+...)! $ & %! # " $ & %! "

Σχετικά έγγραφα
Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:

i) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή:

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

i) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής:

, της οποίας το µέτρο ικανοποιεί τη σχέση:

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

(ΘΕΜΑ 17ο)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:

ΘΕΜΑ Α : α V/m β V/m γ V/m δ V/m

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

3. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Β έκδοση Θέµα Α

Προτεινόμενα θέματα για τις εξετάσεις 2011

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ÄÉÁÍüÇÓÇ

Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΝΟΕΜΒΡΙΟΥ- ΕΚΕΜΒΡΙΟΥ 2014 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

! =A'B=C!! C! = R" (1)

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

3. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο μέσων. Όταν η

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α

Θεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα.

Transcript:

Το σφαιρίδιο του σχήµατος 1) έχει µάζα m κινού µενο δε πάνω στο λείο οριζόντιο δάπεδο προσπίπτει κάθετα στο κατα κόρυφο τοίχωµα µε ταχύτητα v, της οποίας ο φορέας συµπίπτει µε τον άξονα του οριζόντιου ελατηρίου σταθεράς k. To σφαιρίδιο ανακλώ µενο αλλάζει φορά κινήσως και συναντά το ελευθερο άκρο του ελατη ρίου, µε αποτέλεσµα αυτό να συσπειρώνεται. Στην συνέχεια το ελατή ριο αποσυσπειρώνεται και το σφαιρίδιο αλλάζει φορά κινήσεως κατευ θυνόµενο πάλι προς το τοίχωµα, όπου και πάλι ανακλάται. Αν σε κάθε ανάκλαση το σφαιρίδιο χάνει το 1/4 της κινητικής του ενέργει ας, να βρεθεί το συνολικό µήκος της διαδροµής του κατά τον χρόνο που αυτό διατηρεί επαφή µε το ελατήριο. ΛΥΣΗ: Εάν v n είναι η ταχύτητα ανάκλασης του σφαιριδλιου κατά την n-οστή πρόσκρουσή του στο τοίχωµα και v n-1 η αντίστοιχη ταχύτητα προσπτώσεως, θα ισχύει σύµφωνα µε τα δεδοµένα του προβλήµατος η σχέση: mv n = 3 4 mv n-1 v n = 3v n-1 Το σφαιρίδιο προσπίπτοντας στο ελευθερο άκρο του ελατηρίου µε ταχύτητα v n το συµπιέζει κατά x n και ισχύει η σχέση: 1) mv n = kx n v n = kx 1) n m x = m n k v n x n = 3m k v n-1 ) Σχήµα 1 µε n=1,, 3,... Κατά τον χρόνο που το σφαιρίδιο είναι σε επαφή µε το ελατή ριο το µήκος S της διαδροµής του πάνω στο οριζόντιο δάπεδο είναι:

) S = x 1 + x + x 3 +... + x n +...) S = 3m k v + v 1 + v +... + v n-1 +...) 1) S = ' 3m k v + 3 v ) + ) " 3 $ v +... + " 3 $ n * v +...,, + S = ' 3m k v 1 + 3 + 3 $ ) ) " +... + " 3 $ n * +...,, + 3) Όµως η εντός της αγγύλης παράσταση αποτελεί το άθροισµα των απείρων όρων µιας φθίνουσας γεωµετρικής προόδου µε πρώτο όρο την µονάδα και λόγο 3/, οπότε θα ισχύει: 1 + 3 + 3 $ " +... + " 3 $ n +... = 1 1-3/ 1 + 3 + 3 $ " +... + " 3 $ n +... = - 3 = - 3 ) 4) Έτσι η σχέση 3) παίρνει την µορφή: S = - 3) 3m k v 5) P.M. fysikos Το µικρό σώµα Σ του σχήµατος ) µάζας m, αφή νεται να πέσει πάνω στον δίσκο Δ, ο οποίος είναι στερεωµένος στο ένα άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο έχει στερεωθεί στο έδαφος. i) Eάν το σώµα και ο δίσκος έχουν την ίδια µάζα m, να βρεθεί η συν θήκη ώστε το σώµα αφού συγκρουσθεί ελαστικά µε τον δίσκο να απο χωρισθεί από αυτόν. ii) Εάν η σταθερά του ελατηρίου είναι k=9mg/h, το σώµα θα αποχω ριστεί από τον δίσκο; Aν ναι να βρεθεί η εξίσωση κινήσεως του δίσ κου µε αρχή των χρόνων την στιγµή που το σώµα αποσπάται από τον δίσκο. Να λάβετε ως θετική φορά την φορά κινήσεως του σώµατος

την στιγµή t= και να δεχθείτε ότι το σώµα αποµακρύνεται όταν εγκα ταλείψει τον δίσκο. Δίνεται η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: i) Ας δεχθούµε ότι το σώµα αφού συγκρουσθεί ελαστικά µε τον δίσκο χάνει την επαφή του µε αυτόν στην θέση που απέχει από την αρχική θέση Ο του δίσκου απόσταση x *. Στην θέση αυτή η µοναδική δύναµη που δέχεται το σώµα είναι το βάρος του, δηλαδή η αντίστοιχη επιτάχυνσή του είναι ίση µε την επιτάχυνση g της βαρύτητας. Όµως την ίδια επιτάχυνση έχει και ο δίσκος που σηµαίνει ότι το ελατήριο δεν εξασκεί δύναµη στον δίσκο, δηλαδή βρίσκεται στην φυσική του κατάσταση. Εφαρµόζοντας για το σύστηµα σώµα-δίσκοςελατήριο το θεώρηµα διατήρησης της µηχανικής ενέργειας, θεωρώντας ως επί πεδο αναφοράς της βαρυτικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από το Ο, παίρνουµε την σχέση: mgh + kx * = mv * + mgx * mv = mgh + kx * - mgx * 1) Σχήµα όπου v * η κοινή ταχύτητα σώµατος και δίσκου την στιγµή που το σώµα εγκα ταλείπει τον δίσκο. Όµως στην θέση ισορροπίας Ο του δίσκου το βάρος του m g εξουδετερώνεται από την δύναµη F " του συµπιεσµένου κατα x * ελατηρίου, δηλαδή ισχύει: mg = kx * x * = mg /k ) Συνδυάζοντας τις σχέσεις 1) και ) έχουµε: mv * = mgh + km g k - mg mg k v * = gh - 3mg k 3) H 3) έχει νόηµα εφ όσον ισχύει: gh - 3mg k 3mg > gh > k k > 3mg h 4) H σχέση 4) αποτελεί την ζητούµενη συνθήκη.

ii) Εάν η σταθερά k του ελατηρίου έχει την τιµή 9mg/k είναι προφανές ότι το σώµα εγκαταλείπει τον δίσκο και όταν αποµακρυνθεί ο δίσκος θα εκτελεί κατα κόρυφη αρµονική ταλάντωση µε σταθερά επαναφοράς k και κέντρο ταλάντωσης το Ο και σύµφωνα µε το θεώρηµα διατήρησης της ενέργειας της ταλάντωσης µπορούµε να γράψουµε την σχέση: mv * + kx * = kx ) mv * + k m g = kx k mv + k m g = kx k mv * + m g k = kx mv * + m g 9mg/h = 9mg h x v * + hg 9 = 9g h x 5) όπου x το πλάτος ταλάντωσης του δίσκου. Όµως από την σχέση 3) έχουµε: v * = gh - oπότε η 5) γράφεται: 3mg 9mg/h) = gh - gh 3 = gh 3 gh 3 + hg 9 = 9g h x 8h 9 = 9 h x x = 4h 9 6) Eξάλλου για την αλγεβρική τιµή της αποµάκρυνσης και της ταχύτητας του δίσκου ισχύουν οι σχέσεις: x = x µ "t + ) ' v = x "$"t + )) t= x * = x µ" ' v * = x $" ) 6) µ" = 9x * /4h ' $" > 7) όπου φ η αρχική φάση ταλαντωσης του δίσκου.όµως ισχύει ακόµη ότι: x * = mg k = mg 9mg/h = h 9 µε αποτέλεσµα οι σχέσεις 7) να γράφονται: µ" = 1/ ' $" > = " 6 H ζητούµενη λοιπόν εξίσωση κίνησης του δίσκου έχει την µορφή: x = 4h 9 µ $ "t + ' ) µε = k 6 m P.M. fysikos

Tο νήµα µαθηµατικού εκκρεµούς στερεώνεται στην οροφή ενός οχήµατος, το οποίο κινείται σε οριζόντιο δρόµο µε σταθερή επιτάχυνση a. Ένας παρατηρητής που βρίσκεται µέσα στο όχηµα και ισορροπεί ως προς αυτό, παρακολουθεί το σφαιρίδιο του µαθηµατικού εκκρεµούς. i) Nα δείξετε ότι, ο παρατηρητής αυτός είναι υποχρεωµένος να θεω ρεί το σφαιρίδιο του εκκρεµούς µέσα σ ένα υποθετικό πεδίο βαρύτη τητας του οποίου η ένταση g ' ικανοποιεί την σχέση: g '= g + - a ) ii) Eάν το σφαιρίδιο εκτραπεί λίγο από την θέση ισορροπίας του, τότε εκτελεί ως προς τον παρατηρητή αρµονική ταλάντωση, της οποίας να βρείτε την περίοδο. Δίνεται το µήκος L του νήµατος του εκκρεµούς και η επιτάχυνση g της βαρύτητας στον τόπο που κινείται το όχηµα. ΛYΣH: Aς εξετάσουµε το σφαιρίδιο, όταν αυτό ισορροπεί ως προς ένα παρατη ρητή που µετέχει της οριζόντιας κίνησης του οχήµατος. Tότε ως προς ένα ακίνητο επί του εδάφους παρατηρητή το σφαιρίδιο κινείται µε επιτάχυνση a, υπό την επίδραση του βάρους του m g και της τάσεως F του νήµατος. Για τον παρατηρητή αυτόν θα πρέπει η συνισταµένη των δυνάµεων F και m g να είναι ίση µε m a, δηλαδή πρέπει να ισχύει η διανυσµατική σχέση: F + m g = m a F = m a - g ) 1) δηλαδή ο ακίνητος παρατηρητής αντιλαµβάνεται ότι, το νήµα βρίσκεται υπό κλίση ως προς την κατακόρυφη διεύθυνση, δηλαδή σχηµατίζει ως προς αυτήν γωνία φ, για την οποία ισχύει: εφφ = ma/mg = a/g ) Σχήµα 3 Aλλά και ο κινούµενος παρατηρητής αντιλαµβάνεται το νήµα κεκλιµένο και το σφαιρίδιο να ισορροπεί, οπότε είναι αναγκασµένος να δέχεται ότι, η δύναµη F από το νήµα τάση του νήµατος) εξουδετερώνεται από ένα υποθετικό βάρος m g ' του σφαιριδίου, δηλαδή για τον παρατηρητή αυτόν ισχύει η σχέση:

F + m g '= 1) m a - g ) + m g '= g '= g - a = + g + - a ) 3) Έτσι ο κινούµενος παρατηρητής για να εξηγήσει την ισορροπία του σφαιριδίου είναι υποχρεωµένος να το θεωρεί µέσα σ ένα υποθετικό πεδίο βαρύτητας, που η έντασή του g ' ικανοποιεί την σχέση 3). Tο µέτρο της έντασης g ' θα είναι: g'= g + a 4) Σχήµα 4 H διεύθυνση του διανύσµατος g ' αποτελεί για τον κινούµενο παρατηρητή µια υποθετική κατακόρυφη διεύθυνση ΟK, η οποία σχηµατίζει µε την πραγµατική κατακόρυφη διεύθυνση ΟK γωνία φ, που ικανοποιεί την σχέση ). Όταν λοιπόν ο κινούµενος παρατηρητής εκτρέψει το σφαιρίδιο από την φαινοµενική θέση ισορροπίας του, ώστε το νήµα να σχηµατίσει µικρή γωνία µε την φαινοµε νική κατακόρυφη διεύθυνση, τότε το σφαιρίδιο θα εκτελέσει ως προς τον παρα τηρητή αυτόν α.τ. της οποίας η περίοδος T υπολογίζεται από την σχέση: T = L g' 4) T = L g + a ) 1 / P.M. fysikos Σ ένα κύκλωµα L-C παραγωγής αµείωτων ηλεκτ ρικών ταλαντώσεων να δείξετε ότι, ο δεύτερος κανόνας του Kirchoff αποτελεί µια έκφραση της αρχής διατήρησης της ενέργειας. Αν στο κύκλωµα αυτό την χρονική στιγµή t= ισχύει q)= και i)=i <, να σχεδιάσετε στο ίδιο σύστηµα αξόνων τις γραφικές παραστάσεις της ενέργειας του ηλεκτρικού φορτίου του πυκνωτή και της ενέργειας του µαγνητικού πεδίου του πηνίου, σε συνάρτηση µε τον χρόνο. ΛΥΣΗ: Σύµφωνα µε την αρχή διατήρησης της ενέργειας το άθροισµα της ενέρ γειας του ηλεκτρικού πεδίου του πυκνωτή και της ενέργειας του µαγνητικού πεδίου του πηνίου κάθε στιγµή είναι σταθερό, δηλαδη ισχύει η σχέση: q C + Li = W 1)

όπου q, i το ηλεκτρικό φορτίο του πυκνωτή και i η ένταση του ρεύµατος στο πηνίο αντιστοίχως την τυχαία στιγµή t που εξετάζουµε το κύκλωµα L-C και Ε σταθερή θετική ποσότητα.. Διαφορίζοντας τη σχέση 1) παίρνουµε: q dq C + Li di = q dq$ + Li di $ = C " dt " dt Σχήµα 5 Ας δεχθούµε, χωρίς αυτό να βλάπτει την γενικότητα, ότι ο οπλισµός αναφοράς α του πυκνωτή την χρονική στιγµή t φέρει θετικό φορτίο, το οποίο µέσω του ρεύµατος τείνει να µειωθεί και ακόµη ότι η αντίστοιχη ένταση του ρεύµατος τείνει να ελλατωθεί*. Τότε θα ισχύει q>, i=dq/dt<, di< και η προηγούµενη σχέση γράφεται: q C di$ i + Li = " dt q C + L di $ = ) " dt Όµως την την στιγµή αυτή ο πυκνωτής εκφορτίζεται, δηλαδή συµπεριφέρεται ως ηλεκτρική γεννήτρια µε ηλεκτρεγερτική δύναµη ίση µε την τάση q/c στους οπλισµούς του, ενώ το πηνίο αποτελεί ηλεκτρικό αποδέκτη µε πολικότητα που φαίνεται στο σχήµα 5) και αντιηλεκτρεγερτική δύναµη ίση µε L di/dt. Eφαρ µόζοντας την στιγµή t στο κύκλωµα τον δεύτερο κανόνα του Kirchoff παίρνου µε την σχέση: q di - L C dt = q C + Ldi dt = δηλαδή επανευρίσκουµε την σχέση ) γεγονός που πείθει ότι ο δεύτερος κανό νας του Kirchoff αποτελεί µια άλλη εκφραση της αρχής διατηρήσεως της ενέρ γειας. Εξάλλου για το ηλεκτρικό φορτίο q του πυκνωτή και για την ένταση i του ρεύµατος στο πηνίο ισχύουν οι σχέσεις: q = q µ"t + ) ' i = q " $"t + )) t= = q µ" ' i = q $" ) µ" = $" = i /q ' ) µ" = ' $" < = "

όπου q θετική σταθερή ποσότητα φ η αρχική φάση της ηλεκτρικής ταλάντωσης και ω η κυκλική ιδιοσυχνότητα του κυκλώµατος L-C ίση µε 1/LC) 1/. Άρα οι προηγούµενες σχέσεις γράφονται: q = q µ"t + ) ' i = q " $"t + )) q = - i /)"µt + )' i = -i $t + ) ) q =i /)"µt ' i = i $t Σχήµα 6 Η ενέργεια W C του ηλεκτρικού πεδίου του πυκνωτή και η ενέργεια W L του µαγνητικού πεδίου του πηνίου υπολογίζονται από τις σχέσεις: και W C = q C = 1 C " i $ ' µ t W C = i LC C µ "t = Li µ "t 3) W L = Li = Li " $t 4) Οι γραφικές παραστάσεις των 3) και 4) αποδίδονται στο σχήµα 6). P.M. fysikos To ένα άκρο ιδανικού ελατηρίου σταθεράς k, είναι στερεωµένο στην οροφή ανελκυστήρα, ενώ στο άλλο άκρο του έχει στερεωθεί σφαιρίδιο µάζας m. Την χρονική στιγµή t= το σύστηµα είναι ακίνητο και ο ανελκυστήρας αρχίζει να επιταχύνεται προς τα πάνω µε σταθερή επιτάχυνση a. i) Να βρεθεί η εξίσωση κίνησης του σφαιριδίου στο σύστηµα αναφο ράς του εδάφους. ii) Να δείξετε ότι η ταχύτητα του σφαιριδίου στο ίδιο σύστηµα µηδε νίζεται κατα τις χρονικές στιγµές που είναι ρίζες της εξίσωσης: t 5-4 t 4 7 + 6 t 6 9 -... = 1 6 µε = k m

ΛΥΣΗ: i) Πριν την εκκίνηση του ανελκυστήρα το σφαιρίδιο ισορροπεί στην θέ ση Ο, υπό την επίδραση του βάρους του m g και της δύναµης από το τεντωµένο ελατήριο, η δέ απόστασή του L από την οροφή του ανελκυστήρα είναι L+mg/k, όπου L το φυσικό µήκος του ελατηρίου. Εξετάζοντας το σφαιρίδιο στο σύστηµα αναφοράς του ανελκυστήρα όταν αυτός επιταχύνεται, αναγνωρίζουµε ότι αυτό δέχεται το βάρος του m g, την δύναµη F " από το ελατήριο και την αδρανειακή ψευδοδύναµη D Alembert = -m a, συµφωνα δε µε τον δεύτερο νόµο κινήσε ως του Νευτωνα θα ισχύει η σχέση: m d x dt = mg + ma - F " 1) Σχήµα 7 όπου x το διάνυσµα θέσεως αποµάκρυνση) του σφαιριδίου µε αρχη το Ο, κατά την χρονική στιγµή t που το εξετάζουµε. Όµως για το µέτρο της δύναµης F " ισχύει: F " = kx + mg/k) = kx + mg oπότε η σχέση 1) γράφεται: m d x dt = mg + ma - kx - mg m d x + kx = ma dt d x dt + k m x = a d x dt + x = a µε = k m ) Η ) αποτελεί µια µη οµογενή γραµµική διαφορική εξίσωση δευτέρας τάξεως µε σταθερούς συντελεστές και δέχεται µερική λύση της µορφής x 1 t)=a/ω, ενώ η λύση της αντίστοιχης οµογενούς εξίσωσης έχει την µορφή: x t) = Aµ "t + ) 3) όπου Α, φ σταθερές ποσότητες, που θα προσδιορισθούν από τις αρχικές συνθή

κες κίνησης του σφαιριδίου στο σύστηµα αναφοράς του ανελκυστήρα. Η γενική λύση της ) είναι: 3) xt) = x 1 t) + x t) xt) = a/ + A"µ t + ) 4) Παραγωγίζοντας την 4) ως προς τον χρόνο παίρνουµε την αλγεβρική τιµή της σχετικής ταχύτητας v του σφαιριδίου ως προς τον ανελκυστήρα, δηλαδή θα έχουµε: v = dxt) dt = A"$t + ) 5) Οι σχέσεις 4) και 5) για t= δίνουν: = a/ + A"µ ) = A$' * Aµ" = -a/ ) $' = * A = -a/ $ " = / 6) Συνδυάζοντας τις σχέσεις 4) και 6) παίρνουµε την εξίσωση κίνησης του σφαιρι δίου στο σύστηµα αναφοράς του ανεκυστήρα, δηλαδή την σχέση: xt) = a - a a "µ t + / ) xt) = 1 - "$t ) 7) Eξάλλου η αλγεβρική τιµή της µετατόπισης x του ανελκυστήρα στο σύστηµα αναφοράς του εδάφους, κατά την χρονική στιγµή t είναι: x = -at / 8) οπότε η εξίσωση κίνησης του σφαιριδίου στο σύστηµα αναφοράς του εδάφους θα έχει την µορφή: 7),8) Xt) = x + xt) Xt) = - at + a 1 - "$t ) 9) ii) H αλγεβρική τιµή της ταχύτητας v του ανεκυστήρα στο σύστηµα αναφο ράς του εδάφους την χρονική στιγµή t είναι: v = -at η δε αλγεβρική τιµή της αντίστοιχης σχετικής ταχύτητας του σφαιριδίου ως προς τον ανελκυστήρα είναι: v = - a "$t + / ) v = a "µt H ταχύτητα αλγεβρική τιµή) του σφαιριδίου στο σύστηµα αναφοράς του εδά φους την χρονική στιγµή t, είναι:

Vt) = v + v Vt) = -at + a "µt 1) Οι χρονικές στιγµές που η Vt) µηδενίζεται προκύπτουν από την σχέση: -at + a "µt = µ"t = "t t 1-3 t 3 3 + 5 t 5 5-7 t 7 7 +... = t - 3 t 3 3 + 5 t 5 5-7 t 7 7 +... = " 3 t 3-1 3 + t $ 5-4 t 4 7 +...' = t 5-4 t 4 7 +... = 1 6 11) Η 11) είναι µια εξίσωση που δεν λύνεται µε αλγεβρική µέθοδο, µπορεί όµως να λύθεί γραφικά σε ηλεκτρονικό υπολογιστή που χρησιµοποιεί κατάλληλο µαθη µατικό πρόγραµµα. P.M. fysikos Στην διάταξη του σχήµατος 8) τα σφαιρίδια Σ 1 και Σ έχουν την ίδια µάζα m τα δε ελατήρια είναι ιδανικά και έχουν την ίδια σταθερά k. Εκτρέπουµε το σφαιρίδιο Σ 1 κατακόρυφα προς τα κάτω από την θέση ισορροπίας του O 1 και το αφήνουµε ελευθερο. i) Να βρεθούν οι διαφορικές εξισώσεις κινήσεως των δύο σφαιριδίων. ii) Εάν ω 1, ω είναι οι γωνιακές συχνότητες των κανονικών τρόπων ταλάντωσης των σφαιριδίων να δείξετε τις σχέσεις: 1 = 3 + 5)k m και = 3-5)k m ΛΥΣΗ: i) Όταν το σύστηµα ισορροπεί το κάτω σφαιρίδιο Σ δέχεται το βάρος του m g και την δύναµη f από το ελατήριο που το συγκρατεί, οπότε ισχύει: f = mg 1) Εξάλλου το πάνω σφαιρίδιο Σ 1 δέχεται το βάρος του m g, την δύναµη από το κάτω ελατήριο ίση µε - f και την δύναµη f 1 από το πάνω ελατήριο, λόγω δε της ισορροπίας του ισχύει:

1) f 1 = mg + f f 1 = mg ) Στην συνέχεια εξετάζουµε το σύστηµα κατά µια τυχαία χρονική στιγµή t που οι αποµακρύνσεις των σφαιριδίων Σ 1 και Σ από τις θέσεις ισορροπίας τους Ο 1 και Ο είναι x 1 και x αντιστοίχως. Εφαρµόζοντας για το σφαιρίδιο Σ τον δεύ τερο νόµο κινήσεως του Νευτωνα παίρνουµε την σχέση: m d x dt = mg - F 3) Σχήµα 8 όπου F η δύναµη που δέχεται το σφαιρίδιο από το ελατήριο που το συγκρατεί. Όµως την στιγµή αυτή το ελατήριο είναι τεντωµένο από την φυσική του κατά σταση κατά x +mg/k-x 1, οπότε το µέτρο της F είναι: F = kx + mg/k - x 1 ) = kx + mg - kx 1 Έτσι η σχέση 3) γράφεται: m d x dt = mg - kx + mg + kx 1 d x dt + k m x - x 1 ) = 4) Tην ίδια στιγµή ο δεύτερος νόµος κινήσεως του Νευτωνα δίνει για το σφαιρί διο Σ 1 την σχέση: m d x 1 dt = mg + F - F 1 5) όπου - F, F 1 οι δυνάµεις που δέχεται το Σ 1 από το κάτω και το πάνω ελατήριο αντιστοίχως. Όµως για το µέτρο της F 1 ισχύει:

F 1 = kx 1 + mg/k) = kx 1 + mg οπότε η σχέση 5) γράφεται: m d x 1 dt = mg + kx + mg - kx 1 - kx 1 - mg d x 1 dt + k m x 1 - x ) = 6) Οι σχέσεις 4) και 6) αποτελούν τις ζητούµενες διαφορικές εξισώσεις κινήσεως των δύο σφαιριδίων. ii) Θα εξετάσουµε αν υπάρχει δυνατότητα τα δύο σφαιρίδια να ταλαντεύονται µε την ίδια γωνιακή συχνότητα. Προς τούτο εξετάζουµε το ενδεχόµενο το σύστηµα των διαφορικών εξισώσεων 4) και 6) να δέχεται λύση της µορφής: x 1 = A 1 µ "t+) $ x = A µ "t+) 7) Στην περίπτωση αυτή παραγωγίζοντας δύο φορές ως προς τον χρόνο τις σχέ σεις 7) θα έχουµε: dx 1 /dt = A 1 "$t+) ' dx /dt = A "$t+) d x 1 /dt = -A 1 "µt+) $ d x /dt = -A "µt+) 8) Συνδυάζοντας τις σχέσεις 8) µε τις εξισώσεις 4) και 6) παίρνουµε: -A "µt+) + k/m)[a "µt+) - A 1 "µt+) $ -A "µt+) + k/m)[a 1 "µ t+) - A "µ t+) -A + k/m)a - A 1 ) = " -A 1 + k/m)a 1 - A ) = $ A - +k/m) = k/m)a 1 " -A k/m) = - k/m)a 1 $ :) - +k/m - k/m = k/m - k/m - 4 + k/m+ k/m - k /m =-k /m - 4 + 3k/m) - k /m = 4-3k/m) + k /m = 9) Η 9) αποτελεί µια δευτεροβάθµια εξίσωση ως προς ω και οι ρίζες της είναι: και 1 = 3k/m + 9k / m - 4k / m = 3k/m - 9k / m - 4k / m = k3 + 5 m = k3-5 m

Από την παραπάνω διαδικασία συµπεραίνουµε ότι το σύστηµα έχει την δυνατό τητα να εκτελεί δύο κανονικούς τρόπους ταλάντωσης. Ο τρόπος ταλάντωσης που αντιστοιχεί στην µεγαλύτερη γωνιακή συχνότητα ω 1 χαρακτηρίζεται από την σχέση: A k m - k3 + 5 $ k = A " m 1 m A 1 = - 3-5 A < δηλαδή στην περίπτωση αυτή οι αποµακρύνσεις των δύο σφαιριδίων είναι κάθε στιγµή αντίρροπες, που σηµαίνει ότι κατά την γρήγορη ταλάντωση του συστή µατος υπάρχει αντίθεση φάσεως ανάµεσα στα δύο σφαιρίδια. Εξάλλου ο τρόπος ταλάντωσης του σύστήµατος που αντιστοιχεί στην µικρότερη γωνιακή συχνό τητα ω χαρακτηρίζεται από την σχέση: A k m - k3-5 $ k = A " m 1 m A 1 = - 3 + 5 A > δηλαδή κατά την αργή ταλάντωση του συστήµατος υπάρχει συµφωνία φάσεως ανάµεσα στα δύο σφαιρίδια, που σηµαίνει ότι κάθε στιγµή οι αποµακρύνσεις τους είναι οµόσηµες. P.M. fysikos Ένα εκκρεµές αποτελείται από σηµειακή µάζα m που είναι στερεωµένη στο ένα άκρο λεπτής ράβδου µηκούς L και αµελητέας µάζας. Η ράβδος µπορεί να στρέφεται περί οριζόντιο άξονα κάθετο στην ράβδο και διερχόµενο από το άλλο της άκρο, στηρίζεται δε o άξονας αυτός επάνω σε µια βάση, η οποία εκτελεί οριζόντια κίνηση που περιγράφεται στο σύστηµα αναφοράς του εδάφους από την σχέση: xt) = x "$t όπου x, ω θετικές και σταθερές ποσότητες. i) Να δείξετε ότι η γωνία φ που σχηµατίζει η ράβδος µε την κατακό ρυφη διεύθυνση καθορίζεται από την διαφορική εξίσωση: d dt + g L "µ - x L $t$ = ii) Nα λύσετε την παραπάνω εξίσωση στην περίπτωση που ω g/l µε την προυπόθεση ότι την στιγµή t= η γωνιακή εκτροπή της ράβδου από την κατακόρυφη διεύθυνση έχει πολύ µικρή τιµή φ, η δε γωνια κή της ταχύτητα είναι µηδενική.

ΛΥΣΗ: i) Εξετάζουµε το σύστηµα ράβδος-σηµειακή µάζα m στο σύστηµα ανα φοράς της κινούµενης βάσεως κατά µια τυχαία στιγµή t που η ράβδος σχηµατί ζει µε την κατακόρυφη διεύθυνση γωνία φ. Ένας παρατηρητής που µετέχει της κινήσεως της βάσεως αναγνωρίζει ότι πάνω στο σύστηµα ενεργούν οι εξής δυ νάµεις: Σχήµα 9 α. το βάρος m g της σηµειακής µάζας m, β. η αδρανειακή ψευδοδύναµη D Alembert =- m a επί της µάζας m, όπου a η επιτάχυνση της βάσεως κατα την χρονική στιγµή t και γ, η δύναµη που εξασκεί ο άξονας στήριξης της ράβδου στο άκρο της A που είναι σε επαφή µε την βάση. Eφαρµόζοντας για το σύστηµα τον θεµελιώδη νόµο της στροφικής κίνησης παίρ νουµε την σχέση: I d dt = -mgx'+"ab) I d = -mgl"µ - mal$ 1) dt Όµως η ροπή αδράνειας Ι του συστήµατος ως προς τον άξονα περιστροφής του Ο ειναι ίση µε ml η δε αλγεβρική τιµή της a είναι x ω συνωt, οπότε η 1) παίρνει την µορφή: ml d dt = -mgl"µ +mx $tl$ L d dt = -g"µ +x $t$ d dt + g L "µ - x $t$ = ) L ii) Eάν η αρχική γωνιακή εκτροπή φ της ράβδου από την κατακόρυφη διεύ θυνση είναι µικρή, τότε µπορούµε µε καλή προσέγγιση να θεωρήσουµε ότι συνφ 1 και ηµφ φ, οπότε η σχέση ) παίρνει την µορφή: d dt + g L - x " L $"t = d dt + g L = x " L $"t

d dt + " = x " L $"t µε = g L 3) Η 3) αποτελεί µια γραµµική µη οµογενή διαφορική εξίσωση δευτέρας τάξεως µε σταθερούς συντελεστές και η γενική της λύση θα προκύψει ως άθροισµα µιας µερικής της λύσεως και της λύσεως της αντίστοιχης οµογενούς εξίσωσης. Δοκιµάζουµε ως µερική λύση της 3) την συνάρτηση: 1 t) = A 1 "µt + A $t 4) οπότε µε διπλή παραγώγιση της συνάρτησης αυτής θα έχουµε: d 1 t) dt = A 1 "$"t - A "µ"t d 1 t) dt = -A 1 " µ"t - A " $"t 5) Αντικαθιστώντας στην 3) την τιµή της δεύτερης παραγώγου εκ της 5) παίρ νουµε την σχέση: -A 1 "µt - A $t + A 1 "µt + A $t) = x $t/l A 1 - A 1 )"µt + A - A - x /L)$t = 6) Επειδή η 6) πρέπει να ισχύει για κάθε t>, αυτό εξασφαλίζεται από τις σχέ σεις: A 1 - A 1 = " A 1 - ) = " A - A - x /L = $ A - ) = x /L$ A 1 = " A =x /L - ) $ 7) Συνδυάζοντας τις σχέσεις 4) και 7) παίρνουµε: 1 t) = x " $"t L" - " ) 8) Η λύση της αντίστοιχης οµογενούς της 3) έχει την µορφή: t) = C 1 "µ t + C $ t 9) όπου C 1, C σταθεροί συντελεστές, που θα προσδιορισθούν από τις αρχικές συνθήκες κινήσεως του συστήµατος. Η γενική λύση φt) της 3) είναι: 8),9) t) = 1 t) + t) t) = x " $"t L" - " ) + C 1 µ" t + C $" t 1)

Παραγωγίζοντας την 1) ως προς τον χρόνο έχουµε: dt) dt = - x " 3 µ"t L" - " ) + C 1 " $" t - C " µ" t 11) Για t= οι σχέσεις 1) και 11) δίνουν: =x " /L" -" )+C $ =C 1 " C = - x " /L" -" ) $ C 1 = Η τελική εποµένως µορφή της 1) είναι: t) = x " $"t L" - " ) + $" t - x " $" t L" - " ) t) = x " $"t - $" t) L" - " ) + $" t P.M. fysikos