INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

p din,j = p tot,j p stat = ρ 2 v2 j,

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

v w = v = pr w v = v cos(v,w) = v w

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

2 SFI

Ανώτερα Μαθηματικά ΙI

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

Delta Inconel 718 δ» ¼

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

. O 2 + 2H 2 O + 4e 4OH -

Blowup of regular solutions for radial relativistic Euler equations with damping

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Supporting Information

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Protective Effect of Surface Coatings on Concrete

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

任秉雄 王崇臣 ENVIRONMENTAL CHEMISTRY. 744 t 50% 10% 20% 1 mg L t S. SHZ-82 Spectrum-100 C 16 H 18 N 3 SCl 3H 2 O

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

S i L L I OUT. i IN =i S. i C. i D + V V OUT

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Electronic Supplementary Information (ESI)

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

High order interpolation function for surface contact problem

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

PACS: Pj, Gg

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ανώτερα Μαθηματικά ΙI

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Approximation Expressions for the Temperature Integral

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Conductivity Logging for Thermal Spring Well

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Vol. 5 No. 1 Feb EL ECTROCHEMISTR Y ( ) ( ) ( EHD), ( FDN) ( TEA- PTS), Tri2 tonx-100 ,FDN. EHD. EHD. RH. RH 2. Guidelli, 1.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

) ; GSP ) ;PXD g, 100 ml

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

,,, (, ) , ;,,, ; -

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Transcript:

Ý 49 Ý 8 Vol.49 No.8 2013 8 Ý 1017 1024 ACTA METALLURGICA SINICA Aug. 2013 pp.1017 1024 Í H 2 SO 4 Ë º 2 ¾ 2 Cu ¼Ç ºÂµÅ Ð Ù Ñ Û Ý Ú (Ñ ÆØ Ñ Á, ÑÐ 412007) Ï Ê ¹Ò ß 2 2 Cu 5% H 2SO 4 ÆÊ ÕÝÙÝ Æ½Ú Ý Ù. ¹ «, 2 Á Cu ¾ ÔÕÝÙ ¹, 2 2 ÕÝÙ ß. µö, ³ ¹µÙ ³ÕĐ E a, ƽ ÂÕ Gibbs ¼ G m ƽ H m 2 Á Cu ÕÆ½ Ý. ¹ «, 2 2 Cu ÕÆ½ Â Ä Â, ƽ, ² Langmuir ƽ٠Þ. ¼, 2 2 Þ Cu ƽ ¹ÄÕ, ú Cu ÕÝÙ., 2 2, Cu, ƽ Ý, ÝÙ ² ¹ O646.6 ÁÄ A Á ¹ 0412 1961(2013)08 1017 08 INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 Correspondent: WU Luye, lecturer, Tel: (0731)22182088, E-mail: h-xk@163.com Supported by Natural Science Foundation of Hunan Province (No.13JJ3107) Manuscript received 2013 05 06, in revised form 2013 06 21 ABSTRACT Mass loss and electrochemical methods were carried out to evaluate the inhibition property and adsorption behavior of imidazole and 2 Phenyl 2 imidazoline for Cu in 5% H 2 SO 4 solution. The results showed that the two compounds have obvious corrosion inhibition for Cu in H 2 SO 4 solution, and the inhibition efficiency of 2 Phenyl 2 imidazoline was higher than that of imidazole. Meanwhile, the adsorption property was estimated using the activation energy E a of the corrosion reaction, the standard adsorption Gibbs free energy change G m and enthalpy change H m for the imidazole and 2 phenyl 2 imidazoline, respectively. It revealed that the adsorption processes were exothermic reactions on Cu by a monolayer chemisorption based mechanism, and the adsorption of the inhibitors followed the Langmuir adsorption isotherm. In addition, the differences of the monolayer adsorption structures between the imidazole and 2 Phenyl 2 imidazoline molecules on the Cu surface were investigated, and their inhibition mechanisms for Cu were analyzed. KEY WORDS imidazole, 2 Phenyl 2 imidazoline, Cu, adsorption property, inhibition mechanism Cu» Ö Å ÚÂ Þ Æ Ì Ü º Ò ßØ ÚÖ. ݺ Ã, Cu ÖÕ ± Ð ÃÆµ Î Û., * Ò Ð ÂÈ ÜÕ 13JJ3107 ÐÆ ȹ : 2013 05 06, Ðß È¹ : 2013 06 21 È ¾ : ÔÎ,, 1977, µ, ¹Ð DOI: 10.3724/SP.J.1037.2013.00250 º HCl H 2 SO 4 Ú Þ Ê ÛÌ. ÃÆ, Ê Đº ÖÞÚ, Å Ö Ú., Cu ÚÖÞÚ Ó Æ ÚØ Â Ø Ú [1 3]. [4,5] Æ NaCl Ë ÅÆ Æ 1 ÆÅ Cu ÖÞÚ,»ÞÚ 47.7%, 73.2%, 90.0%, ± ÅÆ Þ Å Cu Ö Ú, Æ 1- ÆÖ Ã, Ï. Á Ú [6] ÇÐ Ú [7] Å Þ 3 É

1018 Ý 49 Æ Ø Â (BIT, BIOHT, BIMMT) Æ Â (POTAS, PDTAS) Å Cu ÖÞÚ,»ÞÚ À 80%. É ÆØ ÂÖ À² º, Û. Ek Lisac Ú [8] Å H 2 SO 4 ÅÆÅ Cu ÖÞÚÞ,»ÞÚ 65%, ÊÞÚ ÖÅ. Ê» ÅÆ  (2 2 ÅÆ ) H 2 SO 4 Å Cu ÖÞÚÞ Ö Ò. ÞÚ Ö ³ ± ÖÂ Ø Ç¾ ÚÖ. «Æ«, Ǿ º Ç ¾ ºÅ, ÞÚ., Ǿ ºÖ Þ, ɳ Ú Ã Ö Ø E a, Ǿ à Gibbs н G m Ǿ (Å) H m «Ö Û. Î [9,10] Ú³ Ê«Ì, ÓÑ Æ Æ Æ Cu ± ÖǾ H m 48.296, 48.644 115 kj/mol, Å 40 kj/mol Ø Ç¾ [11],, ǻǾÀ Ø Ç¾. Æ Ebenso Ú [12] Á Ú [6] º E a Û, Ç E a <80 kj/mol À  Ǿ, 80 kj/mol À Ø Ç¾. Ó ÆÞ Ö, [6] ³ ÓÈ Cu 3 É Æ Ø Â (BIT, BIOHT, BIMMT) Ì Ö Ú Ã Ö E a 52, 55.20 69.96 kj/mol, Ö E a À 80 kj/mol, Ç BIT, BIOHT BIMMT Cu ± ÖǾ ºÀ  Ǿ., Û Ê 3 Ø Â Cu ± ÖǾ H m,» 37.94, 41.03 52.25 kj/mol. H m Ú, ÉÏ BIT  Ǿ, Æ BIOHT BIMMT Ø Ç¾. ½, [13] Å, Õ ¾ Al ± ÖǾ  Ǿ ÓÖ Ç¾, Ú Ã E a 27.18 41.97 kj/mol; [14] Ç, H 2 SO 4 Ú, Ô ± ÖǾ Ø Ç¾, Ú Ã E a 55.24 59.63 kj/mol., Ø E a <80 kj/mol À  Ǿ, Æ E a >80 kj/mol À Ø Ç¾ Ú. ÃÆ, ºÇ¾«½ н Þ,» Ú. G m Ǿ Î Ek Lisac Ú [8] Ç, G m 20 40 kj/mol Â Ç ¾, G m 100 kj/mol Ø Ç¾, ³ Ó ÑÅÆ Cu ± Ö G m 22.16 kj/mol, Ç Ã Â Ç¾. Æ [15 19] Ç G m 20 kj/mol  Ǿ, G m 40 kj/mol Ø Ç¾, 2 É Ö Â Ø Ç¾. Î De Souza [15] ³, ÓÑÁ Cu ± ÖǾ G m 31.1 kj/mol, Ç Ã Â Ç¾Ø Ç¾; Ahamad [16] Dahmani [17] º G m ÅÇ¾Û Û, È HCl г ÞÚ C38 ± Ö G m 40 42.31 kj/mol, Ç Ø Ç¾. Å ÄÉÏ, º E a, G m, H m 3  «Ö «ÅÞÚ ÖǾ Þ Û, à Ö, в. Î ºÊ 3  «Đ ÞÚ ± ÖǾÛ, Đ ÆÞ, ±ÓÈ ÆÉ ÇÖºĐ., ÅÆ 2 2 ÅÆ ÞÚ, H 2 SO 4 Ú, ºÓ Ø Å»Å Cu ÖÞÚÞ, º E a, G m H m ÅÅÆ 2 2 ÅÆ Cu ± ÖǾ Þ Û, Ǿ Þ, ¾ ÅÆ 2 2 ÅÆ Cu ± ÖǾºÅ»ÞÚ. 1 ɳ± Ü Ò Ý Cu, Ï 99.95%, Ó Ü Cu ³Ä 11.0 mm 5.0 mm 0.2 mm, Ø ºÖ Cu 1.5 mm. ÅÆÏ 99.0%, 2 2 ÅÆ Ï 98.0%, H 2 SO 4 Ï 98.0%, º À ß. Ó ± Cu ³ º 4 µm Æ Ë, ß À Î Ê, Ã Đ Â º. Þ Ú 5% H 2 SO 4 Ë, Ü ³ 15 min N 2 É Ë Ö O 2. (25±1) ± Cu ³ È Ú 72 h, È º ± É Ú Â, Ï º ß À Î Ê, ÌË Â Â Ê Ö ³,»ÞÚ [6]. º CHI660B Ö Ø Å Û Ø, Cu, Ö Pt, 1 cm 2 cm, Â. Ü Cu Ϻ Æ, ß À Î Ê, Ã Đ Â º. Ü Å» ³ N 2 É Ë Ö O 2, Ø (25±1). Đ Tafel, ű Ð Ú E corr ±150 mv, Å 1 mv/s. Ø Ä Ö ÚÅ Õ ± 5 mv, 0.05 Hz 100 khz, Đ ÂÝ. Tafel, º½» [20] Ó» ÅÆ 2 2 ÅÆ Ú Ö Ú Ú, ûÞÚ [21]. º Ø Ä Zview Å Nyquist ¹ «Û, ÓÑÚ Ý ÖÍÞ ½ Í, ûÞÚ [22].

Ý 8 ÓÍØ : H 2SO 4 É 2 2 Cu ÔÜØÜ Å¼Ù 1019 2 Ì 2.1 ½ È 2.1.1 ÐÅ ± 1 5% H 2 SO 4 Ë» ÅÆ 2 2 ÅÆ Å Cu ³ÖÞ Ú. ½±ÉÏ, ÅÆ ÖÄ, ÞÚ ÏÄ, 0.112 mol/l, ÞÚ Ñ 68.6%, Ê Ek-Lisac Ú [8] Ö º, ÞÚ. ÃÆ, 2 2 ÅÆ ÖÄ,»ÞÚ Ä, Ñ 0.052 mol/l, Ä», ÞÚ Ä». ± 1 ÛÉ ÃÈ, 2 2 ÅÆ Ö 0.026 mol/l,»þú À ÅÆ ÖÞÚ,» º ÀÛ 0.112 mol/l., 2 2 ÅÆ Å Cu ÖÞÚ» ÅÆ. 2.1.2 ÕÒß ¹ 1 5% H 2 SO 4 Ë,» ÅÆ 2 2 ÅÆ Đ Ö Ø, º½» ¹ 1 Ú Å Ö Ð Ú Ú Ú ÞÚ,»º ± 2. ½¹ 1 ± 2 ÉÏ, Ë Ë, 2 2 ÅÆ ÅÆ 2 Ø Â,» Ú» à ÖÎ, Æ Ú Ú., ÅÆ Ì, Ú Ú» Ú Ö Ä Æ, Æ 0.112 mol/l, Ú Ú Æ Ä ; 2 2 ÅÆ Ì, Ú Ú» Ú Ö Ä Æ, Ê Ó Öº. ½¹ 1 ÛÉ ÃÈ, Í Æ Ë» Ã, Ë Ë, ÅÆ 2 2 ÅÆ Å Ö Ú Ú À, ± ÅÆ 2 2 ÅÆ Å Æ Ã Ö º. ± Ø Ã, Å ÅÆ Ì, Û 0.14 V, ůű Ø À º; ÆÅ 2 2 ÅÆ Ì, 2 2 ÅÆ Ö 0.039 mol/l,»åí ± Ø Ã À º., ÅÆ 2 1 Ô ¼ «2 2 ««Cu À 5% H 2 SO 4 Ì ßÛ Ð Table 1 Inhibition efficiency η for Cu in 5% H 2 SO 4 solution with addition of various concentrations of imidazole and 2 Phenyl 2 imidazoline by mass loss method Material Concentration, mol/l Mass loss, mg η, % Imidazole Blank 5.10 0.028 3.20 37.3 0.056 2.54 50.1 0.085 2.20 56.9 0.112 1.60 68.6 0.140 2.03 60.1 2 Phenyl 2 imidazoline Blank 5.70 0.013 2.00 64.9 0.026 1.70 70.2 0.039 1.43 75.0 0.052 1.19 79.0 0.065 1.16 79.7 E / V 0.1 0.0 (a) -0.1 0: Blank 1: 0.028 mol/l -0.2 2: 0.056 mol/l 3: 0.085 mol/l 3 4: 0.112 mol/l 5: 0.140 mol/l 4 5-0.3-10 -9-8 -7-6 -5 lg(i, A cm 2 ) 1 2 0 1 ºµ 2 2 Cu ß 5% H 2 SO 4 Ê Õ E / V 0.1 0.0-0.1-0.2 (b) 0: Blank 1: 0.013 mol/l 2: 0.026 mol/l 3: 0.039 mol/l 4: 0.052 mol/l 5: 0.065 mol/l -10-9 -8-7 -6 lg(i, A cm 2 ) 2 3 4 5 1 0 Fig.1 Polarization curves for Cu in 5% H 2 SO 4 solution with various concentrations of imidazole (a) and 2 Phenyl 2 imidazoline (b) (E potential, I current density)

1020 Ý 49 2 ÆÙ ¼ «2 2 ««Cu À 5% H 2 SO 4 Ì ÛÐ ÐÛ ßÛ Ð Table 2 Free potential E corr, corrosion current density I corr and inhibition efficiency for Cu in 5% H 2 SO 4 solution with various concentrations of imidazole and 2 Phenyl 2 imidazoline by polarization curve method Material Concentration, mol/l E corr, V I corr, µa/cm 2 η, % Imidazole Blank 0.1228 0.1778 0.028 0.1165 0.1122 36.9 0.056 0.1154 0.0891 49.9 0.085 0.1062 0.0708 60.2 0.112 0.1014 00491 72.4 0.140 0.1035 0.0631 64.5 2 Phenyl 2 imidazoline Blank 0.1228 0.1778 0.013 0.1134 0.0620 68.4 0.026 0.1143 0.0422 76.3 0.039 0.1176 0.0355 80.0 0.052 0.1182 0.0316 82.2 0.065 0.1214 0.0288 83.8 2 ÅÆ Æ Ö ÓÖ ÖÞÚ. 2.1.3 Ò «Ø º Ø Ä Å Cu Ë 0.112 mol/l ÅÆ 0.052 mol/l 2 2 ÅÆ Ö 5% H 2 SO 4 Ë Ö ÚÛ,» Nyquist ¹Î¹ 2, Ú Ý ¹ 3. º Zview Å Nyquist ¹«Ö º ± 3. ½¹ 2 ÉÏ, Ä»ÍÃÍÄÓ, Cu Ö ÚÓ ½ ÍÞÌ. ½, Ë Ë ÅÆ 2 2 ÅÆ Ö H 2 SO 4 Ë, ÍÄÓ Ä, Ê» ± Cu 5% H 2 SO 4 Ë Ö ÍÞ R 1 Ä, Æ 2 2 ÅÆ ÖÞ Ú ÅÆÖ.», ÅÆ 2 2 ÅÆ -Z Im, k 40 30 20 10 0.052 mol/l 2-Phenyl-2-imidazoline 0.112 mol/l imidazole Blank 0 0 10 20 30 40 50 60 70 Z Re, k 2 Cu ± 0.112 mol/l 0.052 mol/l 2 2 Õ 5% H 2 SO 4 Ê Õ Nyquist Fig.2 Nyquist plots for Cu in 5% H 2 SO 4 solution with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 phenyl 2 imidazoline (Z Re real part of impedance, Z Im imaginative part of impedance) 3 Ê ¼ Ù ßÜ Fig.3 Equivalent circuit for interface between metal and corrosive medium (R 1 charge transfer resistance, R 2 solution resistance, C 1 capacitance of the electrical double layer) 3 Cu À µ 0.112 mol/l «0.052 mol/l 2 2 «5% H 2 SO 4 Ì ÐÙ Å Table 3 Electrochemical impedance parameters for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline Material R 1 C 1 η Ω cm 2 µf/cm 2 % Blank 15658 1873.10 Imidazole 52134 34.26 69.97 2 Phenyl 2 imidazoline 64381 28.32 75.68 ßÖ, Ǿ Cu ± Ö H 2 O ƹ Cu ±, ƼÑÞÚ º. ½± 3 Ö «ÉÏ, ½ Í Û 2 Ø ÂÖ Æ.», H 2 O Ö «Ø ÂÖ «, Ǿ Cu Ö H 2 O Ø Â, ÁÀ½ Í, Ê Ó Ø º. Þ 2.1.4 Đ 2 Ô 2 ÆÓ Å Å 2 Ø ÂÞÚÞ Öµ, 30, 40, 50 60 Í, Cu

Ý 8 ÓÍØ : H 2SO 4 É 2 2 Cu ÔÜØÜ Å¼Ù 1021 4 ¼ Î Cu À µ 0.112 mol/l «0.052mol/L 2 2 «5% H 2 SO 4 Ì ÆÙ Table 4 Polarization curve parameters for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline obtained at different temperatures Temperature, Material E corr, V I corr, µa/cm 2 30 Blank 0.1342 0.2555 Imidazole 0.1163 0.0825 2 Phenyl 2 imidazoline 0.1264 0.0506 40 Blank 0.1463 0.3090 Imidazole 0.1326 0.1646 2 Phenyl 2 imidazoline 0.1236 0.1207 50 Blank 0.1283 0.4473 Imidazole 0.1302 0.2852 2 Phenyl 2 imidazoline 0.1338 0.2266 60 Blank 0.1142 0.6285 0.112 mol/l ÅÆ 0.052 mol/l 2 2 ÅÆ Ö 5% H 2 SO 4 Ë Ö Ø, º½» Ó Ø Å Ö Ú Ú Ú,»º ± 4. Ú ÃÉà Arrhenius Ã,» Àß [23] ÎÍ: I corr = Aexp( E a /(R g T)) (1) ß, E a ± Ø, I corr ± Ú Ú, A ± ß, R g ½ «, T. ± ß Ð ÃÅ«, lni corr, 1/T ¹, º ι 4. ½¹ ÖÑ ( E a /R g ) ÉÓ Cu 5% H 2 SO 4 Ë Ú ÃÖ E a =24.56 kj/mol, ÅÆ 2 2 ÅÆ, E a ÄÑ 42.56 50.64 kj/mol. Ø Ã, ÅÆ 2 2 ÅÆ, Ú Ã Ø Ä, ʳ Ö Û Cu Ö Ú, Æ Ü Cu Ö Ú. 2 2 ÅÆ Ì Ø ÅÆ Ì Ö,,»ÞÚ, Ê Ó Ø Ø Ä ÖÅ º À. «ÏÍ, Â Ç¾Ö Ø 20 40 kj/mol, Ø Ç¾Ö Ø 40 80 kj/mol [15]., ÅÆ 2 2 ÅÆ 2 Ø Â Cu ± ÖǾ Ø Ç ¾.,, ÅÆ 2 2 ÅÆ Å Cu ÖÞÚ À Đà ÖͲ, ± Ê 2 Ø Â ß Cu ± Û Đà Ö ǾÛ., ÅÆ 2 2 ÅÆ 2 ß Cu ± ÖǾ Â Ø Ç¾, Ø Ç¾ Ó. Ó, Î º E a <80 kj/mol À  Ǿ Imidazole 0.1485 0.4047 2 Phenyl 2 imidazoline 0.1502 0.3381 In(I corr, A/cm 2 ) -14.0-14.5-15.0-15.5-16.0-16.5-17.0 BlankR 2 =0.97548 Imidazole R 2 =0.96980 2-Phenyl-2-imidazoline R 2 =0.95976 3.00 3.05 3.10 3.15 3.20 3.25 3.30 T -1, 10-3 K -1 4 Cu ³ Ï 0.112 mol/l 0.052 mol/l 2 2 Õ 5% H 2 SO 4 Ê Õ Arrhenius Fig.4 Arrhenius plots for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline (R 2 correlation coefficient) 80 kj/mol À Ø Ç¾Ö Ú [6,12] Å Å º Û, ÃÅÆ 2 2 ÅÆ 2 Ø Â Cu ± ÖǾÀ  Ǿ. Ú», Í ± ¾ ºÇ¾ Gibbs н G m Ǿ H m ÅÊ 2 Ø ÂÖǾ Þ Û. 2.2» 2 2 Î Cu à ÆÀ Å ÅÆ 2 2 ÅÆ Cu ± Ö Ç¾Û, ºÓ (25±1) Í ÓÖÞÚ η=θ Langmuir Ç¾Ú ß Û [24] : Kc = θ/(1 θ) (2)

1022 Ý 49 ß, K Langmuir «, c ÞÚ Ö (mol/l), θ ± ¹. K G m ÖÊÌ [25] : K = exp( G m /(R g T))/55.5 (3) ÞÚ η ± ± ¹ θ, ± Langmuir Ç ¾Ú à : c/η = c + 1/K (4) c/η Å c ¹, ÓÑι 5 Ö ¹. ½¹ 5 ÉÏ, Ü «Langmuir Ç¾Ú Ã, Å Æ 2 2 ÅÆ Ö ÊÞÌ«0.94417 0.99869, ± ÅÆ 2 2 ÅÆ ß Cu ± ÖǾ Ǿ. ½, ¹ 5 2 ² Ö ÓÅ Ö 1/K, ½ß (3) ÈÅÆ 2 2 ÅÆ Ö G m 31.94 40.10 kj/mol. ½ º ÉÏ, ÅÆ 2 2 ÅÆ Ö G m À», 2 2 Å Æ Ö G m ÅÆÖ G m, ± Ú Ú ÍÊ 2 ÞÚ ßÀÉÐ ÜǾ Cu ±, 2 2 ÅÆ Cu ± ÖǾ ÅÆ. [15 19] À Ç G m 20 kj/mol  Ǿ, G m 40 kj/mol Ø Ç¾, 2 É Ö Â Ø Ç¾. ½ ÉÏ, ÅÆ ß Cu ± ÖǾ Â Ø Ç¾, Ø Ç¾ Ó, Æ 2 2 ÅÆ Ö Ç¾ Ø Ç¾. Ê º E a 20 40 kj/mol Ö c / 0.25 0.20 0.15 0.10 0.05 0.00 Imidazole R 2 =0.94417 2-Phenyl-2-imidazoline R 2 =0.99869 0.02 0.04 0.06 0.08 0.10 0.12 0.14 c, mol/l 5 2 2 Cu Õ Langmuir Æ ½Ù Fig.5 Langmuir adsorption curves on Cu surface of imidazole and 2 Phenyl 2 imidazoline in 5% H 2 SO 4 solution(c concentration)  Ǿ, E a 40 80 kj/mol Ö Ø Ç¾ ÚÖº, Æ E a <80 kj/mol À  Ǿ, 80 kj/mol À Ø Ç¾ ÚÖº». Ǿ à ÉÇ Arrhenius Ã, Arrhenius Ã: K = A 1 exp( H m /(R g T)) (5) ß (2) Å«ÓÑ: lg[θ/(1 θ)] = lg A 1 + lg c H m /2.3R g T (6) ß, A 1 ÀÊÖ «. lg[θ/(1 θ)] 1/T ÖÊ̹, º ι 6. ½ Ñ É ÓÅ Æ 2 2 ÅÆ Cu ± Ö H m, G m = H m T S m, É ÈǾ S m, Ê º ± 5. ½± 5 ÉÏ, ÅÆ 2 2 ÅÆ Ö H m À», ±» Cu ± ÖǾ à ŠÃ. ½,» S m», ± Û Ú ÃÖ Û, Ì ĐÖÙ, ØÀĐ Ç¾. ½, ÅÆ 2 2 ÅÆ Cu ÖǾÅÀ 40 kj/mol, ±»Ç¾ ÞÀ Ø Ç¾, Ê º G m Ǿ ÞÖº. ½, Ê º E a 20 40 kj/mol Ö Â Ç¾, E a 40 80 kj/mol Ö Ø Ç¾ ÚÖº, Æ E a <80 kj/mol À  Ǿ, 80 kj/mol lg[ /(1- )] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0-0.1-0.2-0.3-0.4 Imidazole R 2 =0.96257 2-Phenyl-2-imidazoline R 2 =0.92434 3.00 3.05 3.10 3.15 3.20 3.25 3.30 T --1, 10-3 K -1 6 2- -2- Õ lg[θ/(1-θ)] 1/T ÉË Fig.6 Plots of lg[θ/(1 θ)] versus 1/T for imidazole and 2 Phenyl 2 imidazoline (θ surface coverage) 5 «2 2 «À Cu ² È Æ Table 5 Adsorption thermodynamic values of imidazole and 2 Phenyl 2 imidazoline on Cu surface Material G m, kj/mol H m, kj/mol S m, J/(mol K) Imidazole 31.94 41.22 30.97 2 Phenyl 2 imidazoline 40.10 47.32 24.23

y8, e ou t : E H2SO4 Q b a 2 2 Cu p xt x a M 0 u7 H9t O2 9" #vr.zb. $Y, t E <80 kj/mol H 6J O2, Æ E >80 kj/mol H9t O2 r" #v >. 2.3 \^/ 2 3 2 \^`$ Cu "1A49 3 zv ' \ 96 % r J t O 2 ` 6 *vr j. O2 rzv X*v 3ad k, ' \ O 2, 6 " k6 % r ` u 1 za, y 6 % hu = 6F, L *v ( r t, z*v ; s O2rzv "{ar z. G6 % th? z q, 9*v (3 R r ` Ja 2, y*v h. t O 2 r a~6 % Q tr6 % (6 ={ 6 tj) GSVn, Æ3 zv " {. M d r z.={ (N, S O) G { Qzv "{d GB 3A { dr π {Ja.M ( " " v. v). $ Y, zv g6 % r S V n # G { a a [26] F { ÆtH$?", yzv "{YOxO2G6 % a. G H SO S d, Æ 2 2 Æ "{ H 9 H (, jh [{, / ("(VU : 2 + 4 $Y, G z*v3ad, Æ Æ" { Æ [{ 2 gt { G. - 7 8 " ( 9 Æ 2 2 Æ G Cu % r O 2 = -. $ Æ va r 2? N ={ G N {, / H 9 Cu % r S V n th$?", th- 7a b rt O2?; $ F $ qn1<\, 7 Cu Fig.7 Schematic of adsorption for imidazole on Cu surface (A hydrogen ion repellent region) (a) bond between Cu and N1 atom (b) bond between Cu and N3 atom (c) bond between Cu and N1 atom of N onium ion (d) physical adsorption of N onium ion F 1023 F $ qn1<\, 8 2 2 Cu Fig.8 Schematic of adsorption for 2 Phenyl 2 imidazoline on Cu surface (A hydrogen ions repellent region, B hydrophobic region) (a) two bonds between Cu and N1 atom and the phenyl (b) two bonds between Cu and N3 atom and phenyl (c) two bonds between Cu and N1 atom and phenyl of N onium ion (d) two bonds between Cu and N onium ion and phenyl

1024 Ý 49 Æ ß Ö ½ N ß H +, Æ Å ß, Æ ØÀ¹ 7c ÖØ Ǿ. «Æ «, ßÐ Â Ç¾ÖØßǾ Ö± [26], ÆÉ Ç ÅÆ ß Ð Cu ± ι 7d Ö Ǿ. ½ 2 2 ÅÆ ß ÅÆ ßÖºÅ,» ß Ö π  ºÅ ( ), ± ÖËÎÒ ßÆØ À, Ê 2 2 ÅÆ Cu ± ÖǾ ÅÆ Ö., Þ Ú 2 2 ÅÆ ÞÚ ß Ð Cu ± ØÀ¹ 8 Ö 4 Ó Ç¾ ºÅ. ¹ 7 8 ÖǾ ºÅ, Cu ± Ö Ù ½ Þ, Ä Ú Ö Ø, Æ À Å Cu Þ Ö Ú. ½, ¹ 7c 8c Ö ß (A ), Å Ú Ö H + ĐÖ Å º,, H + Ë Cu ±, Æ Cu Ö ÚÛ. ¹ 7, ¹ 8 Ǿ ºÅ Þ Ö Þ º (B ), Ú ÊÖ Â ¾ (Î H 2 O ß), Ê ÝÓ Ú, Ê 2 2 ÅÆ ÖÞÚ ÅÆ ÖÓ. 3 (1) 5% H 2 SO 4 Ë, ÅÆ 2 2 Å Æ Å Cu ÖÆ ñ Ø ÃÀ ĐÖ º, 2 2 ÅÆ Å Cu ÖÞÚÞ Å ÆÖ. (2) ÅÆ 2 2 ÅÆ Cu ± ÖǾ à ŠÃ, À Ø Ç¾, ³ Langmuir Ç¾Ú ß. (3) ÅÆ Ì, 2 2 ÅÆ Cu ± ØÀØ Ç¾ º,»Ç¾ ºÅ Þ Ö Þ º, Æ 2 2 ÅÆ ÖÞ Ú. ÁÄ [1] Huvnh N, Bottle S E, Notoya T, Trueman A, Hinton B, Schweinsberg D P. Corros Sci, 2002; 44: 1257 [2] He X K, Chen B Z, Zhang Q F. J Chin Soc Corros Prot, 2004; 24: 1 ( ÔÎ, Ë, Æ. µù Ô, 2004; 24: 1) [3] Mihit M, El Issami S, Bouklah A, Bazzi L, Hammouti B, Addi A E, Salghi R, Kertit S. Appl Surf Sci, 2006; 252: 2389 [4] Zhang D Q, Gao L X. Corros Sci Prot Technol, 2001; 13: 136 (Æ, Ô. µùè Ô, 2001; 13: 136) [5] Zhou J H, Li J N, Luo Z Y. J South China Normal Univ, 2009; 3: 70 ( Ö,,. Ö Ñ, 2009; 3: 70) [6] Wang X Q, Liu R Q, Zhu L Q, Gong J W. Acta Phys Chim Sin, 2007; 23: 21 ( À, Ù, Ò, Á. Á, 2007; 23: 21) [7] Zhang X J, Liu R Q, Wang X Q. Acta Phys Chim Sin, 2008; 24: 338 (Æ, Ù, À. Á, 2008; 24: 338) [8] Ek Lisac S E, Gazivoda A, Madzarac M. Electrochim Acta, 2002; 47: 4189 [9] Liao D M, Yu P, Luo Y B, Song B, Yao L, Chen Z G. J Chin Soc Corros Prot, 2002; 22: 359 (Ð, µ, Å,, Ó,. µù Ô, 2002; 22: 359) [10] Ali S A, El Shareef A M, Al Ghamdi R F, Saeed M T. Corros Sci, 2005; 47: 2659 [11] Yin Y J. Concise Course of Physical Chemistry. Beijing: Higher Education Press, 2007: 293 (². Á «µâ. : Ùµ Ç, 2007: 293) [12] Ebenso E E, Ekpe U J, Ita B I, Offiong O E, Ibok U J. Mater Chem Phys, 1999; 60: 79 [13] Abd EI Rehim S S, Amin M A, Moussa S O, Ellithy A S. Mater Chem Phys, 2008; 112: 898 [14] Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S. Mater Lett, 2006; 60: 1901 [15] De Souza F S, Giacomelli C, Goncalves R S, Spinelli A. Mater Sci Eng, 2012; C32: 2436 [16] Ahamad I, Prasad R, Quraishi M A. J Solid State Electrochem, 2010; 14: 2095 [17] Dahmani M, Touhami A E, Al Deyab S S, Hammouti B, Bouyanzer A. Int J Electrochem Sci, 2010; 5: 1060 [18] Yazdzad A R, Shahrabi T, Hosseini M G. Mater Chem Phys, 2008; 109: 199 [19] Atkins P W. Physical Chemistry. 6 Ed., Oxford: Oxford University Press, 1999: 857 [20] Cao C N. Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 1994: 66 ( Ê. µùß. : Ç, 1994: 66) [21] Wang H L, Fan H B, Zheng J S. Mater Chem Phys, 2003; 77: 655 [22] Touir R, Cenoui M, Bakri M E, Touhami M E. Corros Sci, 2008; 50: 1530 [23] Bouklah M, Hammouti B, Lagrenee M, Bentiss F. Corros Sci, 2006; 48: 283 [24] Abiola O K, Otaigbe J O E. Corros Sci, 2009; 51: 2790 [25] Tian H, Li W, Cao K, Hou B. Corros Sci, 2013; 73: 281 [26] Wei B M. Metal Corrosion Theory and Application. Beijing: Chemical Industry Press, 1984: 266 ( «. µù ³¹. : Ç, 1984: 266) ( Ö: Ü )