ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Σχετικά έγγραφα
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Αναζήτηση Κατά Πλάτος

Συντομότερες Διαδρομές

Αναζήτηση Κατά Πλάτος

u v 4 w G 2 G 1 u v w x y z 4

Συντομότερες Διαδρομές

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Αναζήτηση Κατά Πλάτος

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Επίπεδα Γραφήματα (planar graphs)

Αλγόριθµοι Γραφηµάτων

Συντομότερες ιαδρομές

Αναζήτηση Κατά Πλάτος

2 ) d i = 2e 28, i=1. a b c

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Θεωρία Γραφημάτων 1η Διάλεξη

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 6η Διάλεξη

Συντομότερες ιαδρομές

Θεωρία Γραφημάτων 5η Διάλεξη

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

... a b c d. b d a c

Συντομότερες ιαδρομές

Θεωρία Γραφημάτων 11η Διάλεξη

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Θεωρία Γραφημάτων 7η Διάλεξη

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

E(G) 2(k 1) = 2k 3.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Θεωρία Γραφημάτων 5η Διάλεξη

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

βασικές έννοιες (τόμος Β)

Θεωρία Γραφημάτων 1η Διάλεξη

Στοιχεία Θεωρίας Γραφηµάτων (1)

q(g \ S ) = q(g \ S) S + d = S.

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

d(v) = 3 S. q(g \ S) S

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Θεωρία Γραφημάτων 8η Διάλεξη

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Θεωρία Γραφημάτων 4η Διάλεξη

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Μαθηματικά Πληροφορικής

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Γράφοι: κατευθυνόμενοι και μη

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

HY118-Διακριτά Μαθηματικά

Μαθηματικά Πληροφορικής

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Θεωρία Γραφημάτων 2η Διάλεξη

(elementary graph algorithms)

Εισαγωγή στους Αλγορίθμους

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Transcript:

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο

4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη από 3 η εργασία. Αντίστοιχη βαθμολογικά και ποιοτικά με την 1 η εργασία. Ενθαρρυντικό: σε μια εργασία με «άρωμα εξετάσεων», όσοι προσπαθήσατε, δείξατε ότι μπορείτε να τα καταφέρετε. Θεωρία Γραφημάτων έχει βαρύτητα 40% στις εξετάσεις. Προετοιμασία εν όψει εξετάσεων (Σαβ. 4/7, ο μηγένοιτοσαβ. 25/7): Μελέτη Θεωρίας Γραφημάτων σε βάθος και επίλυση ασκήσεων (λίγες ευκαιρίες για επανάληψη!). Επαναλήψεις σε συνδυαστική μαθηματική λογική (με ασκήσεις και αναφορά σε θέματα εργασιών και εξετάσεων). Εξάσκηση σε σύντομη και περιεκτική διατύπωση των λύσεων. Προετοιμασία «τυπολογίου» (3 φύλλα Α4, χειρόγραφα). Θερμή προτροπή για συμμετοχή στην αξιολόγηση. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 2

Δομή Εξετάσεων: Α Μέρος 10 Ερωτήματα, από 4 προτάσεις το καθένα (4 10 = 40). Κάθε πρόταση πρέπει να χαρακτηριστεί ως Σωστή ή Λάθος. Όχι απάντηση: 0. Σωστή απάντηση: 1. Λάθος απάντηση: 0.25 Ελάχιστη βαθμολογία σε κάθε ερώτημα: 0. Χρόνος: συνήθως 1 ώρα και 10 λεπτά. Βαρύτητα: περίπου 1/3 συνολικής βαθμολογίας. Εξετάζονται τα πάντα! Αλλά (σχετικά) εύκολα και έτσι ώστε να λύνονται (σχετικά) γρήγορα. Βασικό η ακριβής κατανόηση του ζητούμενου. Σε κάποιες περιπτώσεις «οι λέξεις κάνουν τη διαφορά»! «Τυπολόγιο» δεν βοηθάει σημαντικά, λόγω χρόνου. Εξάσκηση, ψυχραιμία, προσοχή, αυτοσυγκέντρωση! ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 3

Δομή Εξετάσεων: Β Μέρος Συνήθως 4 ασκήσεις σε περίπου 2 ώρες και 20 λεπτά. Αρκετές φορές παρόμοια με ερωτήματα εργασιών (όχι μόνο τρέχουσας χρονιάς, αλλά και παλαιότερων 3-4 ετών). Συνδυαστική (συνήθως 25%): Συνήθως δύο σκέλη (με επιμέρους ερωτήματα). Μαθηματική Λογική (συνήθως 35%): Συνήθως τρία σκέλη (κάποια με επιμέρους ερωτήματα). Γραφήματα (συνήθως 2 20%): Συνήθως δύο ασκήσεις, μπορεί να αναλύονται σε επιμέρους ερωτήματα (για διευκόλυνση). Αναλυτικά στην 6 η ΟΣΣ με βασικό θέμα τις εξετάσεις: Σάββατο 9/5, 11:00-15:00, αίθουσα K2.5 (New York College). ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 4

4 η Εργασία: Ερώτημα 3.α Σύμπαν: κορυφές (απλού μη κατευθυνόμενου) γραφήματος. P(x, y) δηλώνει ότι οι κορυφές x και y συνδέονται με ακμή. Κάθε μη μεμονωμένη κορυφή έχει τουλάχιστον δύο γείτονες. Κάθε κορυφή με βαθμό 2 περιέχεται σε μία κλίκα 3 κορυφών. Υπάρχει συνεκτική συνιστώσα με δύο ακριβώς κορυφές. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 5

4 η Εργασία: Ερώτημα 3.β Σύμπαν: κορυφές (απλού μη κατευθυνόμενου) γραφήματος. P(x, y) δηλώνει ότι οι κορυφές x και y συνδέονται με ακμή. Τι δηλώνουν οι παρακάτω προτάσεις: Κάθε δύο κορυφές με κοινό γείτονα συνδέονται με ακμή. Π.χ., Κ 5, ανεξάρτητο σύνολο 5 κορυφών, Κ 3 και Κ 2. Κάθε μη μεμονωμένη κορυφή συνδέεται με κορυφή βαθμού τουλάχιστον 3. Η πρόταση αληθεύει π.χ. στο Κ 5. Ηπρότασηδεναληθεύειπ.χ. στο C 5. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 6

4 η Εργασία: Ερωτήματα 4.α, 4.β Έστω γράφημα G με κορυφή x που έχει βαθμό 0 ή n 1. Νδο, είτε G μη συνεκτικό είτε συμπλ(g) μη συνεκτικό. Αν βαθμός(x) = 0, τότε x μεμονωμένη και G μη συνεκτικό. Αν βαθμός(x) = n 1, τότε x μεμονωμένη στο συμπλ(g) και συμπλ(g) μη συνεκτικό. Νδο. για κάθε γράφημα G με n = 2, 3, 4 κορυφές, είτε G μη συνεκτικό είτε συμπλ(g) μη συνεκτικό, εκτός αν G είναι το Ρ 4. n = 2: είτε G είναι το Κ 2 είτε G είναι το συμπλ(κ 2 ). n = 3: G έχει είτε 0 ή 1 ακμή (μη συνεκτικό) είτε 2 ή 3 ακμές (συμπλ(g) μη συνεκτικό). n = 4: αν G έχει 0, 1 ή 2 ακμές, είναι μη συνεκτικό, αν G έχει 4, 5, ή 6 ακμές, συμπλ(g) είναι μη συνεκτικό. Αν G έχει 3 ακμές, είτε Ρ 4 είτε αστέρας είτε Κ 3 και κορυφή. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 7

4 η Εργασία: Ερώτημα 4.γ Γράφημα G με n 2 κορυφές και χωρίς Ρ 4. Νδο κάθε επαγόμενο υπογράφημα είτε μη συνεκτικό είτε συμπλήρωμα μη συνεκτικό. Βάση: για n = 2, 3, 4 κορυφές το αποδείξαμε στο 4.β. Επαγωγική υπόθεση: ισχύει για κάθε γράφημα με n 4 κορυφές. Επαγωγικό βήμα: Θδο ζητούμενο ισχύει για G με n+1 κορυφές. Έστω x κορυφή και G = G x. G έχει n κορυφές και δεν περιέχει Ρ 4 (επειδή G δεν περιέχει Ρ 4 ). Ισχύει για κάθε επαγόμενο υπογρ. G από επαγωγική υπόθεση. (άρα και για κάθε επαγόμενο υπογρ. G που δεν περιέχει τη x). Αν επαγόμενο υπογράφημα περιέχει την x και έχει k = 2, 3, 4 κορυφές, ζητούμενο έπεται από 4.β. Αν επαγόμενο υπογράφημα περιέχει την x, έχει k 5 κορυφές, δεν περιέχει Ρ 4 και είναι συνεκτικό, τότε η x έχει αναγκαστικά βαθμό k 1σε αυτό. Το ζητούμενο έπεται από 4.α. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 8

Συντομότερη Διαδρομή Διαδρομή Μονοκονδυλιά Μονοπάτι Διαδρομή: ακολουθία «διαδοχικών» ακμών. Μονοκονδυλιά: διαδρομή χωρίς επανάληψη ακμών. (Απλό) μονοπάτι: διαδρομή χωρίς επανάληψη κορυφών (και ακμών). Υπάρχει διαδρομή u v ανν υπάρχει μονοπάτι u v. Γράφημα με βάρη (ή μήκη) στις ακμές του. Απόσταση κορυφών u v, d(u, v): μήκος συντομότερης διαδρομής u v (άθροισμα βαρών ακμών κατά μήκος της διαδρομής). Συντομότερη διαδρομή είναι μονοπάτι, εκτός αν... κάποιες ακμές αρνητικές, και υπάρχει κύκλος αρνητικού μήκους. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) 9

Βασικές Ιδιότητες Κάθε τμήμα συντομότερου μονοπατιού αποτελεί συντομότερο μονοπάτι μεταξύ των άκρων του. Βλ. ΑΑ 4.13, Βούρος, σελ. 128, και Ερ. 1.γ, 5 η Εργ. 06-07. Π.χ. u 1 u 7 συντομότερο μονοπάτι: τμήμα του από u 2 εως u 5 συντομότερο u 2 u 5 μονοπάτι. Αν υπάρχει άλλο π συντομότερο u 2 u 5 μονοπάτι, π συνδυάζεται με u 1 u 2 και u 5 u 7 και δίνει πιο σύντομο u 1 u 7 μονοπάτι. Άτοπο! Συντομότερα μονοπάτια από μία κορυφή s προς όλες τις υπόλοιπες κορυφές αποτελούν δέντρο: Δέντρο Συντομότερων Μονοπατιών, βλ. Ερ. 4, Ιούνιος 2009. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 10

Βασικές Ιδιότητες Για κάθε ζεύγος ακμών u, v με ακμή (u, v), και κάθε κορυφή s, ισχύει ότι d(s, v) d(s, u) + w(u, v). Βλ. Ερ. 5.β, 5 η Εργ. 06-07. Υπάρχει ένα s v μονοπάτι μέσω u: συντομότερο s u μονοπάτι και ακμή (u, v). Συντομότερο s v μονοπάτι έχει μήκος όσοτοπαραπάνωήμικρότερο. (Κάποιο) συντ. s v μονοπ. «διέρχεται» από ακμή (u, v) ανν ισότητα. Πάντα υπάρχει τουλ. μια κορυφή u που εξασφαλίζει ισότητα: τελευταία πριν v στο συντομότερο s v μονοπάτι. Αρχή λειτουργίας Dijkstra (όχι μόνο!) ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 11

Αλλάζοντας τα Μήκη Γράφημαμεθετικάμήκηστιςακμές. Πολλαπλασιάζουμε μήκη με ίδιο αριθμό Β > 0. Υφίστανται αλλαγές συντομ. μονοπάτια; Προσθέτουμε ίδιο Β > 0. Υφίστανται αλλαγές συντομ. μονοπάτια; Μονοπάτια (συντομότερα) αποτελούνται από διαφορετικό #ακμών. Όταν όλα τα μονοπάτια έχουν ίδιο αριθμό ακμών; Αντιστροφή βάρους ακμών (δηλ. w 1/w): συντομότερο μονoπάτι μακρύτερο μονοπάτι; Ερ. 1.γ, 5 η εργ. 08-09. Δείτε ακόμη ερ. 1.δ από ίδια εργασία. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 12

Αλγόριθμος Dijkstra Αρχική κορυφή s. Λειτουργεί σε επαναλήψεις. u, διατηρεί ετικέτα L(u). Αρχικά L(s) = 0, L(u) = για κάθε u s. Μήκος συντ. s u μονοπ. που έχει «ανακαλύψει» οαλγόριθμος. S κορυφές με ετικέτα ίση με απόσταση από s (οριστική ετικέτα). Επανάληψη επιλέγει διαθέσιμη κορυφή u με ελάχιστη ετικέτα. u αποκτά οριστική ετικέτα, προστίθεται στο S(μη διαθέσιμη) Ενημέρωση ετικετών γειτονικών κορυφών. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 13

Αλγόριθμος Dijkstra Ετικέτες: «απαισιόδοξη» εκτίμηση απόστασης από s. Ξεκινούν από. Μειώνονται ώστε d(s, v) d(s, u) + w(u, v), με «ανακάλυψη» ακμής (u, v). Οριστικοποιούνται όταν επιλέγεται κάθε κορυφή. Επιλογή σε αύξουσα σειρά ετικετών. Θετικά μήκη: επιλογή κορυφής δεν μειώνει μικρότερες ετικέτες! Όταν κορυφή u επιλέγεται, έχει «ανακαλυφθεί» συντομ. s u μονοπ. και L(u) = d(s, u). Συνεχίζουμε μέχρι επιλογή κορυφής t ήεπιλογήόλων των κορυφών. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 14

Αλγόριθμος Dijkstra: Παράδειγμα ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 15

Αλγόριθμος Dijkstra: Παράδειγμα ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 16

Αλγόριθμος Dijkstra Συντομότερα μονοπάτια με δύο κριτήρια (π.χ. ελάχιστου μήκους, και ανάμεσα σε μονοπάτια ίδιου μήκους, προτιμούμε αυτό με ελάχιστο πλήθος ακμών); Χρήση δύο ετικετών με κατάλληλη ενημέρωση. Όταν L(v) > L(u) + w(v, u) ενημέρωση και των δύο ετικετών. Όταν L(v) = L(u) + w(v, u) μπορεί ενημέρωση 2 ης ετικέτας. Π.χ. Δείτε ερ. 1.β, 5 η εργ. 08-09. Αρνητικά μήκη: τα αυξάνουμε σε θετικά προσθέτοντας τον ίδιο αριθμό στο μήκος όλων των ακμών. Αλγόριθμος Dijkstra δεν υπολογίζει σωστά συντομότερα μονοπάτια. Υπό ποιες προϋποθέσεις θα μπορούσε να συμβεί αυτό; ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 17

Αναπαράσταση Γραφημάτων με πίνακα γειτνίασης: Αν έχουμε βάρη, (Απλό) μη κατευθυνόμενο: συμμετρικός, διαγώνιος 0. Άθροισμα στοιχείων γραμμής (στήλης): βαθμός κορυφής. 1 3 5 2 4 6 ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 18

Αναπαράσταση Γραφημάτων με πίνακα γειτνίασης: Αν έχουμε βάρη, (Απλό) μη κατευθυνόμενο: συμμετρικός, διαγώνιος 0. Άθροισμα στοιχείων γραμμής (στήλης): βαθμός κορυφής. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 19

Πίνακας Γειτνίασης Α k [u i, u j ] = #διαδρομών u i u j μήκους k. Πρόταση 1.4, σελ. 49, Μαυρονικόλας, Θεώρημα 4.4, σελ. 131, Βούρος. Διαγώνιος τετραγώνου: Α 2 [u i, u i ] = βαθμός(u i ). Α 3 [u i, u i ] = 2 #τριγώνων που συμμετέχει u i. Πλήθος τριγώνων = Υ[u i, u j ] = #διαδρομών u i u j μήκους n 1. Μονοπάτια έχουν μήκος n 1, και διαδρομή ανν μονοπάτι. Γράφημα συνεκτικό ανν όλα τα στοιχεία του Υθετικά(> 0). Μήκος ελάχιστου (#ακμών) u i u j μονοπατιού: Ελάχιστη τιμή k ώστε Α k [u i, u j ] > 0. Ερ. 2.α, 5 η Εργ. 2008-2009. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 20

Πίνακας Πρόσπτωσης 2 7 1 3 6 8 10 9 5 4 1,2 1,5 1,6 2,3 2,7 3,4 3,8 4,5 4,9 5, 10 6,8 6,9 7,9 7, 10 8, 10 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 5 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 6 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 7 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 8 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 9 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 21

Ισομορφικά Γραφήματα Γραφήματα G(V G, E G ) και H(V H, E H ) είναι ισομορφικά ανν υπάρχει 1-1 και επί συνάρτηση f: V G V H (ισομορφισμός) ώστε για κάθε u, v V G, {u, v} E G ανν {f(u), f(v)} E H Υπάρχει αντιστοιχία κορυφών που διατηρεί τη γειτονικότητα. Ισομορφισμός αποτελεί σχέση ισοδυναμίας (Προτ. 1.1, σελ. 30). Αναλλοίωτη ιδιότητα: ισομορφικά γραφήματα «συμφωνούν». Όλες οι σημαντικές ιδιότητες: #κορυφών, #ακμών, βαθμοί, συνεκτικότητα, κύκλος Euler και Hamilton, χρωματικός αριθμός,... Πως αποδεικνύω ότι δύο γραφήματα ισομορφικά: Βρίσκω ισομορφισμό και ελέγχω ότι διατηρεί γειτονικότητα. Αποδεικνύω (με ισομορφισμό) ότι τα συμπληρωματικά τους είναι ισομορφικά (Δραστ. 4.9, σελ. 139, Βούρος). ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 22

Ισομορφικά Γραφήματα ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 23

Ισομορφικά Γραφήματα ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 24

Ισομορφικά Γραφήματα ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 25

Ισομορφικά Γραφήματα Πως αποδεικνύω ότι δύο γραφήματα δεν είναι ισομορφικά: Βρίσκω μια αναλλοίωτη ιδιότητα στην οποία «διαφωνούν». Π.χ. 6 μη ισομορφικά συνεκτικά γραφήματα με 4 κορυφές (βλ. σελ. 33, Μαυρονικόλας). Μεθοδολογία απόδειξης ότι μια ιδιότητα είναι αναλλοίωτη. Αυτοσυμπληρωματικό γράφημα: γράφημα ισομορφικό με το συμπληρωματικό του. Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές. Αυτοσυμπληρωματικά γραφήματα υπάρχουν μόνο αν n ή n-1 είναι πολλαπλάσιο του 4. Ερώτ. 2, 5 η Εργ. 07-08. Πόσες κορυφές έχει αυτοσυμπληρωματικό γράφημα που είναι δέντρο (δέντρο: συνεκτικό και άκυκλο, m = n - 1); ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 26

Αυτοσυμπληρωματικά Γραφήματα Αυτοσυμπληρωματικό γράφημα: γράφημα ισομορφικό με το συμπληρωματικό του. Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές. Υπάρχουν αυτοσυμπληρωματικά γραφήματα για: n = 1: μεμονωμένη κορυφή. n = 4: μονοπάτι μήκους 3 n = 5, 8, 9, : ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 27

Συνδυαστική και Γραφήματα Πόσα γραφήματα ισομορφικά με το διπλανό γράφημα έχει το γράφημα Κ 4 ; Πόσα έχει το Κ 20. Θεωρούμε τις κορυφές των Κ 4 και Κ 20 διακεκριμένες. Πόσους διαφορετικούς κύκλους C 6 περιέχει το Κ 3,3 αν οι κορυφές του θεωρούνται διακεκριμένες; Πόσους διαφορετικούς κύκλους C 6 περιέχει το Κ m,n αν οι κορυφές του θεωρούνται διακεκριμένες; ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 28

Συνδυαστική και Γραφήματα Πόσα γραφήματα ισομορφικά με καθένα από τα παρακάτω έχει το γράφημα Κ 10 ; Θεωρούμε τις κορυφές του Κ 10 διακεκριμένες. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 29

Επίπεδα Γραφήματα Επίπεδο ένα γράφημα που μπορεί να ζωγραφιστεί στο επίπεδο χωρίς να τέμνονται οι ακμές του. Θεώρημα 4 χρωμάτων: Επίπεδο γράφημα έχει χρωματικό αριθμό 4. Επίπεδη αποτύπωση ορίζει όψεις (faces). Περιοχή επιπέδου που ορίζεται από (απλό) κύκλο και δεν μπορεί να διαιρεθεί σε μικρότερες όψεις. Εσωτερικές και εξωτερική όψη. f = #όψεων επίπεδου γραφήματος. Τύπος του Euler για συνεκτικά επίπεδα γραφ.: n + f = m + 2 #όψεων είναι αναλλοίωτη ιδιότητα, δεν εξαρτάται από αποτύπωση! ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 30

Επίπεδα Γραφήματα Μέγιστος αριθμός ακμών απλού επίπεδου γραφήματος. Απλό: κάθε όψη ορίζεται από τουλάχιστον 3 ακμές. Κάθε ακμή «ανήκει» σε μία ή δύο όψεις: Αν ανήκει σε κύκλο: σύνορο δύο όψεων. Διαφορετικά, «ανήκει» σε μία όψη. (Κάθε ακυκλικό γράφημα είναι επίπεδο με μία όψη, την εξωτερική). Υπάρχει συνεκτικό απλό επίπεδο γράφημα με m = 3n 6. Όλες του οι όψεις είναι τρίγωνα. Απλό διμερές επίπεδο γράφημα: m 2n 4. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 31

Επίπεδα Γραφήματα Άρα αν απλό γράφημα έχει m > 3n 6 (m > 2n 4 αν διμερές), δεν είναι επίπεδο. Τα Κ 5 και Κ 3,3 δεν είναι επίπεδα. Το συμπληρωματικό του γραφ. Petersen δεν είναι επίπεδο. Κάθε απλό επίπεδο γράφημα περιέχει κορυφή βαθμού 5. Π.χ. χρησιμοποιείται για να δείξουμε επαγωγικά ότι κάθε επίπεδο γράφημα έχει χρωματικό αριθμό 5. Κάθε γράφημα G με n 11 κορυφές, είτε το G είτε το συμπληρωματικό του δεν είναι επίπεδο. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 32

Ομοιομορφικά Γραφήματα Απλοποίηση σειράς: απαλοιφή κορυφών βαθμού 2 (δεν επηρεάζουν επιπεδότητα). Γραφήματα G και H ομοιομορφικά ανν μπορούν να καταλήξουν ισομορφικά με διαδοχική εφαρμογή απλοποιήσεων σειράς. Ομοιομορφικά μπορούν να «διαφωνούν» σε αναλλοίωτες ιδιότητες, αλλά «συμφωνούν» σε επιπεδότητα. Ομοιομορφικά «συμφωνούν» σε κύκλο Euler και κύκλο Hamilton; ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 33

Θεώρημα Kuratowski Θ. Kuratowski: Γράφημα επίπεδο ανν δεν περιέχει υπογράφημα ομοιομορφικό με Κ 5 ήκ 3,3. Ένα γράφημα δεν είναι επίπεδο ανν μπορούμε με απλοποιήσεις (διαγραφές κορυφών και ακμών, απλοποιήσεις σειράς) να καταλήξουμε σε Κ 5 ήκ 3,3. ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 34

Πλατωνικά Γραφήματα Πλατωνικό (απλό μη κατευθυνόμενο) γράφημα: επίπεδο, όλες οι κορυφές βαθμού d, και όλες οι όψεις βαθμού h (d, h 3). ΠΛΗ 20, ΑΘΗ 3 (2014-2015) ΟΣΣ 5 (Θεωρία Γραφημάτων) 35