Trajectory tracking of quadrotor based on disturbance rejection control

Σχετικά έγγραφα
Motion analysis and simulation of a stratospheric airship

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

High order interpolation function for surface contact problem

Control Theory & Applications PID (, )

Resilient static output feedback robust H control for controlled positive systems

ER-Tree (Extended R*-Tree)

Relative dynamic modeling and formation control of multiple unmanned helicopters

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

The straight-line navigation control of an agricultural tractor subject to input saturation

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

CorV CVAC. CorV TU317. 1

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Research on real-time inverse kinematics algorithms for 6R robots

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Gain self-tuning of PI controller and parameter optimum for PMSM drives

CAP A CAP

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Position control of the planar switched reluctance motor based on model reference adaptive regulator

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

New conditions for exponential stability of sampled-data systems under aperiodic sampling

Quick algorithm f or computing core attribute

Fragility analysis for control systems

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

A new practical method for closed-loop identification with PI control

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Approximation Expressions for the Temperature Integral

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

A System Dynamics Model on Multiple2Echelon Control

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Adaptive grouping difference variation wolf pack algorithm

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Research on model of early2warning of enterprise crisis based on entropy

Coordinated control of a doubly fed induction generator wind turbine with series grid-side converter under unbalanced grid voltage conditions

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil


( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Buried Markov Model Pairwise

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

,,, (, ) , ;,,, ; -

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

ROBOT. Design and Realization of a Control System for Laparoscopic Robot

DOI /J. 1SSN

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

Autonomous navigation control for mobile robots based on emotion and environment cognition

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

AR.Drone, ( ), [1]. [2-4], - [5-8] [9, 10] - . :, [6], - [9], [7], [11, 12]

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

Table of Contents 1 Supplementary Data MCD

Journal of South China University of Technology Natural Science Edition. ADAMS-Matlab /Simulink . 1. f θ = v fsin γ + l rγ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

PACS: Pj, Gg

2002 Journal of Software

AC Servo Motor Based Position Sensorless Control System Making Use of Springs

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Arbitrage Analysis of Futures Market with Frictions

Stabilization of stock price prediction by cross entropy optimization

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2


Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Study on application of spectral analysis of instantaneous power to fault diagnosis of traction motor rotor

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Prey-Taxis Holling-Tanner

A summation formula ramified with hypergeometric function and involving recurrence relation

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

A multipath QoS routing algorithm based on Ant Net

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Accounts receivable LTV ratio optimization based on supply chain credit

Ultrasound Probe Calibration Method Based on Optical Tracking Systems

College of Life Science, Dalian Nationalities University, Dalian , PR China.

A research on the influence of dummy activity on float in an AOA network and its amendments

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Harmonic analysis of armature current for high speed permanent magnet synchronous motor

ADT

Transcript:

33 11 216 11 DOI: 1.7641/CTA.216.6117 Control Theory & Applications Vol. 33 No. 11 Nov. 216, (,, 224) :,,,.,,, ;,... : ; ; ; ; ; : TP273 : A Trajectory tracking of quadrotor based on disturbance rejection control WU Chen, SU Jian-bo (Department of Automation; Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University, Shanghai 224, China) Abstract: This paper studies trace tracking control problem of quadrotor aircraft. To deal with the model uncertainties and external disturbances in quadrotor flying process, a novel sliding mode control based on extended state observer is proposed. System uncertainties are depressed and trace tracking errors are uniformly ultimately bounded under the proposed control law. Firstly, system model is divided into two subsystem models according to the coupling relationship between state variables. Extended state observers are designed to estimate mismatched uncertainties in the subsystem, and estimated values are added into switching function. Disturbances in the reconstructed system are observed by extended state observers designed based on the switching function, and they are rejected in the controller design procedure. Finally, system stability is proven through Lyapunov theory. The simulation results demonstrate the efficiency of the proposed control scheme for quadrotor trace tracking and the efficiency for depressing chattering phenomenon. Key words: quadrotor aircraft; trace tracking control; mismatched uncertainties; extended state observer; switching function; sliding mode control 1 (Introduction),.,.,,.,.,. PID [1] [2], ; [3] [4], ; [5] [6] [7] : 216 3 4; : 216 9 7.. E-mail: jbsu@sjtu.edu.cn. :. (6153312, 6152163). Supported by National Natural Science Foundation of China (6153312, 6152163).

11 : 1423,.,..,., [8] [9] [1 11].,,,..,,, [12 13]., [14], [15]. [16] [17 18] [19] [2].,., [21] [22] [23].,,.,,,.,., ;,,.. 2 (System model and problem formulation) 1,. 2 4, 1 3, ( )1, 3 ( )2, 4. φ, θ, ψ, ẍ = 1 m (C φs θ C ψ + S φ S ψ )u 1 K 1ẋ m, ÿ = 1 m (C φs θ S ψ S φ C ψ )u 1 K 2ẏ m, z = 1 m (C φc θ )u 1 g K 3ż m, φ = θ ψ I yy I zz + l u 2 K 4l φ, I xx I xx I xx θ = ψ φ I zz I xx + l u 3 K 5l θ, I yy I yy I yy ψ = φ θ I xx I yy I zz + 1 I zz u 4 K 6l I zz ψ, (1) : m, I xx, I yy, I zz x, y, z, K 1 K 6, l, C ( ) S ( ) cos( ) sin( ) ; u 1, u 2, u 3, u 4 4, 4 F 1, F 2, F 3, F 4 u 1 = F 1 + F 2 + F 3 + F 4, u 2 = l( F 2 + F 4 ), (2) u 3 = l( F 1 + F 3 ), u 4 = C( F 1 + F 2 F 3 + F 4 ), C. 1 Fig. 1 Structure of quadrotor aircraft, x, y, z x d, y d, z d. ψ

1424 33 ψ d,, ψ ψ d., Σ 1 Σ 2., Σ 1 ẋx 1 = x 2, ẋx 2 = N 2 x 2 + g 2 x 3 + d 1, Σ 1 : (3) ẋx 3 = g 3 x 4, ẋx 4 = N 4 x 4 + W 4 U 1 + d 2, : d 1, d 2, [ ] [ ] [ ] [ ] x ẋ S x 1 =,x 2 =,x 3 = θ θ,x 4 =, y ẏ S φ φ g 2 = u [ ] [ ] 1 C φ C ψ S ψ C,g 3 = θ, ˆm C φ S ψ C ψ C φ ˆK 1 N 2 = ˆm ˆK, 2 ˆm ˆK 5ˆl Î zz Îxx ψ Î N 4 = yy Î yy Î yy Îzz ψ ˆK 4ˆl, Î xx Î xx Î xx ˆl [ ] [ ] Î W 4 = yy ˆl,d Δ 1 = x Δ,d 2 = θ. Δ y Δ φ (4), Σ 2 {ẋx 5 = x 6, Σ 2 : (5) ẋx 6 = N 6 x 6 + g 6 U 2 + f 6 + d 3, d 3 Σ 2, x 5 = x 6 = [ ] z ψ [ ˆK 3 ˆm,N 6 = ˆK 6ˆl, ˆm g φ θ Îxx Îyy, ] ż,f 6 = ψ Î zz [ ] C φ C θ Δf d 3 = z,g 6 = ˆm Δf ψ ˆl. Î zz (6) 3 (Control system design),,, x, y, z. 3.1 (Design of switching function) : 1), ; 2),. Σ 1 Σ 2, s 1 s 2,,. s 1 d 1 ˆd 1,. s 1 e 1, e 2, e 3 e 4 e 1 = x 1 x 1d, e 2 = x 2 ẋx 1d, e 3 = N 2 x 2 + g 2 x 3 ẍx 1d + ˆd 1, e 4 = N 2 2 x 2 + N 2 g 2 x 3 + dg 2 dt x 3 + g 2 g 3 x 4... x 1d + N 2ˆd 1 + ˆd 1dot, (7) : ˆd 1 d 1, ˆd 1dot. ˆd 1 ˆd 1dot 2.2. e 1, e 2, e 3, e 4 d 1, d 2 ėe 1 = e 2, ėe 2 = e 3 d 1, ėe 3 = e 4 N 2 d 1 d 1dot, ėe 4 = N 3 2 x 2 + N 2 dg 2 x 3 2 g 2 x 3 + N 2 + dt d 2 g 2 d 2 t x 3 + g 2 g 3 (N 4 x 4 + W 4 U 1 ) x (4) 1d + N 2 2 d 1 + g 2 g 3 d 2 + dg 2 dt g 3x 4 + dg 2 g 3 x 4 + N 2ˆd 1dot + ˆd 1dot = dt F 1 (x 2,x 3,x 4 )+M 1 (x 3,x 4 )U 1 + N 2 2 d 1 + g 2 g 3 d 2 + N 2ˆd 1dot + ˆd 1dot. e 1, e 2, e 3, e 4 Σ 1 (8)

11 : 1425 s 1 = c 1 e 1 + c 2 e 2 + c 3 e 3 + e 4, (9) c 1, c 2 c 3. c 1, c 2 c 3 (24) Hurwitz, s 1, e 1. Σ 2, s 1. Σ 2 e 5 e 6 { e5 = x 5 x 5d, (1) e 6 = x 6 ẋx 5d. e 5 e 6 d 3 {ėe 5 = e 6, ėe 6 = g 6 U 2 + f 6 + d 3. e 5, e 6 Σ 2 (11) s 2 = c 5 e 5 + e 6, (12) c 5. c 5, s 2, e 5. 3.2 (Design of extended state observer) (ESO),. d 1, ESO, d 2 d 3 ESO. ESO, ESO,. Σ 1 d 1, ˆx 2 = N 2ˆx 2 + g 2 x 3 + ˆd 1 + h 1 (x 2 ˆx 2 ), ˆd 1 = ˆd 1dot + h 2 (x 2 ˆx 2 ), (13) ˆd 1dot = h 3 (x 2 ˆx 2 ), : ˆx 2 x 2, ˆd 1 d 1, ˆd 1dot d 1, h 1,h 2 h 3 ESO. Σ 1, s 1 d 2 d 1, d 2s. s 1 ŝs 1 = c 1 e 2 + c 2 e 3 + c 3 e 4 + F 1 (x 2,x 3,x 4 )+ M 1 (x 3,x 4 )U 1 + ˆd 2s + h 4 (s 1 ŝs 1 ), ˆd 2s = h 5 (s 1 ŝs 1 ), (14) : ŝs 1 s 1, ˆd 2s d 2s, h 4, h 5 ESO. Σ 2, d 3, s 2 ŝs 2 =c 5 e 6 +g 6 U 2 +f 6 +ˆd 3 +h 6 (s 2 ŝs 2 ), (15) ˆd 3 =h 7 (s 2 ŝs 2 ), : ŝs 2 s 2, ˆd 3 Σ 2 d 3, h 6, h 7 ESO. 3.3 (Controller design) ˆd 1, ˆd 2s ˆd 3,, U 1, U 2. Σ 1 : ṡs 1 = ρ 1 s 1 η 1 sgn s 1. (16),,,.,. (9)(14)(16), Σ 1 U 1 = M 1 1 (x 3,x 4 )[ρ 1 s 1 + η 1 sgn s 1 + c 1 e 2 + c 2 e 3 + c 3 e 4 + F 1 (x 2,x 3,x 4 )+ˆd 2s ]. (17) Σ 1, Σ 2 : ṡs 2 = ρ 2 s 2 η 2 sgn s 2. (18) (12)(15)(18), Σ 2 U 2 = g 1 6 [ρ 2 s 2 + η 2 sgn s 2 + c 5 e 6 + f 6 + ˆd 3 ]. (19) 4 (Stability analysis), Lyapunov. Σ 1 (17) e 1. Σ 1 d 1 [24] { ξ 1 = A 1 ξ 1 + B 1 d 1, (2) d 1 = C 1 ξ 1 + D 1 d 1, : h 3 A 1 = I 2 h 2 I 2 h 1 + N 2,

1426 33 h 3 B 1 =,C 1 =[ I 2 ],D 1 =I 2. I 2. A 1 Hurwitz, Q 1, P 1 P 1 A 1 + A T 1 P 1 = Q 1. Σ 1 s 1 d 2s { ξ 2 = A 2 ξ 2 + B 2 d 2s, (21) d 2s = C 2 ξ 2 + D 2 d 2s, : [ ] h5 A 2 =, I 2 h 4 [ ] h5 B 2 =,C 2 =[ I 2 ],D 2 = I 2. A 2 Hurwitz, Q 2, P 2 P 2 A 2 + A T 2 P 2 = Q 2. s 1 ξ 1 ξ 2 Lyapunov V Σ1 V Σ1 = 1 2 st 1 s 1 + ξ T 1 P 1 ξ 1 + ξ T 2 P 2 ξ 2. (22) (22) Lyapunov V Σ1 V Σ1 = ρ 1 s T 1 s 1 η 1 s T 1 sgn s 1 ξ T 1 Q 1 ξ 1 + s T d 1 2s + 2ξ ξ T 1 P 1 B 1 d 1 ξ T 2 Q 2 ξ 2 +2ξ ξ T 2 P 2 B 2 d 2s ρ 1 s 1 2 η 1 s 1 + s 1 d 2s λ min (Q 1 ) ξ 1 2 λ min (Q 2 ) ξ 2 2 + 2 P 1 B 1 ξ 1 d 1 +2 P 2 B 2 ξ 2 d 2s. (23) d 1 d 2s, (23) (17), s 1 d 1 d 2s. (8) (9), e 2, e 3, e 4 ėe 2 1 e 2 d 1 ėe 3 = 1 e 3 + N 2 d 1 d 1dot, ėe 4 c 1 c 2 c 3 e 4 R( d 1, d 1dot, d 2s,s 1 ) (24) R( d 1, d 1dot, d 2s,s 1 )=c 2 d 1 +c 3 N 2 d 1 +c 3 d 1dot ρ 1 s 1 η 1 sgn s 1 d 2s. c 1, c 2 c 3 Hurwitz, e 2, e 3, e 4. s 1, (9) e 1. Σ 2 (19). Σ 2 d 3 { ξ 3 = A 3 ξ 3 + B 3 d 3, (25) d 3 = C 3 ξ 3 + D 3 d 3, : [ ] h7 A 3 =, I 2 h 6 [ ] h7 B 3 =,C 3 =[ I 2 ],D 3 = I 2. A 3 Hurwitz, Q 3, P 3 P 3 A 3 + A T 3 P 3 = Q 3. s 2 ξ 2 Lyapunov V Σ2 V Σ2 = 1 2 st 2 s 2 + ξ T 3 P 3 ξ 3. (26) V Σ2 = ρ 2 s T 2 s 2 η 2 s T 2 sgn s 2 ξ T 3 Q 3 ξ 3 + s T d 2 3 +2ξ ξ T 3 P 3 B 3 d 3 ρ 2 s 2 2 η 2 s 2 λ min (Q 3 ) ξ 3 2 + 2 P 3 B 3 ξ 3 d 3 + s 2 d 3. (27) d 3, (19), s 2 d 3. (12), s 2, e 5. 5 (System simulation), MATLAB.. 1, x d (t) =1sin( 2π 5 t), y d(t) = 1 cos( 2π 5 t), z d (t) = 1 6 t.,.7 1.3,, t =1s, t=5 s. d 1, d 2 d 3 d 1 =[2 2] T,d 2 =[5sin( 2π t) 5sin(2π 25 25 t)]t, d 3 =diag{2, 5sin( 2π 25 t)}.

11 : 1427 1 Table 1 Nominal parameters of quadrotor ˆm 1.2 kg g 9.81 m/s 2 ˆl.5 m Î xx.82 kg m 2 Î yy.82 kg m 2 Î zz.149 kg m 2 ˆK 1 ˆK 3.5 kg/s ˆK 4 ˆK 6.5 kg/rad 2 Fig. 2 Tracking error comparison figure,. c 1 = 324, c 2 = 666, c 3 =45,c 5 =5, ρ 1 =15,ρ 2 =5,η 1 =,η 2 =. h 1 =6I 2,h 2 =12I 2,h 3 =8I 2, h 4 =6I 2,h 5 =9I 2,h 6 =6I 2,h 7 =9I 2. 2, 2, 1 s, e y,e z,,,, s 1, s 2,. 1 5 s,,, ;,,. φ, θ, ψ 3,,. 3 Fig. 3 Attitude angles comparison figure s 1 s 2 4. 4, t =s, t =1s t =5s, s 1 s 2,,., s 1 s 2. 5,,,,.

1428 33 5 Fig. 5 System input comparison figure 4 Fig. 4 Switching function value comparison figure 6 Fig. 6 Tracking error figure under traditional sliding mode control,.,. c 1 = 225, c 2 = 675, c 3 =5,c 5 =5, ρ 1 =25,ρ 2 =15,η 1 =5,η 2 =5. η 1 η 2. 6,, e x,e y,e z,. 7,,,

11 : 1429,. 8,,. 8 Fig. 8 System input value under traditional sliding mode control 6 (Conclusions),,..,.,,.,,,. (References): 7 Fig. 7 Switching function value under traditional sliding mode control [1] MILHIM A, ZHANG Y M. Gain scheduling based PID controller for fault tolerant control of a quad-rotor UAV [C] //American Institute of Aeronautics and Astronautics Infotech@Aerospace 21. Atlanta, GA: AIAA, 21: 1 13. [2] BOUSBDALLAH S, NOTH A, SIEGWART R. PID vs LQ control techniques applied to an indoor micro quadrotor [C] //Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendal: IEEE, 24: 2451 2456. [3] DAS A, LEWIS F, SUBBARAO K. Backstepping approach for controlling a quadrotor using lagrange form dynamics [J]. Journal of Intelligent and Robotic Systems, 29, 56(1/2): 127 151. [4] VOOS I. Nonlinear control of a quadrotor micro-uav using feedback-linearization [C] //Proceedings of IEEE International Conference on Mechatronics.Málaga: IEEE, 29: 1 6. [5] DYDEK Z T, ANNASWAMY A M, LAVRETSKY E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations [J]. IEEE Transactions on Control Systems Technology, 213, 21(4): 14 146. [6] DIERKS T, JAGANNATHAN S. Neural network output feedback control of a quadrotor UAV [C] //Proceedings of IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 28: 3633 3639. [7] SUMANTRI B, UCHIYAMA N, SANO S, et al. Robust tracking control of a quad-rotor helicopter utilizing sliding mode control with a nonlinear sliding surface [J]. Journal of System Design and Dynamics, 213, 7(2): 226 241. [8] FENG Y, YU X, MAN Z. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 22, 38(12): 2159 2167.

143 33 [9] CHWA D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates [J]. IEEE Transactions on Control Systems Technology, 24, 12(4): 637 644. [1] XU R, ÖZGÜNER Ü. Sliding mode control of a quadrotor helicopter [C] //Proceedings of IEEE Conference on Decision and Control. San Diego: IEEE, 26: 4957 4962. [11] XIONG J J, ZHENG E H. Position and attitude tracking control for a quadrotor UAV [J]. ISA Transactions, 214, 53(3): 725 731. [12] HAN Jingqing. Auto-disturbance-rejection controller and it s applications [J]. Control and Decision, 1998, 13(1): 19 23. (. [J]., 1998, 13(1): 19 23.) [13] HAN J. From PID to active disturbance rejection control [J]. IEEE transactions on Industrial Electronics, 29, 56(3): 9 96. [14] YANG X, HUANG Y. Capabilities of extended state observer for estimating uncertainties [C] //Proceedings of American Control Conference. St. Louis: IEEE, 29: 37 375. [15] GAO Z. Scaling and bandwidth-parameterization based controller tuning [C] //Proceedings of the American Control Conference. Minneapolis, MN: IEEE, 26: 4989 4996. [16] YAO J, JIAO Z, MA D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 214, 61(11): 6285 6293. [17] WANG Lipeng, ZHANG Huaguang, LIU Xiuchong, et al. Backstepping controller based sliding mode variable structure for speed control of SPMSM with extended state observer [J]. Control and Decision, 211, 26(4): 553 557. (,,,. SPMSM [J]., 211, 26(4): 553 557.) [18] LIU H, LI S. Speed control for PMSM servo system using predictive functional control and extended state observer [J]. IEEE Transactions on Industrial Electronics, 212, 59(2): 1171 1183. [19] SU J, MA H, QIU W, et al. Task-independent robotic uncalibrated hand-eye coordination based on the extended state observer [J]. IEEE Transactions on Systems, Man, and Cybernetics, 24, 34(4): 1917 1922. [2] TALOLE S E, KOLHE J P, PHADKE S B. Extended state observer based control of flexible-joint system with experimental validation [J]. IEEE Transactions on Industrial Electronics, 21, 57(4): 1411 1419. [21] XIA Y, ZHU Z, FU M, et al. Attitude tracking of rigid spacecraft with bounded disturbances [J]. IEEE Transactions on Industrial Electronics, 211, 58(2): 647 659. [22] WANG J, LI S, YANG J, et al. Extended state observer-based sliding mode control for PWM-based DC DC buck power converter systemsl with mismatched disturbances [J]. IET Control Theory & Applications, 215, 9(4): 579 586. [23] GINOYA D, SHENDGE P D, PHADKE S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer [J]. IEEE Transactions on Industrial Electronics, 214, 61(4): 1983 1992. [24] WANG Lu, SU Jianbo. Attitude tracking of aircraft based on disturbance rejection control [J]. Control Theory & Applications, 213, 3(12): 169 1616. (,. [J]., 213, 3(12): 169 1616.) : (199 ),,,, E-mail: wuchensjtu@126.com; (1969 ),,,, E-mail: jbsu@sjtu.edu.cn.