Ý 49 Ý 8 Vol.49 No.8 2013 8 Ý 1017 1024 ACTA METALLURGICA SINICA Aug. 2013 pp.1017 1024 Í H 2 SO 4 Ë º 2 ¾ 2 Cu ¼Ç ºÂµÅ Ð Ù Ñ Û Ý Ú (Ñ ÆØ Ñ Á, ÑÐ 412007) Ï Ê ¹Ò ß 2 2 Cu 5% H 2SO 4 ÆÊ ÕÝÙÝ Æ½Ú Ý Ù. ¹ «, 2 Á Cu ¾ ÔÕÝÙ ¹, 2 2 ÕÝÙ ß. µö, ³ ¹µÙ ³ÕĐ E a, ƽ ÂÕ Gibbs ¼ G m ƽ H m 2 Á Cu ÕÆ½ Ý. ¹ «, 2 2 Cu ÕÆ½ Â Ä Â, ƽ, ² Langmuir ƽ٠Þ. ¼, 2 2 Þ Cu ƽ ¹ÄÕ, ú Cu ÕÝÙ., 2 2, Cu, ƽ Ý, ÝÙ ² ¹ O646.6 ÁÄ A Á ¹ 0412 1961(2013)08 1017 08 INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 Correspondent: WU Luye, lecturer, Tel: (0731)22182088, E-mail: h-xk@163.com Supported by Natural Science Foundation of Hunan Province (No.13JJ3107) Manuscript received 2013 05 06, in revised form 2013 06 21 ABSTRACT Mass loss and electrochemical methods were carried out to evaluate the inhibition property and adsorption behavior of imidazole and 2 Phenyl 2 imidazoline for Cu in 5% H 2 SO 4 solution. The results showed that the two compounds have obvious corrosion inhibition for Cu in H 2 SO 4 solution, and the inhibition efficiency of 2 Phenyl 2 imidazoline was higher than that of imidazole. Meanwhile, the adsorption property was estimated using the activation energy E a of the corrosion reaction, the standard adsorption Gibbs free energy change G m and enthalpy change H m for the imidazole and 2 phenyl 2 imidazoline, respectively. It revealed that the adsorption processes were exothermic reactions on Cu by a monolayer chemisorption based mechanism, and the adsorption of the inhibitors followed the Langmuir adsorption isotherm. In addition, the differences of the monolayer adsorption structures between the imidazole and 2 Phenyl 2 imidazoline molecules on the Cu surface were investigated, and their inhibition mechanisms for Cu were analyzed. KEY WORDS imidazole, 2 Phenyl 2 imidazoline, Cu, adsorption property, inhibition mechanism Cu» Ö Å ÚÂ Þ Æ Ì Ü º Ò ßØ ÚÖ. ݺ Ã, Cu ÖÕ ± Ð ÃÆµ Î Û., * Ò Ð ÂÈ ÜÕ 13JJ3107 ÐÆ ȹ : 2013 05 06, Ðß È¹ : 2013 06 21 È ¾ : ÔÎ,, 1977, µ, ¹Ð DOI: 10.3724/SP.J.1037.2013.00250 º HCl H 2 SO 4 Ú Þ Ê ÛÌ. ÃÆ, Ê Đº ÖÞÚ, Å Ö Ú., Cu ÚÖÞÚ Ó Æ ÚØ Â Ø Ú [1 3]. [4,5] Æ NaCl Ë ÅÆ Æ 1 ÆÅ Cu ÖÞÚ,»ÞÚ 47.7%, 73.2%, 90.0%, ± ÅÆ Þ Å Cu Ö Ú, Æ 1- ÆÖ Ã, Ï. Á Ú [6] ÇÐ Ú [7] Å Þ 3 É
1018 Ý 49 Æ Ø Â (BIT, BIOHT, BIMMT) Æ Â (POTAS, PDTAS) Å Cu ÖÞÚ,»ÞÚ À 80%. É ÆØ ÂÖ À² º, Û. Ek Lisac Ú [8] Å H 2 SO 4 ÅÆÅ Cu ÖÞÚÞ,»ÞÚ 65%, ÊÞÚ ÖÅ. Ê» ÅÆ  (2 2 ÅÆ ) H 2 SO 4 Å Cu ÖÞÚÞ Ö Ò. ÞÚ Ö ³ ± ÖÂ Ø Ç¾ ÚÖ. «Æ«, Ǿ º Ç ¾ ºÅ, ÞÚ., Ǿ ºÖ Þ, ɳ Ú Ã Ö Ø E a, Ǿ à Gibbs н G m Ǿ (Å) H m «Ö Û. Î [9,10] Ú³ Ê«Ì, ÓÑ Æ Æ Æ Cu ± ÖǾ H m 48.296, 48.644 115 kj/mol, Å 40 kj/mol Ø Ç¾ [11],, ǻǾÀ Ø Ç¾. Æ Ebenso Ú [12] Á Ú [6] º E a Û, Ç E a <80 kj/mol À  Ǿ, 80 kj/mol À Ø Ç¾. Ó ÆÞ Ö, [6] ³ ÓÈ Cu 3 É Æ Ø Â (BIT, BIOHT, BIMMT) Ì Ö Ú Ã Ö E a 52, 55.20 69.96 kj/mol, Ö E a À 80 kj/mol, Ç BIT, BIOHT BIMMT Cu ± ÖǾ ºÀ  Ǿ., Û Ê 3 Ø Â Cu ± ÖǾ H m,» 37.94, 41.03 52.25 kj/mol. H m Ú, ÉÏ BIT  Ǿ, Æ BIOHT BIMMT Ø Ç¾. ½, [13] Å, Õ ¾ Al ± ÖǾ  Ǿ ÓÖ Ç¾, Ú Ã E a 27.18 41.97 kj/mol; [14] Ç, H 2 SO 4 Ú, Ô ± ÖǾ Ø Ç¾, Ú Ã E a 55.24 59.63 kj/mol., Ø E a <80 kj/mol À  Ǿ, Æ E a >80 kj/mol À Ø Ç¾ Ú. ÃÆ, ºÇ¾«½ н Þ,» Ú. G m Ǿ Î Ek Lisac Ú [8] Ç, G m 20 40 kj/mol Â Ç ¾, G m 100 kj/mol Ø Ç¾, ³ Ó ÑÅÆ Cu ± Ö G m 22.16 kj/mol, Ç Ã Â Ç¾. Æ [15 19] Ç G m 20 kj/mol  Ǿ, G m 40 kj/mol Ø Ç¾, 2 É Ö Â Ø Ç¾. Î De Souza [15] ³, ÓÑÁ Cu ± ÖǾ G m 31.1 kj/mol, Ç Ã Â Ç¾Ø Ç¾; Ahamad [16] Dahmani [17] º G m ÅÇ¾Û Û, È HCl г ÞÚ C38 ± Ö G m 40 42.31 kj/mol, Ç Ø Ç¾. Å ÄÉÏ, º E a, G m, H m 3  «Ö «ÅÞÚ ÖǾ Þ Û, à Ö, в. Î ºÊ 3  «Đ ÞÚ ± ÖǾÛ, Đ ÆÞ, ±ÓÈ ÆÉ ÇÖºĐ., ÅÆ 2 2 ÅÆ ÞÚ, H 2 SO 4 Ú, ºÓ Ø Å»Å Cu ÖÞÚÞ, º E a, G m H m ÅÅÆ 2 2 ÅÆ Cu ± ÖǾ Þ Û, Ǿ Þ, ¾ ÅÆ 2 2 ÅÆ Cu ± ÖǾºÅ»ÞÚ. 1 ɳ± Ü Ò Ý Cu, Ï 99.95%, Ó Ü Cu ³Ä 11.0 mm 5.0 mm 0.2 mm, Ø ºÖ Cu 1.5 mm. ÅÆÏ 99.0%, 2 2 ÅÆ Ï 98.0%, H 2 SO 4 Ï 98.0%, º À ß. Ó ± Cu ³ º 4 µm Æ Ë, ß À Î Ê, Ã Đ Â º. Þ Ú 5% H 2 SO 4 Ë, Ü ³ 15 min N 2 É Ë Ö O 2. (25±1) ± Cu ³ È Ú 72 h, È º ± É Ú Â, Ï º ß À Î Ê, ÌË Â Â Ê Ö ³,»ÞÚ [6]. º CHI660B Ö Ø Å Û Ø, Cu, Ö Pt, 1 cm 2 cm, Â. Ü Cu Ϻ Æ, ß À Î Ê, Ã Đ Â º. Ü Å» ³ N 2 É Ë Ö O 2, Ø (25±1). Đ Tafel, ű Ð Ú E corr ±150 mv, Å 1 mv/s. Ø Ä Ö ÚÅ Õ ± 5 mv, 0.05 Hz 100 khz, Đ ÂÝ. Tafel, º½» [20] Ó» ÅÆ 2 2 ÅÆ Ú Ö Ú Ú, ûÞÚ [21]. º Ø Ä Zview Å Nyquist ¹ «Û, ÓÑÚ Ý ÖÍÞ ½ Í, ûÞÚ [22].
Ý 8 ÓÍØ : H 2SO 4 É 2 2 Cu ÔÜØÜ Å¼Ù 1019 2 Ì 2.1 ½ È 2.1.1 ÐÅ ± 1 5% H 2 SO 4 Ë» ÅÆ 2 2 ÅÆ Å Cu ³ÖÞ Ú. ½±ÉÏ, ÅÆ ÖÄ, ÞÚ ÏÄ, 0.112 mol/l, ÞÚ Ñ 68.6%, Ê Ek-Lisac Ú [8] Ö º, ÞÚ. ÃÆ, 2 2 ÅÆ ÖÄ,»ÞÚ Ä, Ñ 0.052 mol/l, Ä», ÞÚ Ä». ± 1 ÛÉ ÃÈ, 2 2 ÅÆ Ö 0.026 mol/l,»þú À ÅÆ ÖÞÚ,» º ÀÛ 0.112 mol/l., 2 2 ÅÆ Å Cu ÖÞÚ» ÅÆ. 2.1.2 ÕÒß ¹ 1 5% H 2 SO 4 Ë,» ÅÆ 2 2 ÅÆ Đ Ö Ø, º½» ¹ 1 Ú Å Ö Ð Ú Ú Ú ÞÚ,»º ± 2. ½¹ 1 ± 2 ÉÏ, Ë Ë, 2 2 ÅÆ ÅÆ 2 Ø Â,» Ú» à ÖÎ, Æ Ú Ú., ÅÆ Ì, Ú Ú» Ú Ö Ä Æ, Æ 0.112 mol/l, Ú Ú Æ Ä ; 2 2 ÅÆ Ì, Ú Ú» Ú Ö Ä Æ, Ê Ó Öº. ½¹ 1 ÛÉ ÃÈ, Í Æ Ë» Ã, Ë Ë, ÅÆ 2 2 ÅÆ Å Ö Ú Ú À, ± ÅÆ 2 2 ÅÆ Å Æ Ã Ö º. ± Ø Ã, Å ÅÆ Ì, Û 0.14 V, ůű Ø À º; ÆÅ 2 2 ÅÆ Ì, 2 2 ÅÆ Ö 0.039 mol/l,»åí ± Ø Ã À º., ÅÆ 2 1 Ô ¼ «2 2 ««Cu À 5% H 2 SO 4 Ì ßÛ Ð Table 1 Inhibition efficiency η for Cu in 5% H 2 SO 4 solution with addition of various concentrations of imidazole and 2 Phenyl 2 imidazoline by mass loss method Material Concentration, mol/l Mass loss, mg η, % Imidazole Blank 5.10 0.028 3.20 37.3 0.056 2.54 50.1 0.085 2.20 56.9 0.112 1.60 68.6 0.140 2.03 60.1 2 Phenyl 2 imidazoline Blank 5.70 0.013 2.00 64.9 0.026 1.70 70.2 0.039 1.43 75.0 0.052 1.19 79.0 0.065 1.16 79.7 E / V 0.1 0.0 (a) -0.1 0: Blank 1: 0.028 mol/l -0.2 2: 0.056 mol/l 3: 0.085 mol/l 3 4: 0.112 mol/l 5: 0.140 mol/l 4 5-0.3-10 -9-8 -7-6 -5 lg(i, A cm 2 ) 1 2 0 1 ºµ 2 2 Cu ß 5% H 2 SO 4 Ê Õ E / V 0.1 0.0-0.1-0.2 (b) 0: Blank 1: 0.013 mol/l 2: 0.026 mol/l 3: 0.039 mol/l 4: 0.052 mol/l 5: 0.065 mol/l -10-9 -8-7 -6 lg(i, A cm 2 ) 2 3 4 5 1 0 Fig.1 Polarization curves for Cu in 5% H 2 SO 4 solution with various concentrations of imidazole (a) and 2 Phenyl 2 imidazoline (b) (E potential, I current density)
1020 Ý 49 2 ÆÙ ¼ «2 2 ««Cu À 5% H 2 SO 4 Ì ÛÐ ÐÛ ßÛ Ð Table 2 Free potential E corr, corrosion current density I corr and inhibition efficiency for Cu in 5% H 2 SO 4 solution with various concentrations of imidazole and 2 Phenyl 2 imidazoline by polarization curve method Material Concentration, mol/l E corr, V I corr, µa/cm 2 η, % Imidazole Blank 0.1228 0.1778 0.028 0.1165 0.1122 36.9 0.056 0.1154 0.0891 49.9 0.085 0.1062 0.0708 60.2 0.112 0.1014 00491 72.4 0.140 0.1035 0.0631 64.5 2 Phenyl 2 imidazoline Blank 0.1228 0.1778 0.013 0.1134 0.0620 68.4 0.026 0.1143 0.0422 76.3 0.039 0.1176 0.0355 80.0 0.052 0.1182 0.0316 82.2 0.065 0.1214 0.0288 83.8 2 ÅÆ Æ Ö ÓÖ ÖÞÚ. 2.1.3 Ò «Ø º Ø Ä Å Cu Ë 0.112 mol/l ÅÆ 0.052 mol/l 2 2 ÅÆ Ö 5% H 2 SO 4 Ë Ö ÚÛ,» Nyquist ¹Î¹ 2, Ú Ý ¹ 3. º Zview Å Nyquist ¹«Ö º ± 3. ½¹ 2 ÉÏ, Ä»ÍÃÍÄÓ, Cu Ö ÚÓ ½ ÍÞÌ. ½, Ë Ë ÅÆ 2 2 ÅÆ Ö H 2 SO 4 Ë, ÍÄÓ Ä, Ê» ± Cu 5% H 2 SO 4 Ë Ö ÍÞ R 1 Ä, Æ 2 2 ÅÆ ÖÞ Ú ÅÆÖ.», ÅÆ 2 2 ÅÆ -Z Im, k 40 30 20 10 0.052 mol/l 2-Phenyl-2-imidazoline 0.112 mol/l imidazole Blank 0 0 10 20 30 40 50 60 70 Z Re, k 2 Cu ± 0.112 mol/l 0.052 mol/l 2 2 Õ 5% H 2 SO 4 Ê Õ Nyquist Fig.2 Nyquist plots for Cu in 5% H 2 SO 4 solution with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 phenyl 2 imidazoline (Z Re real part of impedance, Z Im imaginative part of impedance) 3 Ê ¼ Ù ßÜ Fig.3 Equivalent circuit for interface between metal and corrosive medium (R 1 charge transfer resistance, R 2 solution resistance, C 1 capacitance of the electrical double layer) 3 Cu À µ 0.112 mol/l «0.052 mol/l 2 2 «5% H 2 SO 4 Ì ÐÙ Å Table 3 Electrochemical impedance parameters for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline Material R 1 C 1 η Ω cm 2 µf/cm 2 % Blank 15658 1873.10 Imidazole 52134 34.26 69.97 2 Phenyl 2 imidazoline 64381 28.32 75.68 ßÖ, Ǿ Cu ± Ö H 2 O ƹ Cu ±, ƼÑÞÚ º. ½± 3 Ö «ÉÏ, ½ Í Û 2 Ø ÂÖ Æ.», H 2 O Ö «Ø ÂÖ «, Ǿ Cu Ö H 2 O Ø Â, ÁÀ½ Í, Ê Ó Ø º. Þ 2.1.4 Đ 2 Ô 2 ÆÓ Å Å 2 Ø ÂÞÚÞ Öµ, 30, 40, 50 60 Í, Cu
Ý 8 ÓÍØ : H 2SO 4 É 2 2 Cu ÔÜØÜ Å¼Ù 1021 4 ¼ Î Cu À µ 0.112 mol/l «0.052mol/L 2 2 «5% H 2 SO 4 Ì ÆÙ Table 4 Polarization curve parameters for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline obtained at different temperatures Temperature, Material E corr, V I corr, µa/cm 2 30 Blank 0.1342 0.2555 Imidazole 0.1163 0.0825 2 Phenyl 2 imidazoline 0.1264 0.0506 40 Blank 0.1463 0.3090 Imidazole 0.1326 0.1646 2 Phenyl 2 imidazoline 0.1236 0.1207 50 Blank 0.1283 0.4473 Imidazole 0.1302 0.2852 2 Phenyl 2 imidazoline 0.1338 0.2266 60 Blank 0.1142 0.6285 0.112 mol/l ÅÆ 0.052 mol/l 2 2 ÅÆ Ö 5% H 2 SO 4 Ë Ö Ø, º½» Ó Ø Å Ö Ú Ú Ú,»º ± 4. Ú ÃÉà Arrhenius Ã,» Àß [23] ÎÍ: I corr = Aexp( E a /(R g T)) (1) ß, E a ± Ø, I corr ± Ú Ú, A ± ß, R g ½ «, T. ± ß Ð ÃÅ«, lni corr, 1/T ¹, º ι 4. ½¹ ÖÑ ( E a /R g ) ÉÓ Cu 5% H 2 SO 4 Ë Ú ÃÖ E a =24.56 kj/mol, ÅÆ 2 2 ÅÆ, E a ÄÑ 42.56 50.64 kj/mol. Ø Ã, ÅÆ 2 2 ÅÆ, Ú Ã Ø Ä, ʳ Ö Û Cu Ö Ú, Æ Ü Cu Ö Ú. 2 2 ÅÆ Ì Ø ÅÆ Ì Ö,,»ÞÚ, Ê Ó Ø Ø Ä ÖÅ º À. «ÏÍ, Â Ç¾Ö Ø 20 40 kj/mol, Ø Ç¾Ö Ø 40 80 kj/mol [15]., ÅÆ 2 2 ÅÆ 2 Ø Â Cu ± ÖǾ Ø Ç ¾.,, ÅÆ 2 2 ÅÆ Å Cu ÖÞÚ À Đà ÖͲ, ± Ê 2 Ø Â ß Cu ± Û Đà Ö ǾÛ., ÅÆ 2 2 ÅÆ 2 ß Cu ± ÖǾ Â Ø Ç¾, Ø Ç¾ Ó. Ó, Î º E a <80 kj/mol À  Ǿ Imidazole 0.1485 0.4047 2 Phenyl 2 imidazoline 0.1502 0.3381 In(I corr, A/cm 2 ) -14.0-14.5-15.0-15.5-16.0-16.5-17.0 BlankR 2 =0.97548 Imidazole R 2 =0.96980 2-Phenyl-2-imidazoline R 2 =0.95976 3.00 3.05 3.10 3.15 3.20 3.25 3.30 T -1, 10-3 K -1 4 Cu ³ Ï 0.112 mol/l 0.052 mol/l 2 2 Õ 5% H 2 SO 4 Ê Õ Arrhenius Fig.4 Arrhenius plots for Cu in 5% H 2 SO 4 without and with addition of 0.112 mol/l imidazole and 0.052 mol/l 2 Phenyl 2 imidazoline (R 2 correlation coefficient) 80 kj/mol À Ø Ç¾Ö Ú [6,12] Å Å º Û, ÃÅÆ 2 2 ÅÆ 2 Ø Â Cu ± ÖǾÀ  Ǿ. Ú», Í ± ¾ ºÇ¾ Gibbs н G m Ǿ H m ÅÊ 2 Ø ÂÖǾ Þ Û. 2.2» 2 2 Î Cu à ÆÀ Å ÅÆ 2 2 ÅÆ Cu ± Ö Ç¾Û, ºÓ (25±1) Í ÓÖÞÚ η=θ Langmuir Ç¾Ú ß Û [24] : Kc = θ/(1 θ) (2)
1022 Ý 49 ß, K Langmuir «, c ÞÚ Ö (mol/l), θ ± ¹. K G m ÖÊÌ [25] : K = exp( G m /(R g T))/55.5 (3) ÞÚ η ± ± ¹ θ, ± Langmuir Ç ¾Ú à : c/η = c + 1/K (4) c/η Å c ¹, ÓÑι 5 Ö ¹. ½¹ 5 ÉÏ, Ü «Langmuir Ç¾Ú Ã, Å Æ 2 2 ÅÆ Ö ÊÞÌ«0.94417 0.99869, ± ÅÆ 2 2 ÅÆ ß Cu ± ÖǾ Ǿ. ½, ¹ 5 2 ² Ö ÓÅ Ö 1/K, ½ß (3) ÈÅÆ 2 2 ÅÆ Ö G m 31.94 40.10 kj/mol. ½ º ÉÏ, ÅÆ 2 2 ÅÆ Ö G m À», 2 2 Å Æ Ö G m ÅÆÖ G m, ± Ú Ú ÍÊ 2 ÞÚ ßÀÉÐ ÜǾ Cu ±, 2 2 ÅÆ Cu ± ÖǾ ÅÆ. [15 19] À Ç G m 20 kj/mol  Ǿ, G m 40 kj/mol Ø Ç¾, 2 É Ö Â Ø Ç¾. ½ ÉÏ, ÅÆ ß Cu ± ÖǾ Â Ø Ç¾, Ø Ç¾ Ó, Æ 2 2 ÅÆ Ö Ç¾ Ø Ç¾. Ê º E a 20 40 kj/mol Ö c / 0.25 0.20 0.15 0.10 0.05 0.00 Imidazole R 2 =0.94417 2-Phenyl-2-imidazoline R 2 =0.99869 0.02 0.04 0.06 0.08 0.10 0.12 0.14 c, mol/l 5 2 2 Cu Õ Langmuir Æ ½Ù Fig.5 Langmuir adsorption curves on Cu surface of imidazole and 2 Phenyl 2 imidazoline in 5% H 2 SO 4 solution(c concentration)  Ǿ, E a 40 80 kj/mol Ö Ø Ç¾ ÚÖº, Æ E a <80 kj/mol À  Ǿ, 80 kj/mol À Ø Ç¾ ÚÖº». Ǿ à ÉÇ Arrhenius Ã, Arrhenius Ã: K = A 1 exp( H m /(R g T)) (5) ß (2) Å«ÓÑ: lg[θ/(1 θ)] = lg A 1 + lg c H m /2.3R g T (6) ß, A 1 ÀÊÖ «. lg[θ/(1 θ)] 1/T ÖÊ̹, º ι 6. ½ Ñ É ÓÅ Æ 2 2 ÅÆ Cu ± Ö H m, G m = H m T S m, É ÈǾ S m, Ê º ± 5. ½± 5 ÉÏ, ÅÆ 2 2 ÅÆ Ö H m À», ±» Cu ± ÖǾ à ŠÃ. ½,» S m», ± Û Ú ÃÖ Û, Ì ĐÖÙ, ØÀĐ Ç¾. ½, ÅÆ 2 2 ÅÆ Cu ÖǾÅÀ 40 kj/mol, ±»Ç¾ ÞÀ Ø Ç¾, Ê º G m Ǿ ÞÖº. ½, Ê º E a 20 40 kj/mol Ö Â Ç¾, E a 40 80 kj/mol Ö Ø Ç¾ ÚÖº, Æ E a <80 kj/mol À  Ǿ, 80 kj/mol lg[ /(1- )] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0-0.1-0.2-0.3-0.4 Imidazole R 2 =0.96257 2-Phenyl-2-imidazoline R 2 =0.92434 3.00 3.05 3.10 3.15 3.20 3.25 3.30 T --1, 10-3 K -1 6 2- -2- Õ lg[θ/(1-θ)] 1/T ÉË Fig.6 Plots of lg[θ/(1 θ)] versus 1/T for imidazole and 2 Phenyl 2 imidazoline (θ surface coverage) 5 «2 2 «À Cu ² È Æ Table 5 Adsorption thermodynamic values of imidazole and 2 Phenyl 2 imidazoline on Cu surface Material G m, kj/mol H m, kj/mol S m, J/(mol K) Imidazole 31.94 41.22 30.97 2 Phenyl 2 imidazoline 40.10 47.32 24.23
y8, e ou t : E H2SO4 Q b a 2 2 Cu p xt x a M 0 u7 H9t O2 9" #vr.zb. $Y, t E <80 kj/mol H 6J O2, Æ E >80 kj/mol H9t O2 r" #v >. 2.3 \^/ 2 3 2 \^`$ Cu "1A49 3 zv ' \ 96 % r J t O 2 ` 6 *vr j. O2 rzv X*v 3ad k, ' \ O 2, 6 " k6 % r ` u 1 za, y 6 % hu = 6F, L *v ( r t, z*v ; s O2rzv "{ar z. G6 % th? z q, 9*v (3 R r ` Ja 2, y*v h. t O 2 r a~6 % Q tr6 % (6 ={ 6 tj) GSVn, Æ3 zv " {. M d r z.={ (N, S O) G { Qzv "{d GB 3A { dr π {Ja.M ( " " v. v). $ Y, zv g6 % r S V n # G { a a [26] F { ÆtH$?", yzv "{YOxO2G6 % a. G H SO S d, Æ 2 2 Æ "{ H 9 H (, jh [{, / ("(VU : 2 + 4 $Y, G z*v3ad, Æ Æ" { Æ [{ 2 gt { G. - 7 8 " ( 9 Æ 2 2 Æ G Cu % r O 2 = -. $ Æ va r 2? N ={ G N {, / H 9 Cu % r S V n th$?", th- 7a b rt O2?; $ F $ qn1<\, 7 Cu Fig.7 Schematic of adsorption for imidazole on Cu surface (A hydrogen ion repellent region) (a) bond between Cu and N1 atom (b) bond between Cu and N3 atom (c) bond between Cu and N1 atom of N onium ion (d) physical adsorption of N onium ion F 1023 F $ qn1<\, 8 2 2 Cu Fig.8 Schematic of adsorption for 2 Phenyl 2 imidazoline on Cu surface (A hydrogen ions repellent region, B hydrophobic region) (a) two bonds between Cu and N1 atom and the phenyl (b) two bonds between Cu and N3 atom and phenyl (c) two bonds between Cu and N1 atom and phenyl of N onium ion (d) two bonds between Cu and N onium ion and phenyl
1024 Ý 49 Æ ß Ö ½ N ß H +, Æ Å ß, Æ ØÀ¹ 7c ÖØ Ǿ. «Æ «, ßÐ Â Ç¾ÖØßǾ Ö± [26], ÆÉ Ç ÅÆ ß Ð Cu ± ι 7d Ö Ǿ. ½ 2 2 ÅÆ ß ÅÆ ßÖºÅ,» ß Ö π  ºÅ ( ), ± ÖËÎÒ ßÆØ À, Ê 2 2 ÅÆ Cu ± ÖǾ ÅÆ Ö., Þ Ú 2 2 ÅÆ ÞÚ ß Ð Cu ± ØÀ¹ 8 Ö 4 Ó Ç¾ ºÅ. ¹ 7 8 ÖǾ ºÅ, Cu ± Ö Ù ½ Þ, Ä Ú Ö Ø, Æ À Å Cu Þ Ö Ú. ½, ¹ 7c 8c Ö ß (A ), Å Ú Ö H + ĐÖ Å º,, H + Ë Cu ±, Æ Cu Ö ÚÛ. ¹ 7, ¹ 8 Ǿ ºÅ Þ Ö Þ º (B ), Ú ÊÖ Â ¾ (Î H 2 O ß), Ê ÝÓ Ú, Ê 2 2 ÅÆ ÖÞÚ ÅÆ ÖÓ. 3 (1) 5% H 2 SO 4 Ë, ÅÆ 2 2 Å Æ Å Cu ÖÆ ñ Ø ÃÀ ĐÖ º, 2 2 ÅÆ Å Cu ÖÞÚÞ Å ÆÖ. (2) ÅÆ 2 2 ÅÆ Cu ± ÖǾ à ŠÃ, À Ø Ç¾, ³ Langmuir Ç¾Ú ß. (3) ÅÆ Ì, 2 2 ÅÆ Cu ± ØÀØ Ç¾ º,»Ç¾ ºÅ Þ Ö Þ º, Æ 2 2 ÅÆ ÖÞ Ú. ÁÄ [1] Huvnh N, Bottle S E, Notoya T, Trueman A, Hinton B, Schweinsberg D P. Corros Sci, 2002; 44: 1257 [2] He X K, Chen B Z, Zhang Q F. J Chin Soc Corros Prot, 2004; 24: 1 ( ÔÎ, Ë, Æ. µù Ô, 2004; 24: 1) [3] Mihit M, El Issami S, Bouklah A, Bazzi L, Hammouti B, Addi A E, Salghi R, Kertit S. Appl Surf Sci, 2006; 252: 2389 [4] Zhang D Q, Gao L X. Corros Sci Prot Technol, 2001; 13: 136 (Æ, Ô. µùè Ô, 2001; 13: 136) [5] Zhou J H, Li J N, Luo Z Y. J South China Normal Univ, 2009; 3: 70 ( Ö,,. Ö Ñ, 2009; 3: 70) [6] Wang X Q, Liu R Q, Zhu L Q, Gong J W. Acta Phys Chim Sin, 2007; 23: 21 ( À, Ù, Ò, Á. Á, 2007; 23: 21) [7] Zhang X J, Liu R Q, Wang X Q. Acta Phys Chim Sin, 2008; 24: 338 (Æ, Ù, À. Á, 2008; 24: 338) [8] Ek Lisac S E, Gazivoda A, Madzarac M. Electrochim Acta, 2002; 47: 4189 [9] Liao D M, Yu P, Luo Y B, Song B, Yao L, Chen Z G. J Chin Soc Corros Prot, 2002; 22: 359 (Ð, µ, Å,, Ó,. µù Ô, 2002; 22: 359) [10] Ali S A, El Shareef A M, Al Ghamdi R F, Saeed M T. Corros Sci, 2005; 47: 2659 [11] Yin Y J. Concise Course of Physical Chemistry. Beijing: Higher Education Press, 2007: 293 (². Á «µâ. : Ùµ Ç, 2007: 293) [12] Ebenso E E, Ekpe U J, Ita B I, Offiong O E, Ibok U J. Mater Chem Phys, 1999; 60: 79 [13] Abd EI Rehim S S, Amin M A, Moussa S O, Ellithy A S. Mater Chem Phys, 2008; 112: 898 [14] Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S. Mater Lett, 2006; 60: 1901 [15] De Souza F S, Giacomelli C, Goncalves R S, Spinelli A. Mater Sci Eng, 2012; C32: 2436 [16] Ahamad I, Prasad R, Quraishi M A. J Solid State Electrochem, 2010; 14: 2095 [17] Dahmani M, Touhami A E, Al Deyab S S, Hammouti B, Bouyanzer A. Int J Electrochem Sci, 2010; 5: 1060 [18] Yazdzad A R, Shahrabi T, Hosseini M G. Mater Chem Phys, 2008; 109: 199 [19] Atkins P W. Physical Chemistry. 6 Ed., Oxford: Oxford University Press, 1999: 857 [20] Cao C N. Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 1994: 66 ( Ê. µùß. : Ç, 1994: 66) [21] Wang H L, Fan H B, Zheng J S. Mater Chem Phys, 2003; 77: 655 [22] Touir R, Cenoui M, Bakri M E, Touhami M E. Corros Sci, 2008; 50: 1530 [23] Bouklah M, Hammouti B, Lagrenee M, Bentiss F. Corros Sci, 2006; 48: 283 [24] Abiola O K, Otaigbe J O E. Corros Sci, 2009; 51: 2790 [25] Tian H, Li W, Cao K, Hou B. Corros Sci, 2013; 73: 281 [26] Wei B M. Metal Corrosion Theory and Application. Beijing: Chemical Industry Press, 1984: 266 ( «. µù ³¹. : Ç, 1984: 266) ( Ö: Ü )