] [a 0] n =[0] n ( m ) X = a i X i Z[X] n a 0 ( Ã m! ) X = nk + X a ix i 1 Z[X] k Z = hn, Xi =: I n. i=1 Óýìöùíá ìå ôï 1ï èåþñçìá éóïìïñöéóìþí äáêôõëßùí 3.3., Z[X]/I n = Zn. (i) (ii) ÅÜí ôo I n åßíáé ìåãéóôéêü éäåþäåò ôïý Z [X], ôüôå ôï I n åßíáé ðñþôï éäåþäåò ôïý Z [X], äéüôé ï Z [X] åßíáé ìåôáèåôéêüò äáêôýëéïò ìå ìïíáäéáßï óôïé åßï (âë. èåþñçìá.5.). (ii) (iii) ÅÜí ôï I n åßíáé ðñþôï éäåþäåò ôïý Z [X], ôüôå ï ðçëéêïäáêôýëéïò Z[X]/I n êáé, êáô' åðýêôáóéí, êáé ï Z n åßíáé áêåñáßá ðåñéï Þ (âë. èåþñçìá.6.4 êáé ðüñéóìá 3.1.10 (i)). ñá ï n åßíáé ðñþôïò áñéèìüò åðß ôç âüóåé ôïý ðïñßóìáôïò 1..7. (iii) (i) ÅÜí ï n åßíáé ðñþôïò áñéèìüò, ôüôå ï Z n êáé, êáô' åðýêôáóéí, êáé ï ðçëéêïäáêôýëéïò Z[X]/I n åßíáé óþìá (âë. ðüñéóìá 1..7. êáé ðüñéóìá 3.1.10 (iii)). ñá ôï éäåþäåò I n åßíáé ìåãéóôéêü éäåþäåò ôïý Z [X] åðß ôç âüóåé ôïý (ii) ôïý ðïñßóìáôïò.6.5. ÈÅÌÁ 9ï (i) Áò õðïèýóïõìå üôé ôï a + b 6, a,b Z, åßíáé Ýíáò ãíþóéïò äéáéñýôçò ôïý (êáé áíôéóôïß ùò, ôïý 5) åíôüò ôþò Z[ 6]. Áðü ôá (iii), (vi) êáé (vii) ôþò ðñïôüóåùò 5..39 Ýðåôáé üôé N a + b 6 N() = 4 N a + b 6 6= ±1 N a + b 6 = N a + b 6 =, 6= N() = 4 êáé áíôéóôïß ùò, N a + b 6 N(5) = 5 N a + b 6 6= ±1 N a + b 6 6= N(5) = 5 = N a + b 6 =5, ïðüôå a +6b =(êáé áíôéóôïß ùò, a +6b =5). ÁõôÝò ïé äéïöáíôéêýò åîéóþóåéò äåí åðéäý ïíôáé áêýñáéåò ëýóåéò. ñá ôï (êáé áíôéóôïß ùò, ôï 5) äåí äéáèýôåé ãíþóéïõò äéáéñýôåò, ïðüôå åßíáé áíüãùãï 3

óôïé åßï (âë. ôï (viii) ôþò ðñïôüóåùò 5.3.4). Êáô' áíáëïãßáí, åüí ôï a+b 6, a,b Z, åßíáé Ýíáò ãíþóéïò äéáéñýôçò ôïý 6, ôüôå N a + b 6 N( 6) = 10 N a + b 6 6= ±1 N a + b 6 6= N( 6) = 10 = N a + b 6 {, 5}, Þôïé êüôé ðïõ (üðùò Ý ïõìå Þäç áðïäåßîåé) åßíáé áäýíáôï. ñá êáé ôï 6 åßíáé áíüãùãï óôïé åßï ôþò Z[ 6]. Áðü ôçí Üëëç ìåñéü, Ý ïõìå 6=(i 6)( i 6) áëëü - ±i 6, ïðüôå ôï äåí åßíáé ðñþôï. Êáô' áíáëïãßáí, ôï 5 åßíáé äéáéñýôçò ôïý ( + 6)( 6) áëëü 5 - ± 6 êáé ôï 6 åßíáé äéáéñýôçò ôïý 5 áëëü 6 - êáé 6-5. ñá ôá, 5, 6 åßíáé ðñþôá óôïé åßá ôþò Z[ 6]. (ii) óôù d ÌÊÄ Z[ 6] (5, + 6). Ôüôå (ëáìâáíïìýíïõ õð' üøéí ôïý (i)) Ý ïõìå d 5 N (d) N(5) = 5 d + 6 N (d) N( + 6) = 10 N (d) ìêä(10, 5) = 5 = N (d) =1. ¼ìùò ôïýôï óçìáßíåé üôé d {±1} 1 ÌÊÄ Z[ 6] (5, + 6). Áðü ôçí Üëëç ìåñéü, 5, + 6 $Z[ 6] 1 / 5, + 6. (iii) Áò õðïèýóïõìå üôé ÌÊÄ Z[ 6] (10, 4+ 6) 6= êáé üôé d ÌÊÄ Z[ 6] (10, 4+ 6). Ôüôå d 10 N (d) N(10) = 100 d 4+ 6 N (d) N(4 + 6) = 40 ) = N (d) ìêä(100, 40) = 0. ÅðåéäÞ 10 êáé 4+ 6 Ý ïõìå d (âë. 5..9). Êáô' áíáëïãßáí, åðåéäþ + 6 10 êáé + 6 4+ 6 Ý ïõìå + 6 d. ÅðïìÝíùò, N () = 4 N (d) N( + 6) = 10 N (d) = N (d) =0. N (d) 1, N (d) 0 ÅÜí d = x + y 6, x,y Z, ôüôå x +6y =0. Ðñïöáíþò, x 4 êáé y 1 Áðü ôïí ðßíáêá üëùí ôùí äõíáôþí ôéìþí ëáìâüíïõìå x y x +6y 0 0 0 0 1 6 1 0 1 1 1 7 0 4 x y x +6y 1 10 3 0 9 3 1 15 4 0 16 4 1 ïðüôå ç x +6y =0äåí äéáèýôåé êáíýíá æåýãïò (x, y) Z ùò ëýóç ôçò. ôïðï! (iv) Ôï óôïé åßï 10 ìðïñåß íá ãñáöåß ùò åîþò üðïõ 10 = 5=(+ 6)( 6), 6 ± 6, 5 6 ± 6, óõí. óõí. üðùò äéáðéóôþíåôáé Üìåóá (ìå áðëýò ðñüîåéò). 4

ÈÅÌÁ 10ï (á) Äßäïíôáé ôá åîþò éäåþäç ôïý äáêôõëßïõ Q [X 1, X ]: (i) X 1, (iv) X 1 1, (ii) hx 1, X 3i, (v) hx 1 + X i, (iii) X 1 +1, (vi) hx 1X i. Èá åîåôüóïõìå ðïéá åî áõôþí åßíáé ðñþôá êáé ðïéá ìåãéóôéêü. ÅðåéäÞ ï äáêôýëéïò Q [X 1, X ] åßíáé ìåôáèåôéêüò, Ýíá éäåþäåò p $Q[X 1, X ] åßíáé ðñþôï åüí êáé ìüíïí åüí éó ýåé ç óõíåðáãùãþ [f(x 1, X )g(x 1, X ) p = åßôå f(x 1, X ) p åßôå g(x 1, X ) p], ãéá ïéáäþðïôå f(x 1, X ),g(x 1, X ) Q [X 1, X ] (âë. ðñüôáóç.5.). ÅðéðñïóèÝôùò, åðåéäþ ï Q [X 1, X ] åßíáé äáêôýëéïò ìå ìïíáäéáßï óôïé åßï, êüèå ìåãéóôéêü éäåþäåò ôïõ åßíáé êáô' áíüãêçí ðñþôï (âë. èåþñçìá.5.). (i) ÅðåéäÞ X 1 = X 1 X 1 X1 áëëü X1 / X1, ôï X 1 äåí åßíáé ïýôå ðñþôï ïýôå ìåãéóôéêü éäåþäåò. (ii) ÅÜí ïñßóïõìå ôïí ïìïìïñöéóìü äáêôõëßùí ϑ : Q [X 1, X ] Q, f(x 1, X ) 7 f(, 3), ðáñáôçñïýìå üôé ï ϑ åßíáé åðéìïñöéóìüò. (Ãéá êüèå λ Q, õðüñ åé Ýíá ðïëõþíõìï f λ (X 1, X ):=(X 1 ) + (X 3) + λ, ãéá ôï ïðïßï éó ýåé ϑ (f λ (X 1, X )) = λ). μñçóéìïðïéþíôáò ôï 1ï èåþñçìá éóïìïñöéóìþí äáêôõëßùí 3.3. ó çìáôßæïõìå Ýíáí éóïìïñöéóìü Q [X 1, X ] / Ker(ϑ) = Q. Ïåãêëåéóìüò hx 1, X 3i Ker(ϑ) ={ f(x 1, X ) Q [X 1, X ] f(, 3) = 0} åßíáé ðñïöáíþò. Ï áíôßóôñïöïò åãêëåéóìüò '' Ýðåôáé áðü ôï üôé êüèå f(x 1, X )= X i,j a ij X i 1X j Q [X 1, X ] ìå f(, 3) = 0 ìðïñåß íá ãñáöåß ùò f(x 1, X )= X i,j a ij ( + X 1 ) i (3 + X 3) j = X i,j " ix #" a i jx ij k k (X 1 ) i k k=0 l=0 # j l 3 l (X 3) j l Þôïé ùò áèñïßóìáôá ñçôþí áñéèìþí ðïëëáðëáóéáæïìýíùí ìå äõíüìåéò ôùí X 1 êáé X 3. EðåéäÞ ôï Q åßíáé óþìá, ï ðçëéêïäáêôýëéïò Q [X 1, X ] / hx 1, X 3i åßíáé ùóáýôùò óþìá êáé ôï éäåþäåò hx 1, X 3i ìåãéóôéêü (êáé, êáô' åðýêôáóéí, ðñþôï), âë. ðüñéóìá 1..7. êáé ðüñéóìá 3.1.10 (iii). (iii) ÅðåéäÞ ôï X 1 +1åßíáé áíüãùãï ðïëõþíõìï óôïí Q [X 1], ôï X 1 +1 åßíáé ðñþôï éäåþäåò (ôüóïí ôïý Q [X 1 ] üóïí êáé ôïý 1 Q [X 1, X ]), áëëü äåí åßíáé ìåãéóôéêü éäåþäåò, êáèüôé, ð.., X 1 +1 $ X 1 +1, X 3 $Q[X 1, X ]. (iv) ÅðåéäÞ X 1 1=(X 1 1)(X 1 +1), ôï X 1 1 äåí åßíáé áíüãùãï, ïðüôå ôï X 1 1 äåí åßíáé ïýôå ðñþôï ïýôå ìåãéóôéêü éäåþäåò. 1 Ôüóïí ï Q [X 1 ] üóïí êáé ï Q [X 1, X ] åßíáé Ð.Ì.Ð., ïðüôå êüèå áíüãùãï óôïé åßï ôïõò åßíáé êáé ðñþôï óôïé åßï (ôï ïðïßï ðáñüãåé Ýíá ðñþôï éäåþäåò, âë. èåþñçìá 5.6.3 êáé ðñüôáóç 5.3.4. (i)). 5

(v) Ôï X 1 + X åßíáé áíüãùãï ðïëõþíõìï êáé, ùò åê ôïýôïõ, ðñþôï óôïé åßï ôïý Q [X 1, X ], ïðüôå ôï hx 1 + X i åßíáé ðñþôï éäåþäåò. Ùóôüóï, ôï hx 1 + X i äåí åßíáé ìåãéóôéêü, äéüôé ð.. hx 1 + X i $ hx 1, X i $Q[X 1, X ]. (vi) ÅðåéäÞ X 1 X hx 1 X i áëëü X 1 / hx 1 X i êáé X / hx 1 X i, ôï hx 1 X i äåí åßíáé ïýôå ðñþôï ïýôå ìåãéóôéêü éäåþäåò. (â) Äßäïíôáé ôá åîþò óôïé åßá ôïý äáêôõëßïõ Z [X 1, X, X 3]: Èá åîåôüóïõìå ðïéá åî áõôþí åßíáé áíüãùãá. (i) ÅðåéäÞ (i) f(x 1, X, X 3 ):=X 1 + X + X 3, (ii) g(x 1, X, X 3):=X 1X + X X 3 + X 3X 1. f(x 1, X, X 3)=(X 1 + X + X 3), ìå ôï X 1 + X + X 3 ìç óôáèåñü ðïëõþíõìï, ôï f(x 1, X, X 3 ) äåí åßíáé áíüãùãï. (ii) Áò õðïèýóïõìå üôé ôï g(x 1, X, X 3) ãñüöåôáé ùò ãéíüìåíï äýï ìç óôáèåñþí ðïëõùíýìùí h 1 (X 1, X, X 3 ) êáé h (X 1, X, X 3 ) Z [X 1, X, X 3 ]. ÅðåéäÞ ôï g(x 1, X, X 3 ) äåí ðåñéý åé êáìßá ìåôáâëçôþ õøùìýíçóåêüðïéáäýíáìç êáé ï óôáèåñüò ôïõ üñïò åßíáé =0, ôá h 1(X 1, X, X 3) êáé h (X 1, X, X 3) äåí ìðïñïýí íá ðåñéý ïõí ìç ìçäåíéêïýò óôáèåñïýò üñïõò, ïýôå üñïõò ðïõ ðåñéëáìâüíïõí ðåñéóóüôåñåò ôþò ìßáò ìåôáâëçôþò, ïýôå üñïõò ðïõ ðåñéëáìâüíïõí ìßá ìåôáâëçôþ õøùìýíç óå êüðïéá äýíáìç. ÊáôÜ óõíýðåéáí, ôá h 1 (X 1, X, X 3 ) êáé h (X 1, X, X 3 ) åßíáé ôþò ìïñöþò h 1(X 1, X, X 3) = [a 1] X 1 +[a ] X +[a 3] X 3, h (X 1, X, X 3 ) = [b 1 ] X 1 +[b ] X +[b 3 ] X 3, ãéá êüðïéïõò a 1,a,a 3,b 1,b,b 3 {0, 1}. Áðü ôçí éóüôçôá Ýðåôáé üôé X 1 X + X X 3 + X 3 X 1 = h 1 (X 1, X, X 3 )h (X 1, X, X 3 ) [a 1 ] [b 1 ] =[a ] [b ] =[a 3 ] [b 3 ] =[0], [a 1 ] [b ] +[a ] [b 1 ] =[1], [a 1 ] [b 3 ] +[a 3 ] [b 1 ] =[1], [a ] [b 3] +[a 3] [b ] =[1]. ÂÜóåé ôùí ðñþôùí óõíèçêþí, åßôå a j =0åßôå b j =0, ãéá êüèå j {1,, 3}. Áò õðïèýóïõìå üôé a 1 =0. Ôüôå a = a 3 = b 1 = 1, ïðüôå b = b 3 = 0, ðñüãìá Üôïðï ëüãù ôþò ôåëåõôáßáò éóüôçôáò. Ðáñïìïßùò êáôáëþãïõìå óå Üôïðï õðïèýôïíôáò üôé a =0Þa 3 =0. Êáô' áíáëïãßáí, êáôáëþãïõìå óå Üôïðï õðïèýôïíôáò üôé Ýíáò åê ôùí b 1,b,b 3 åßíáé =0. ñá ôï g(x 1, X, X 3 ) åßíáé áíüãùãï ðïëõþíõìï. --------------------------------------------------- 6