Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σχετικά έγγραφα
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

HMY 795: Αναγνώριση Προτύπων

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Αναγνώριση Προτύπων Ι

HMY 795: Αναγνώριση Προτύπων

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

P(A ) = 1 P(A). Μονάδες 7

HMY 795: Αναγνώριση Προτύπων

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

Θεωρία Λήψης Αποφάσεων

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Στατιστική. Εκτιμητική

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8

Αναγνώριση Προτύπων Ι

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

HMY 795: Αναγνώριση Προτύπων

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

HMY 795: Αναγνώριση Προτύπων

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Μαθηματικός Περιηγητής σχ. έτος

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

HMY 795: Αναγνώριση Προτύπων

Στατιστική Συμπερασματολογία

Δ10. Συμπίεση Δεδομένων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Παραδείγματα (2) Διανυσματικοί Χώροι

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

HMY 795: Αναγνώριση Προτύπων

Ταξινόμηση. Τηλεπισκόπηση Η ΤΑΞΙΝΟΜΗΣΗ ΕΙΚΟΝΑΣ. Τηλεπισκόπηση. Τηλεπισκόπηση. Τηλεπισκόπηση 24/6/2013. Ταξινομητέ ς. Επιβλεπόμενοι Μη επιβλεπόμενοι

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

HMY 795: Αναγνώριση Προτύπων

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Στατιστική Συμπερασματολογία

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

ΠΑΡΕΜΒΟΛΗ ΜΕΣΩ SPLINES

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

Transcript:

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: X=X X 2 X M. Κάθε X αντιστοιχεί στην κλάση ω. -Στο πλαίσιο αυτό, η τιμή κάθε df ω που εμπλέκεται στον ταξινομητή Βayes για δεδομένο εκτιμάται βασιζόμενη άμεσα στα σημεία του X. Δύο βασικές μέθοδοι της κατηγορίας αυτής -arzen wndows -Εκτίμηση πυκνότητας με βάση του -πλησιέστερους γείτονες -nearest negbor densty estmaton Το πρόβλημα: - Έστω Y={,, } δεδομένο σύνολο διανυσμάτων που έχουν προκύψει από άγνωστη df,. - Στόχος: Εκτίμησε την τιμή της σε δεδομένο σημείο με βάση το σύνολο Y.

Μη παραμετρική εκτίμηση Υπενθύμιση βασικών εννοιών στο συνολικά 2 ˆ ˆ ˆ, -ˆ ˆ 2 ˆ ˆ 2 ˆ Αν συνεχής, καθώς, αν 0,, 0 4

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Διαίρεση του πολυδιάστατου χώρου σε υπερκύβους 5

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows 6

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Παράδειγμα: Έστω τα ακόλουθα Ν=6 σημεία δεδομένων μαύρες κουκκίδες, τα οποία προέρχονται από μία άγνωστη κατανομή. Για =, να εκτιμήσετε την τιμή της συν. πυκν. πιθ. για την κόκκινη κουκκίδα. = ή - Κεντράρουμε υπερκύβο πλευράς σε κάθε σημείο δεδομένων - Μετράμε σε πόσους υπερκύβους ανήκει το υπό μελέτη σημείο κόκκινη κουκίδα =3 = / = 3/6 = / 2 * =0.5 - Κεντράρουμε υπερκύβο πλευράς στο υπό μελέτη σημείο κόκκινη κουκκίδα - Μετράμε πόσα σημεία δεδομένων ανήκουν στον υπερκύβο =3 = / = 3/6 = / 2 * =0.5

Ορίζουμε Δηλαδή, ισούται με μέσα σε υπερκύβο μοναδιαίας πλευράς με κέντρο το 0 ˆ l 2 0 διαφορετικά /όγκος*/ν* πλήθος σημείων εντός υπερκύβου πλευράς κεντραρισμένου στο. Το πρόβλημα: συνεχής. ασυνεχής Παράθυρα arzen-πυρήνες-συναρτήσεις δυναμικού είναι ομαλή 0, d 8

9

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Αν φ=0,i τότε Παράδειγμα: Εκτίμηση της τιμής κανονικής κατανομής Ν0, στο σημείο =. Παράγουμε n σημεία από την κατανομή και εκτιμούμε την =0,2420 για δεδομένα. =0.0 =0.05 =0. =0.5 =0.8 n=00 0.635 0.4750 0.455 0.2305 0.2464 n=000 0.776 0.2428 0.2629 0.2270 0.22 n=0000 0.2662 0.245 0.2437 0.2365 0.237 n=00000 0.2543 0.2424 0.2403 0.2378 0.2304 n=000000 0.243 0.245 0.2406 0.2394 0.2296 0

Μέση τιμή Συνεπώς αμερόληπτος unbased στο όριο ' ' ' ' ] [ ] ˆ [ l l d E E l 0, ' 0 το εύρος της 0 ' d l 0 l ' ' ' ' ] ˆ [ d E

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Διασπορά Όσο μικρότερο το, τόσο μεγαλύτερη η διασπορά =0., =000 =0.8, =000 2

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows =0., =0000 Όσο μεγαλύτερο το, τόσο καλύτερη η ακρίβεια 3

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows a αρχ. κατανομή, b =0.05, =000, c =0.05, =20000, d =0.8, =20000 4

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Αν 0 Ασυμπτωτικά απροκατάληπτος 5

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows - Έστω Y={,, } δεδομένο σύνολο διανυσμάτων που έχουν προκύψει από άγνωστη df,. - Στόχος: Εκτίμησε την τιμή της σε δεδομένο σημείο με βάση το σύνολο Y. - Η ιδέα: Προσέγγισε την με μια μίξη συναρτήσεων πυρήνων κεντραρισμένων στα s του Υ, οι οποίες μειώνονται πολύ γρήγορα γύρω από αυτά. Μια συνηθισμένη συνάρτηση πυρήνων: Η Gaussan. Έτσι l 2 2 l e T 2 2 όπου η τυπική απόκλιση καθορίζεται από το χρήστη. Συγκρίνετε τα arzen wndows με τη μίξη των Gaussans που συζητήθηκε προηγουμένως

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows Παράδειγμα: Έστω τα ακόλουθα Ν=6 σημεία δεδομένων μαύρες κουκκίδες, τα οποία προέρχονται από μία άγνωστη κατανομή. α εκτιμήσετε την τιμή της συν. πυκν. πιθ. για την κόκκινη κουκκίδα, θεωρώντας ότι η είναι το σταθμισμένο άθροισμα Ν κανονικών κατανομών Ν, 2, =,,6. = - Κεντράρουμε μία κανονική κατανομή Ν, 2 σε κάθε σημείο δεδομένων - Υπολογίζουμε την τιμή κάθε κατανομής στο υπό μελέτη σημείο κόκκινη κουκίδα - Υπολογίζουμε το μέσο όρο των παραπάνω τιμών.

Θεωρείστε ένα πρόβλημα c κλάσεων με εμπλεκόμενες κλάσεις τις ω,, ω c. Υπάρχουν διαθέσιμα σημεία από κάθε κλάση ω, =,,c, με + + c =. Πρόβλημα: Ταξινομείστε δεδομένο σημείο σε μία από τις παραπάνω κλάσεις, κανόντας χρήση της τεχνικής των arzen wndows. -Υπολόγισε τις συναρτήσεις διάκρισης, =,,c - Καταχώρησε το στην κλάση ω q για την οποία g q =ma =,,c g. -Αν επιπλέον προσεγγίσουμε ω /, =,,c και επανορίσουμε την g ως έχουμε: καταχώρησε το στην κλάση ω q για την οποία g q =ma =,,c g g q =mn =,,c g T l l g 2 2 / 2 e 2 T l l g 2 2 / 2 e 2 ' B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση arzen wndows

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση Εκτίμηση πυκνότητας - - ΈστωY={,, } δεδομένο σύνολο σημείων τα οποία προέρχονται από άγνωστη df,. - Στόχος: Έκτίμησε την τιμή της σε δεδομένο σημείο, με βάση το σύνολο Y. - Η ιδέα: - Διάλεξε μια τιμή για το. - Για δεδομένο, στο οποίο θέλουμε να εκτιμήσουμε την, κάνε τα ακόλουθα Ανάμεσα στα σημεία του Y, προσδιόρισε τα εγγύτερα στο σημεία Προσδιόρισε τον όγκο V της υπερσφαίρας με κέντρο το και ακτίνα ίση με την απόσταση του από το μακρύτερο από τα παραπάνω σημεία. Προσέγγισε την ως V

dy y X X n V V V V B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση Εκτίμηση πυκνότητας -

Θεωρείστε ένα πρόβλημα c κλάσεων, με εμπλεκόμενες κλάσεις ω,, ω c. Υπάρχουν διαθέσιμα σημεία από κάθε κλάση ω, =,,c, με + + c =. Πρόβλημα: Ταξινόμησε δεδομένο σημείο σε μια από τις παραπάνω κλάσεις, χρησιμοποιώντας εκτιμήσεις πυκνότητας με βάση τους -. -Προσέγγισε ω / V, =,,c. -Υπολόγισε τις συναρτήσεις διάκρισης, =,,c - Καταχώρησε το στην κλάση ω q για την οποία g q =ma =,,c g. -Αν επιπλέον προσεγγίσουμε ω /, =,,c και επανορίσουμε την g as έχουμε: καταχώρησε το στη κλάση ω q για την οποία g q =ma =,,c g V q =mn =,,c V V V g ' V V g B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση Εκτίμηση πυκνότητας -

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση Εκτίμηση πυκνότητας - -Ένα παράδειγμα ταξινόμησης =5 Ισοπίθανες κλάσεις Το σημείο * ταξινομείται στη μπλε κλάση αφού η επιφάνεια του κύκλου με κέντρο αυτό που περιέχει 5 σημεία από την μπλε κλάσης είναι μικρότερη από την αντίστοιχη για την μαύρη κλάση.

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Ο ταξινομητής των πλησιέστερων γειτόνων -nearest negbor classfer - - Έστω X l {, d, R, d {,2,..., M},,... } δεδομένο σύνολο που περιέχει διανύσματα από M κλάσεις, ω,, ω M. - Στόχος: Καταχώρησε δεδομένο διάνυσμα σε μια από τις παραπάνω κλάσεις, βασιζόμενος στο σύνολο X. - Η ιδέα: - Διάλεξε μία περιττή τιμή για το. - Για δεδομένο Προσδιόρισε τους πλησιέστερους γείτονες του από το σύνολο X. Ανάμεσα στα σημεία έστω εκείνα τα οποία προέρχονται από την -στη κλάση, =,,M εδώ μπορούμε να ορίσουμε g =. Καταχώρησε το στην κλάση ω q για την οποία q =ma =,,M. Ένα μειονέκτημα: Αυξημένη υπολογιστική πολυπλοκότητα O για κάθε διάνυσμα

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Ο ταξινομητής των πλησιέστερων γειτόνων -nearest negbor classfer - Μερικά θεωρητικά αποτελέσματα Έστω B η πιθανότητα λάθους του ταξινομητή Bayes. -Για τον ταξινομητή του -πλησιέστερου γείτονα -earest negbor ή, απλά, είναι B M 2 B 2B M -Για τον ταξινομητή -πλησιέστερων γειτόνων είναι B B, 2 B B Συσχέτιση του ταξινομητή με τον ταξινομητή που βασίζεται στην εκτίμηση της πυκνότητας με βάση τους -πλησιέστερους γείτονες: Είναι ισοδύναμοι για = Γιατί;

B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Ο ταξινομητής των πλησιέστερων γειτόνων -nearest negbor classfer - Μια γεωμετρική άποψη για τον ταξινομητή του πλησιέστερου γείτονα - classfer O ταξινομητής πλησιέστερου γείτονα διαμερίζει το χώρο R l σε περιοχές τόσες, όσες είναι και τα στοιχεία του συνόλου Χ έτσι ώστε R : d, mn, d,