Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Σχετικά έγγραφα
Ενότητα 7: Συναρτησιακά καμπύλων με ασυνέχεια στις παραγώγους. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 5: Ακρότατα συναρτησιακών μιας συνάρτησης. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 8: Συναρτησιακά καμπύλων οι οποίες υπόκεινται σε δεσμούς. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Ιστορία της μετάφρασης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο

Μοντέρνα Θεωρία Ελέγχου

Μηχανολογικό Σχέδιο Ι

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κλασσική Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Παράκτια Τεχνικά Έργα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Ιστορία της μετάφρασης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Μοντέρνα Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εισαγωγή στους Αλγορίθμους

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Βέλτιστος Έλεγχος Συστημάτων

Εκκλησιαστικό Δίκαιο

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Βέλτιστος Έλεγχος Συστημάτων

Εισαγωγή στους Αλγορίθμους

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Φ 619 Προβλήματα Βιοηθικής

Συμπεριφορά Καταναλωτή

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Μοντέρνα Θεωρία Ελέγχου

Γεωργική Εκπαίδευση Ενότητα 9

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διοικητική Λογιστική

Μοντέρνα Θεωρία Ελέγχου

Διπλωματική Ιστορία Ενότητα 2η:

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Λογισμός 4 Ενότητα 10

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Στρατηγικό Μάρκετινγκ

Μοντέρνα Θεωρία Ελέγχου

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Συμπεριφορά Καταναλωτή

Χώρος και Διαδικασίες Αγωγής

Συγκριτικό Εκκλησιαστικό Δίκαιο

Μοντέρνα Θεωρία Ελέγχου

Διοίκηση Επιχειρήσεων

Εισαγωγή στους Αλγορίθμους

Φ 619 Προβλήματα Βιοηθικής

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Δομές Δεδομένων Ενότητα 1

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων Νίκος Καραμπετάκης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Διατύπωση ικανών (Legendre - Jacobi) και αναγκαίων (Euler - Lagrange) συνθηκών για την εύρεση τοπικού ακρότατου ενός συναρτησιακού το οποίο εξαρτάται από μια διανυσματική συνάρτηση μιας μεταβλητής και την παράγωγο της π.χ. J(t,x(t),x (t)). Συνθήκες εγκαρσιότητας που πρέπει να πληρούνται από τις αρχικές και τις τελικές συνθήκες της συνάρτησης x(t) ώστε να έχει ακρότατο το συναρτησιακό J(t,x(t),x (t)). Επίλυση του βραχυστόχρονου προβλήματος (brachistochrone problem) και του προβλήματος της αλυσίδας (hanging chain or catenary problem). 4

Διατύπωση αναγκαίων συνθηκών Euler-Lagrance για την ύπαρξη τοπικού ακρότατου ενός συναρτησιακού. Διατύπωση ικανών συνθηκών Legendre-Jacobi για την ύπαρξη τοπικού ακρότατου ενός συναρτησιακού. Τερματική συνθήκη/ες ή συνθήκη/ες εγκαρσιότητας και μελέτη ειδικών περιπτώσεων. 5

Έστω J x = t ff x t, x t, t dt όπου x t = x 1 t x t x n t, x t = t 0 x 1 t x t x n t, x t 0 = x 0, x t f = x f. 6

J = t 0 t f F x t + δx t, Taylor x t + δ x t, t F x t, x t, t dt + + t 0 t f x x t, T x t, t δx t + x x t, T x t, t δ x(t) dt + t 0 t f όροι υψηλότερης ταξης δx t, δ x(t) dt 7

0 = δj x, δx = = x x t f, x t f, t f T δx t f T x x t f, x t f, t f δx t 0 + t 0 t f x x t, x t, t d dt x T x t, x t, t δx t dt x x t, x t, t d dt x x t, x t, t = 0 8

J x = 0 π/4 x 1 t + x t + F x, x π x 0 = x 1(0) x (0) = 0 1, x π x 1 ( 4 = 4 ) x d dt x = 0 x 1 x x 1 (t) x t x ( π 4 ) = 0 1 d dt x 1 x dt = 0 9

x 1 t x t d dt x t x 1 t = 0 x t = x 1 t x 1 t = x t x x t 1 t = (4) x 4x t = 0 x t = c 1 e t + c e t + c 3 cos x 1 t = x t =. p 4 4=0 t + c 4 sin( t) Τα c 1, c, c 3, c 4 υπολογίζονται από τις αρχικές συνθήκες. 10

1. Συνθήκη Legendre Σχετικό Ελάχιστο: R = D 1 ή D 1 > 0, D > 0,, D n > 0 D D n.. x 1 x 1 x x 1 x n x 1 x n x x n x n > 0 Σχετικό Μέγιστο: R < 0 η D 1 < 0, D > 0,, 1 n D n < 0. 11

. Συνθήκη Jacobi 1 S ji x = F x j x i d dt n j=1 x j x i, i, j = 1,, n R ij x = R ji = F, i, j = 1,, n x j x i S ji + S ij u j d dt n j=1 R ji u j = 0, i = 1,, n Έστω u k1 t, u k t,, u kn t k = 1,,.., n οι λύσεις u ks t 0 = 0 k, s and u kk t 0 = 1, u ks t 0 = 0, k s Αυστηρή Συνθήκη Jacobi t = [u ks t ] 0 t t 0, t f ] 1

J x = 0 π/4 Συνθήκη Legendre = x x t 1 = x x 1 t x 1 t + x t + F x, x x 1 (t) x t x = 0 = R 11 1 = 1 = R x x 1 1 x = 0 = R dt = 1 = R x 1 x 1 13

R = 0 1 1 0 Ούτε > 0 ούτε < 0 Ιδιοτιμές -1, +1. Συνθήκη Jacobi x 1 = x 1 x = x x = 1 = 0 x x 1 x = = 0 x 1 x = 0 x 1 x 1 = 0 x x 1 = 0 x x = 0 x 1 x 14

S 11 =, S 1 = 0, S 1 = 0, S = R 11 = F x = 0 1 F R 1 = = 1 = R x 1 x 1 R = F x = 0 i = 1 1 4u 1 + 0u d dt u = 0 u 1 i = 1 0u 1 + 4u d dt u 1 = 0 u u = 0 u 1 = 0 15

u 1 = 1 u u 1 u 4 = 0 u 1 = 1 u u 4 4u = 0 u = c 1 e t + c e t + c 3 cos t + c 4 sin( t) u 1 0 = 0 u 1 0 = 1 u 0 = 0 u 0 = 0 u 11 t = u 1 t u 1 t = u t u 1 0 = 0 u 1 0 = 0 u 0 = 0 u 0 = 1 u 1 t = u 1 t u t = u t t = u 11 t u 1 t u 1 t u t 0 t 0, π 4 ] 16

Όμοια με πρόβλημα 4: δj x, δx = 0 = T x x t f, x t f, t f δx f + + F x t f, x t f, t f + t 0 t f x x t, x t, t T x x t f, x t f, t f x t f δt f d dt x x t, x t, t T δx t dt Παρατήρηση: Για την κάθε κατάσταση x i t μπορεί να έχω ένα από τα προβλήματα 1-4 και συνεπώς θα εφαρμόζω τις ανάλογες συνθήκες!! 17

Π.χ. για τις πρώτες r καταστάσεις ξέρω τις τελικές τιμές στο t f (Πρόβλημα 1) x(t f ) = x f αλλά για τις επόμενες n r ξέρω μόνο τον χρόνο t f (Πρόβλημα ) x t x f, x t f, t f = 0 i = r + 1,, n i 18

J x = 0 π/4 x 1 t + x 1 t x t + x t π x 1 0 = 1 x 1 4 = Πρόβλημα 1 x 0 = 3 x π ελεύθερο Πρόβλημα 4 Δ.Ε. Euler-Lagrange: x 1 t 0 x d dt x = 0 d x t dt x 1 t + x t = 0 dt 19

x t = x 1 t x t + x 1 t = 0 x t = x 1 t 4x 1 t + x 1 t = 0 x t = c 1 cost + c sint x 1 t = c 1 cost + c sint Άρα και x 1 t = c 1 cost + c sint x t = c 1 cost c sint + c 3t + c 4 0

x π x 4, x 1 0 = 1 = c 1 1 + c 0 x 0 = 3 = c 1 1 c 0 + c 3 0 + c 4 π x 1 4 = = c 1 0 + c 1 x π 4 = 0 = c 1 = 1, c =, c 3 = 0, c 4 = x π 1 4 + x π 4 = 0 = c 3 1

Νικόλαος Καραμπετάκης, 009, Βέλτιστος Έλεγχος Συστημάτων, Εκδόσεις Ζήτη. D.E. Kirk, 1970, Optimal Control Theory, Prentice Hall, Englewood Cliffs, NJ. D. S. Naidu, 00, Optimal Control Systems, CRC Press LLC.

Copyright, Νικόλαος Καραμπετάκης. «. Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων». Έκδοση: 1.0. Θεσσαλονίκη 014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs88/

Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 013-014