HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.

Σχετικά έγγραφα
HY118- ιακριτά Μαθηµατικά

Μαθηµατική επαγωγή. HY118- ιακριτά Μαθηµατικά. 2 η αρχή της επαγωγής Ισχυρή επαγωγή Χαρακτηρίζεται από ένα άλλο κανόνα:

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων

Υπολογιστικά & Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε Αποδείξεις

HY118-Διακριτά Μαθηματικά

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

HY118-Διακριτά Μαθηματικά

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

HY118- ιακριτά Μαθηµατικά

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 3

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

HY118-Διακριτά Μαθηματικά

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σύνθεση σχέσεων Σχέσεις

HY118-Διακριτά Μαθηματικά

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

HY118- ιακριτά Μαθηµατικά

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

το σύνολο των πολυωνυµικών συναρτήσεων βαθµού d στους φυσικούς και µε P= U P το σύνολο των πολυωνυµικών συναρτήσεων. Να εξετάσετε αν τα σύνολα P

Την προηγούµενη φορά. HY118- ιακριτά Μαθηµατικά. Σχέσεις

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

Σύνολα, Σχέσεις, Συναρτήσεις

Οι πραγµατικοί αριθµοί

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36

Transcript:

HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/21/2017 1 1 3/21/2017 2 ιµελής σχέση ιµελής σχέση Έστω A, Bοποιαδήποτε σύνολα. Μίαδιµελής σχέση Rαπό το Aστο B, είναι ένα υποσύνολο του A B. Το (a, b) R σηµαίνει ότι «το a σχετίζεται µέσω της R µε το b» Επίσης γράφεται ως arb ή ως R(a,b) Π.χ.,έστω η σχέση ΚατοικείΣτηνΠόληη οποία ορίζεται ως ένα υποσύνολο του A B όπου Α το σύνολο των ανθρώπων και Β το σύνολο των πόλεων. Αντώνης ΚατοικείΣτηνΠόλη Ηράκλειο (Αντώνης, Ηράκλειο) ΚατοικείΣτηνΠόλη ΚατοικείΣτηνΠόλη(Αντώνης, Ηράκλειο) 3/21/2017 3 Κι άλλο παράδειγμα: A = {Κώστας, Νίκος, Μαρία, Πάνος} Β = {Μακαρόνια, Μπριζόλες, Όσπρια, Σαλάτες} Σχέση Προτιμάει_το_φαγητό = {(Κώστας,Μπριζόλες), (Νίκος,Σαλάτες), (Μαρία,Όσπρια), (Πάνος, Σαλάτες)} 3/21/2017 4 1

n-µελείς σχέσεις Μία n-µελήςσχέση Rστα σύνολα A 1,,A n, είναι ένα υποσύνολο R A 1 A n. Αυτή είναι µία προφανής γενίκευση της διµελούς σχέσης. 3-µελείςσχέσεις, παραδείγµατα: Το a είναι µεταξύ του b και του c Ο a έδωσε το b στον c n-µελείς σχέσεις Μία n-µελήςσχέση Rστα σύνολα A 1,,A n, είναι ένα υποσύνολο R A 1 A n. Τα σύνολα A i ονοµάζονταιπεδίατης R. Ο βαθµόςτης Rείναι n. 3/21/2017 5 3/21/2017 6 Συµπληρωµατικές σχέσεις Έστω R:A, B µία διµελής σχέση. Τότε, R:A B, το συµπλήρωµα της R, είναι η διµελής σχέση που ορίζεται από R: {(a,b) A B (a,b) R}=(A B) R Το συµπλήρωµα της R είναι το R. Παράδειγµα: < = {(a,b) (a,b) <} = {(a,b) (a<b)} = Αντίστροφες σχέσεις Κάθε διµελής σχέση R:A B έχει µία αντίστροφη σχέση R 1 :B A, που ορίζεται ως R 1 : {(b,a) (a,b) R}. Π.χ., < 1 = {(b,a) a<b} = {(b,a) b>a} = > Άλλο παράδειγµα: Εάν η R Άνθρωποι x Tροφή ορίζεται από a R b aτρώει την b, τότε: b R 1 a bτρώγεται από τον a. (παθητική φωνή) 3/21/2017 7 3/21/2017 8 2

Σχέσεις και πράξεις συνόλων Εφόσον οι διµελείς σχέσεις είναι σύνολα από διατεταγµένα ζεύγη, οι έννοιες της τοµής ένωσης διαφοράς συµµετρικής διαφοράς σχέσεων είναι αυτές που γνωρίζουµε ήδη από τη θεωρία συνόλων. Σχέσεις επί συνόλου Μία (διµελής) σχέση από ένα σύνολο A στονεαυτό του ονοµάζεται σχέσηεπί του συνόλου A.Άρα, µίαδιµελήςσχέση Rεπί του A ορίζεται ως R A A. Π.χ., η σχέση < µπορεί να είναι µία σχέση επίτου συνόλουτων πραγµατικών αριθµών. 3/21/2017 9 3/21/2017 10 Μία σχέση R επί του A είναι ανακλαστική εάν και µόνο αν a A(aRa). Π.χ., η σχέση : {(a,b) a b} είναι ανακλαστική. Η R είναι µη-ανακλαστική εάν και µόνο αν a A( (ara)) Σηµειώστε τη διαφορά µεταξύ µιας σχέσης που είναι µη ανακλαστική ( a A( (ara))) από µία σχέση που απλά δεν είναι ανακλαστική ( ( a A(aRa)), δηλαδή, a A (αra). Είναι η σχέση ανακλαστική; 3/21/2017 11 3/21/2017 12 3

Είναι η σχέση ανακλαστική; Όχι, γιατί δεν ισχύει ότι a A(aRa) Είναι η σχέση µη ανακλαστική; 3/21/2017 13 3/21/2017 14 Είναι η σχέση µη ανακλαστική; Όχι, γιατί δεν ισχύει ότι a A( (ara)) Π.χ. (Γ,Γ) R Ανακλαστική ιδιότητα Θεώρηµα:Μία σχέση Rείναιµη ανακλαστικήεάν και µόνο ανη συµπληρωµατική της σχέση είναι ανακλαστική. Παράδειγµα: η < είναι µη ανακλαστική. Η είναι ανακλαστική. Απόδειξη:. 3/21/2017 15 3/21/2017 16 4

Μερικά παραδείγµατα Μπορείτε να σκεφτείτε Ανακλαστικές σχέσεις Μη ανακλαστικές σχέσεις...που να έχουν να κάνουν µε αριθµούς, προτάσεις, ή σύνολα; Ανακλαστικές:,,,, κλπ. Μη ανακλαστικές: <, >,, κλπ. 3/21/2017 17 3/21/2017 18 Συµµετρική / ασσύµετρη διµελής σχέση Μία διµελής σχέση R επί ενός συνόλου A είναι συµµετρική εάν και µόνο αν a,b ((a, b) R (b, a) R). Π.χ., η = (ισότητα) είναι συµµετρική. Η < δεν είναι συµµετρική. Η είναι παντρεµένος µε είναι συµµετρική Η Συµπαθεί δεν είναι συµµετρική. Μία διµελής σχέση R είναι ασύµµετρη εάν και µόνο αν a,b((a,b) R (b,a) R). Π.χ.: Η < είναι ασύµµετρη, Η Συµπαθεί δεν είναι, κατ ανάγκη, ασύµµετρη. Τι ισχύει για την Θαυµάζει={(Γ, Μ), (Β, Μ), (Γ, Γ)}; Συµµετρική ιδιότητα / ασσύµετρη διµελής σχέση Μία διµελής σχέση Rείναιασύµµετρηεάν και µόνο αν a,b((a,b) R (b,a) R). Τι ισχύει για την Θαυµάζει={(Γ, Μ), (Β, Μ), (Γ,Γ)}; εν είναι ασύµµετρη εξαιτίας τουότι (Γ,Γ) Θαυµάζει 3/21/2017 19 3/21/2017 20 5

Μερικές άµεσες συνέπειες Συµµετρική ιδιότητα Θεωρήµατα: 1. Η R είναι συµµετρική αν και µόνο αν R = R 1, 2. Η R είναι ασύµµετρη αν και µόνο άνη R R 1 είναι κενή. 3/21/2017 21 1. Η R είναι συµµετρική αν και µόνο αν R = R 1 Ευθύ: Έστω ότι η R είναι συµµετρική. Τότε (x,y) R (y,x) R (x,y) R 1 Αντίστροφο:Έστωότι R = R 1. Τότε, (x,y) R (x,y) R 1 (y,x) R 3/21/2017 22 Συµµετρική ιδιότητα 2. Η R είναι ασύµµετρη αν και µόνο ανη R R 1 = ø. Ευθύ: Έστω ότι η R είναι ασύµµετρη. Τότε a,b((a,b) R (b,a) R). Εποµένως, a,b((a,b) R (a,b) R 1 ). Τότε όµως, R R 1 =ø. Αντίστροφο: Έστω ότι η R R 1 = ø. Τότε a,bµε (a,b) R ισχύει ότι (a,b) R 1. Τότε όµως, (b,a) R. Άρα, a,b((a,b) R (b,a) R) και εποµένως η R είναι ασύµµετρη. 3/21/2017 23 ΕΡΩΤΗΣΗ:Μπορείτε να βρείτε ένα σύνολο A και µία σχέση R επί του A έτσι ώστε η R να είναι συµµετρική και η R(x,y) να µπορεί λογικά να διαβαστεί ως ο x είναι γιός του y 3/21/2017 24 6

Απάντηση: κάθε µοντέλο στο οποίο δεν υπάρχουν x, y τέτοια ώστε ηγιός_του(x, y) να είναι αληθής Π.χ., A = {John, Mary, Sarah}, AxA R= {} Για την κενή σχέση, ισχύει ότι a,b((a,b) R (b,a) R) και εποµένως η κενή σχέση είναι συµµετρική! 3/21/2017 25 7