i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας."

Transcript

1 Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει σε σταθερό εµπόδιο, του οποίου το ύψος είναι τέτοιο, ώστε κατά την στιγµή της κρούσεως η ευθεία που ενώνει το κέντρο της στεφάνης µε την ακµή του εµποδίου να σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ. i Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. ii Nα βρεθεί η ελάχιστη τιµή της v, ώστε η στεφάνη να υπερπηδήσει το εµπόδιο, αν η επιτάχυνση της βαρύτητας είναι g. Nα υποθέσετε ότι η στεφά νη δεν αναπηδά και ότι µεταξύ αυτής και του εµποδίου υπάρχει κατάλληλη τριβή ώστε, όσο χρόνο η στεφάνη είναι σ επαφή µε το εµπόδιο να αποφεύ γεται η ολίσθησή της πάνω σ αυτό. ΛYΣH: i Eάν Δt είναι ο χρόνος κρούσεως της στεφάνης µε το εµπόδιο M, τότε επειδή Δt η ώθηση της ροπής του βάρους w της στεφάνης ως προς το σηµείο M θα τείνει στο µηδέν. Eξάλλου κατά τον χρόνο Δt η ροπή της δύναµης που δέχεται η στεφάνη από το εµπόδιο (αντίδραση του εµποδίου, περί το σηµείο M είναι µηδενική, οπότε η στροφορµή της στεφάνης περί το σηµείο αυτό παραµένει σταθερή στην διάρκεια του χρόνου Δt, δηλαδή ισχύει η σχέση: L "$ '( = L µ*+,- µ./ L "$ '( = L µ*+,- µ./ (1 Σχήµα 1 Όµως το µέτρο της στροφορµής της στεφάνης, περί το ακίνητο σηµείο M, λίγο πριν την κρούση της µε το εµπόδιο είναι:

2 L "$ '( = mv R"$ + I O ( όπου I Ο η ροπή αδράνειας της στεφάνης ως προς άξονα που διέρχεται από το κέντρο µάζας της O και είναι κάθετος στο επίπεδό της και η γωνιακή ταχύτητα περιστρο φής της στεφάνης περί τον άξονα αυτόν. Όµως ισχύει I Ο =mr και ω =v /R, οπότε η ( γράφεται: L "$ '( = mv R"$ + mr (v /R= mv R(1 + "$ (3 Eξάλλου, το µέτρο της στροφορµής της στεφάνης περί το M, λίγο µετά την κρούση της µε το εµπόδιο είναι: L µ"$ µ'( = I M " = I M v /R ( (4 όπου I M η ροπή αδράνειας της στεφάνης ως προς άξονα κάθετο στο επίπεδό της και διερχόµενο από το σηµείο M, ω το µέτρο της γωνιακής ταχύτητας περιστροφής της στεφάνης αµέσως µετά την κρούση της µε το εµπόδιο και v το µέτρο της αντίστοιχης ταχύτητας του κέντρου µάζας της. Όµως για την I M ισχύει η σχέση: I M = I Ο + mr = mr + mr = mr οπότε η (4 γράφεται: L µ"$ µ'( = mr ( v /R = mr v (5 Συνδυάζοντας τις σχέσεις (1, (3 και (5 παίρνουµε: mr v = mv R( 1 + "$ v = v ( 1 + "$ / (6 ii Για να υπερπηδήσει η στεφάνη το εµπόδιο χωρίς να ολισθήσει πάνω σ αυτό, πρέπει την στιγµή που η επιβατική ακτίνα του κέντρου µάζας της (ως προς σηµείο περιστρο φής M είναι κατακόρυφη, η κινητική ενέργεια της στεφάνης να είναι µεγαλύτερη ή οριακά ίση µε µηδέν, δηλαδή πρέπει να ισχύει η σχέση: K M O " (7 Eφαρµόζοντας για την στεφάνη το θεώρηµα κινητικής ενέργειας-έργου, µεταξύ των θέσεων MO και MO της επιβατικής ακτίνας του κέντρου µάζας της, παίρνουµε: K M O - K MO = W + w W K F M O - I M " / = - mgr( 1 - µ$ + K M ( = - mgr( 1 - "µ O - mr v / R K M O - m v = - mgr( 1 - "µ (8 (H αντίδραση F του εµποδίου, δεν παράγει έργο στην διάρκεια της περιστροφής της στεφάνης περί το εµπόδιο. Συνδυάζοντας τις σχέσεις (7 και (8 παίρνουµε:

3 m v - mgr( 1 - "µ $ v " gr( 1 - µ$ (6 v ( 1 + "$ 4gR /4 gr( 1 - µ$ ( 1 - "µ v ( 1 + $ v ( v ( 1 + $ min = 4gR 1 - "µ gr( 1 - µ" 1 + $" P.M. fysikos Mια σφαίρα κυλίεται κατά µήκος κεκλιµένου επιπέδου, γωνίας κλίσεως φ κατερχόµενη προς την βάση του, όπου συναντά οριζόντιο επίπεδο, το οποίο αποτελεί συνέχεια του κεκλιµένου επιπέδου. Mε την προϋπόθεση ότι, η σφαίρα κατά την µετάβασή της από το κεκλιµένο στο ορι ζόντιο επίπεδο δεν αναπηδά ούτε ολισθαίνει, να βρείτε την εκατοστιαία µείω ση της κινητικής ενέργειας της σφαίρας. Δίνεται η ροπή αδράνειας I C = mr /5 της σφαίρας ως προς άξονα που διέρχεται από το κέντρο της, όπου m η µάζα και R η ακτίνα της. ΛYΣH: Έστω v C η ταχύτητα του κέντρου C της σφαίρας, λίγο πριν έλθει σ επαφή µε το οριζόντιο επίπεδο στο σηµείο A και v C η ταχύτητα του κέντρου της σφαίρας, αµέσως µετά την επαφή της µε το οριζόντιο επίπεδο. Στον πολύ µικρό χρόνο Δt (Δt που διαρκεί η µετάβαση της σφαίρας από το κεκλιµένο στο οριζόντιο επίπεδο, η ώθηση της ροπής του βάρους w της σφαίρας περί το σηµείο A είναι ασήµαντη (τείνει στο µηδέν, Σχήµα ενώ η αντίστοιχη ροπή της δύναµης κρούσεως που δέχεται η σφαίρα από το οριζόντιο έδαφος είναι µηδενική, διότι ο φορέας της δύναµης αυτής διέρχεται από το σηµείο A. Aυτό σηµαίνει ότι, κατά τον χρόνο Δt η στροφορµή της σφαίρας περι το σηµείο A δεν µεταβάλλεται, δηλαδή ισχύει η σχέση: (A L "$ '( = L (A µ*+,- µ./ (A (A L "$ '( = L µ*+,- µ./ Όµως για το µέτρο της στροφορµής της σφαίρας λίγο πριν την κρούση της µε το ορι ζόντιο επίπεδο ισχύει: (1

4 (A L "$ '( = I C + mv C R"µ (/ - $ (A L "$ '( = mr v 5R + mv CR"$ (A L "$ '( = mv C R( /5 + "$ ( όπου η γωνιακή ταχύτητα περιστροφής της κυλιόµενης σφαίρας λίγο πριν την κρούση της. Eξάλλου, το µέτρο της στροφορµής της σφαίρας περί το A, αµέσως µετά την κρούση της µε το οριζόντιο επίπεδο, είναι: (A L µ"$ µ'( = I C " + mr v C = mr " / 5 + mr v (3 όπου " η γωνιακή ταχύτητα της σφαίρας λίγο µετά την κρούση της. Όµως είναι δεδοµένο ότι η σφαίρα συνεχίζει να κυλίεται πάνω στο οριζόντιο επίπεδο, οπότε θα ισχύει v C =ω R, και η σχέση (3 γράφεται: (A L µ"$ µ'( = mr v C / 5 + mr v C = 7mR v C / 5 (4 Συνδυάζοντας τις (1, ( και (4 παίρνουµε την σχέση: mrv C ( /5 + "$ = 7mR v C / 5 v C = v C ( + 5"$/ 7 (5 Oι κινητικές ενέργειες της σφαίρας λίγο πριν και αµέσως µετά την κρούση της µε το οριζόντιο επίπεδο είναι: K ". = mv C / + I C $ / K '. = m v ( C / + I C $ ( / * + K ".= mv C / +mr v C /1R ( K $. = m v ' C / +mr v ' C /1R * K ". =7mv C /1 ( K $. = 7m v ' C /1 * (: K ". = v C K $. v ' (6 C Aς υποθέσουµε τώρα ότι, η µείωση της κινητικής ενέργειας της σφαίρας, λόγω της κρούσεώς της µε το οριζόντιο έδαφος αποτελεί τα x/1 της κινητικής της ενέργειας λίγο πριν την κρούση, οπότε θα ισχύει: (6 K ". - K $. = xk ". /1 x = 1( 1 - K ". /K $. " x = 1$ 1 - v v (5 ' x = 1' 1 - ( + 5"$ 49 ( * x = 1 49 [ 49 - ( + 5"$ ] P.M. fysikos

5 Ένας κυκλικός δίσκος ακτίνας R κυλίεται ισοταχώς πάνω σε µη λείο οριζόντιο δάπεδο, το οποίο σε κάποια θέση Ο συνεχίζει ως κεκλιµένο προς τα κάτω µε κλίση φ ως προς τον ορίζοντα (σχ. 3. i Nα βρείτε την µέγιστη ταχύτητα του κέντρου του δίσκου στο οριζόντιο δά πεδο, ώστε να συνεχίσει να κυλίεται στο κεκλιµένο δάπέδο. Να δεχθείτε ότι ο δίσκος δεν ολισθαίνει ούτε αναπηδά κατά την µετάβασή του από το οριζόν τιο στο κεκλιµένο δάπεδο. ii Nα εκφράσετε σε συνάρτηση µε τον χρόνο την γωνιακή ταχύτητα περιστ ροφής του δίσκου κατά την κύλισή του στο κεκλιµένο δάπεδο. iii Nα βρείτε την ταχύτητα του κέντρου του δίσκου την στιγµή που αυτό βρίσκεται σε απόσταση h κάτω από το οριζόντιο δάπεδο. Δίνεται η επιτά χυνση g της βαρύτητας και η ροπή αδράνειας Ι C =mr / του δίσκου ως προς άξονα κάθετο στο επίπεδό του και διερχόµενο από το κέντρο του C. ΛYΣH: i Κατά τον χρόνο που ο δίσκος έχει επαφή µε την κοινή τοµή Ο του ορι ζόντιου και κεκλιµένου δαπέδου (σχ. 3 εκτελεί γνήσια περιστροφή περί την ακµή αυτή υπό την επίδραση του βάρους του w και της δύναµης επαφής από την τοµή Ο που αναλύεται στην ακτινική συνιστώσα N (κάθετη αντίδραση και στην εφαπτοµενική συνιστώσα T (στατική τριβή. Εφαρµόζοντας για το κέντρο µάζας C του δίσκου τον δεύτερο νόµο κίνησης του Νεύτωνα κατά την διεύθυνση της ακτίνας της κυκλικής τρο χιάς που διαγράφει, παίρνουµε την σχέση: mg"$ - N = m R N = m( g"$ - R (1 Σχήµα 3 όπου θ η γωνία της ΟC µε την κατακόρυφη διεύθυνση και η αντίστοιχη γωνιακή ταχύτητα του δίσκου. Όµως κατά την περιστροφή του δίσκου οι δυνάµεις N και T δεν παράγουν έργο, που σηµαίνει ότι η µηχανική του ενέργεια διατηρείται σταθερή, δηλαδή µπορούµε να γράψουµε την σχέση: K " + U " = K($ + U($ mv + I C + mgr = I O + mgr"$ mv + mr 4 + mgr = 1 " mr + $ mr ' + mgr(*+

6 v + R + 4gR = 3R + 4gR"$ v + v + 4gR( 1 - "$ = 3R v + 4gR( 1 - "$ /3 = R ( όπου v η ταχύτητα του κέντρου µάζας του κυλιόµενου δίσκου στο οριζόντιο δάπεδο και η αντίστοιχη γωνιακή του ταχύτητα περιστροφής του, των οποίων τα µέτρα συνδέονται µε την σχέση v =ω R. Η (1 λόγω της ( γράφεται: N = m( g"$ - v / R - 4g/3 + 4g"$ / 3 N = m( 7g"$ / 3 - v / R - 4g/3 (3 Για θ=φ πρέπει Ν, οπότε η προηγούµενη σχέση (3 δίνει: m( 7g"$ / 3 - v / R - 4g/3 v / R 7g"$ / 3-4g/3 v gr ( 3 7"$ - 4 v max = gr ( 3 7"$ - 4 (4 ii Eάν είναι η γωνιακή ταχύτητα περιστροφής του δίσκου κατά την έναρξη της κύλισής του στο κεκλιµένο δάπεδο (t= η ( την στιγµή αυτή γράφεται: v max + 4gR( 1 - "$ /3 = R gr ( 3 7"$ gR( 1 - "$ 3 (4 = R 3g"$ 3R = = g"$ R Eξάλλου ο κυλιόµενος στο κεκλιµένο δάπεδο δίσκος δέχεται το βάρος του w που ανα λύεται στην παράλληλη προς αυτό συνιστώσα w x και στην κάθετη συνιστώσα w y και τέλος την αντίδραση του δαπέδου που αναλύεται στην κάθετη αντίδραση N και στην στατική τριβή T. Εφαρµόζοντας για την µεταφορική κίνηση του δίσκου τον δεύτερο νόµο του Νεύτωνα και για την περιστροφική του κίνηση τον θεµελιώδη νόµο της στρο φικής κίνησης παίρνουµε τις σχέσεις: (5 w x - T = ma C " TR = I C ' $ mgµ" - T = ma C TR = mr '/ $ mgµ" - T = ma C T = mr'/ $ mgµ" - mr'/ = ma C gµ" - R'/ = R' '= g"µ / 3R (6 όπου a C η επιτάχυνση του κέντρου µάζας του δίσκου και " η γωνιακή του επιτάχυν ση. Από την (6 προκύπτει ότι η " είναι σταθερή, δηλαδή η περιστροφική κίνηση του δίσκου είναι οµαλά επιταχυνόµενη και εποµένως η γωνιακή του ταχύτητα ύστερα

7 από χρόνο t αφ ότου αρχισε η κύλισή του στο κεκλιµένο δάπεδο έχει µέτρο που δίνεται από την σχέση: (5,(6 = + "'t = g"$ R + gµ 3R t (7 iii Eάν h είναι η γωνιακή ταχύτητα περιστροφής του δίσκου κατά την στιγµή που το κέντρο του C βρίσκεται σε απόσταση h κάτω από το οριζόντιο δάπεδο (σχ. 4 θα έχουµε, σύµφωνα µε το θεώρηµα διατήρησης της µηχανικής ενέργειας, την σχέση: K " + U " = K h + U h Σχήµα 4 mv max + I C max + mgr = mv h + I " C h - mgh mv max + mr max 4 + mgr = mv h + mr " h 4 - mgh v max + v max 4 + gr = R h + R h 4 - gh 3v max + 4g( R + h = 3R h (5 3gR 3 ( 7"$ g R + h ( = 3R h gr( 7"$ g( R + h = 3R h

8 h = g ( 7"$ - 4 3R + 4g ( R + h 3R h = g 3R ( 7"$ + 4h/R P.M. fysikos Ένα µικρό σφαιρίδιο αφήνεται σε σηµείο Σ του κεκλιµέ νου τµήµατος ενός µεταλλικού οδηγού ανακύκλωσης, όπως φαίνεται στο σχήµα (5. i Να βρείτε σε συνάρτηση µε την ακτίνα R του κυκλικού τµήµατος του οδηγού την απόσταση h του σηµείου Σ από το οριζόντιο έδαφος στήριξης, ώστε το σφαιρίδιο να εγκαταλείψει τον οδηγό σε σηµείο που η επιβατική του ακτίνα ως προς το κέντρο Ο του οδηγού υπέρκειται του ορίζοντα κατα γωνία φ=π/6. ii Nα δείξετε ότι το σφαιρίδιο τελικώς θα συναντήσει τον οδηγό στο κατώτ ατο σηµείο του Α. Θεωρήστε ασήµαντη την τριβή ανάµεσα στον οδηγό και το σφαιρίδιο. ΛYΣH: i Aς δεχθούµε ότι η απόσταση h του σηµείου Σ από το οριζόντιο επίπεδο στήριξης του οδηγού έχει κατάλληλη τιµή, ώστε το σφαιρίδιο κινούµενο κατα µήκος του οδηγού να τον εγκαταλείπει στο σηµείο Μ, του οποίου η επιβατική ακτίνα OM υπέρκειται του ορίζοντα κατα γωνία φ=π/6. Εφαρµόζοντας για το σφαιρίδιο το θεώρηµα διατήρησης της µηχανικής ενέργειας κατά την κίνησή του από το Σ στο Μ παίρνουµε την σχέση: Σχήµα 5 K + U = K M + U M + mgh = mv M / + mg( R + Rµ" gh = v M + gr( 1 + µ" / 6 gh = v M + 3gR (1 όπου m η µάζα του σφαιριδίου και v M η ταχύτητά του στο σηµείο Μ. Εξάλλου στην θέση Μ το σφαιρίδιο δέχεται µόνο το βάρος του w, του οποίου η ακτινική συνιστώσα

9 w r ενεργεί ως κεντροµόλος δύναµη, δηλαδή ισχύει: w r = mv M / R mgµ" = mv M / R gµ" / 6 = v M / R v M = Rg/ ( Η (1 λόγω της ( γράφεται: gh = Rg/ + 3gR h = 7R / 4 (3 ii To σφαιρίδιο αφού εγκαταλλείψει τον οδηγό στο σηµείο Μ εκτελεί στην συνέχεια ελεύθερη πτώση διαγράφωντας καµπύλη τροχιά στο κατακόρυφο επίπεδο που καθορίζει η ταχύτητά του v M και η επιτάχυνση g της βαρύτητας. Η κίνηση αυτή µπορεί να θεωρηθεί ως επαλληλία µιας οµαλής οριζόντιας κίνησης µε αρχική ταχύτητα v Mx µέτρου v M ηµφ και µιας κατακόρυφης κίνησης µε επιτάχυνση g και αρχική ταχύ τητα v My µέτρου v M συνφ. Εάν x, y είναι οι συντεταγµένες του σφαιριδίου, ως προς το ορθογώνιο σύστηµα αξόνων Οxy, ύστερα από χρόνο t αφότου έχασε την επαφή µε τον οδηγό, θα έχουµε τις σχέσεις: και x = R"$ - v M tµ$ = R 3 - v t M y = Rµ" + v M t$" - gt = R + 3v t M - gt (4 (5 Εάν t * είναι η χρονική στιγµή που µηδενίζεται η x-συντεταγµένη του σφαιριδίου, από την (4 θα έχουµε: = R 3 - v t M * t * = R 3 v M (6 H αντίστοιχη y-συντεταγµένη του σφαιριδίου θα είναι: y * = R + 3v M t * - gt * (6 y * = R + 3v M R 3 v M - g " R 3 v M $ y * = R + 3R - 3g " R v M ( $ y * = R + 3R - 3g R $ " Rg/ y * = R + 3R - 3R = -R (7 H (7 δηλώνει ότι το σφαιρίδιο ύστερα από χρόνο t * θα συναντήσει τον οδηγό στο κατώ τατο σηµείο του Α. P.M. fysikos

10 Ένα σώµα µάζας Μ έχει την µορφή κεκλιµένου επιπέδου γωνίας κλίσεως φ ως προς τον ορίζοντα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο δάπεδο, όπως φαίνεται στο σχήµα (6. Επί του κεκλιµένου επιπέδου βρίσκεται µικρό σώµα µάζας m, που είναι στερεωµένο στο ένα άκρο ιδανικού ελατηρίου σταθεράς k και αµελητέου φυσικού µήκους, του οποίου το άλλο άκρο είναι στερεώµενο στο κεκλιµένο επίπεδο, ώστε ο άξο νάς του να είναι παράλληλος προς το επίπεδο. Αρχικά το συστηµα κρατείται ακίνητο, µε το ελατήριο στο φυσικό του µήκος. i Να εξετάσετε την κίνηση της µάζας m στο σύστηµα αναφοράς του κεκλι µένου επιπέδου, όταν αυτό αφεθεί ελεύθερο. ii Nα εξετάσετε την κίνηση της µάζας Μ στο σύστηµα αναφοράς του οριζόν τιου δαπέδου. iii Ποιες είναι οι οριακές µορφές των δύο ανωτέρω κινήσεων, όταν Μ>>m ή Μ<<m; ΛΥΣΗ: i Όταν το κεκλιµένο επίπεδο αφεθεί ελεύθερο, τότε ωθούµενο από το σώµα µάζας m τίθεται σε κίνηση επί του οριζόντιου δαπέδου, στην διάρκεια της οποίας το κέντρο µάζας του θα µετατοπίζεται παράλληλα προς το δάπεδο. Εξετάζοντας το σώµα στο σύστηµα αναφοράς του κεκλιµένου επιπέδου παρατηρούµε ότι δέχεται το βάρος του w, την δύναµη F " από το τεντωµένο ελατήριο, την δύναµη επαφής N από το κεκ Σχήµα 6 λιµένο επίπεδο της οποίας ο φορέας είναι κάθετος σ αυτό, διότι είναι λείο και τέλος την αδρανειακή ψευδοδύναµη D Alempert =-m a K, όπου a K η επιτάχυνση του κεκ λιµένου επιπέδου στο σύστηµα αναφοράς του δαπέδου, της οποίας ο φορέας είναι κάθε στιγµή οριζόντιος (σχ. 6 Ο δεύτερος νόµος του Νεύτωνα δίνει στο σύστηµα αναφοράς του κεκλιµένου επιπέδου την σχέση: m d r dt = -F " + w r + r m d r dt = -kr + mgµ" - ma K $" m d r dt = -kr + mgµ" - m d x dt $"

11 m d x dt "$ + d r( ' dt * + kr - mg+µ$ = (1 όπου x το διάνυσµα θέσεως του κεκλιµένου επιπέδου ως προς µία αρχή Ο και r το διάνυσµα θέσεως του σώµατος ως προς το άκρο Α του ελατηρίου την στιγµή t που εξετάζουµε το σύστηµα και w r, r οι συνιστώσες των δυνάµεων w, αντιστοίχως κατά την διεύθυνση του κεκλιµένου επιπέδου. Εξάλλου η ορµή του συστήµατος των µαζών Μ, m θεωρούµενη στο σύστηµα αναφοράς του δαπέδου διατηρείται σταθερή κατά την διεύθυνση του οριζόντιου άξονα x, διότι το σύστηµα δεν δέχεται οριζόντιες εξωτε ρικές δυνάµεις. Μπορούµε λοιπόν κάθε στιγµή να γράφουµε την σχέση: Mv K + mv x = M dx dt + m d ( dt x + r"$ = M dx dt + m ' dx dt + dr dt "$ ( * = M + m ( M + m d x dt ( dx dt + m dr dt "$ = + m d r "$ = ( dt όπου v K η ταχύτητα του κεκλιµένου επιπέδου και v x η οριζόντια συνιστώσα της ταχύ τητας v της µάζας m. Oι σχέσεις (1 και ( αποτελουν τις διαφορικές εξισώσεις κίνη σης του συστήµατος, που µας επιτρέπουν να διαχειριστούµε τον τρόπο που κινούνται οι µάζες Μ και m. H ( γράφεται: d x dt = - m"$ ( ' * M + m d r dt (3 oπότε η (1 παίρνει την µορφή: m - m" $ ' M + m + 1 ( * d r + kr = mg+µ$ dt ' $ 1 - m" $ M + m M + mµ " M + m ( * ( ' d r dt + k m r = g+µ$ d r dt + k m r = gµ" d r dt + k m r = g"µ µε = M + m"µ M + m > (4 Η (4 είναι µια µη οµογενής γραµµική διαφορική εξίσωση δευτέρας τάξεως µε σταθε ρους συντελεστές και δέχεται λύση της µορφής:

12 µε r(t = mgµ" k = k m" = k M + m m M + mµ $ + Rµ (t + $ (5 ( ( (6 ενώ οι ποσότητες R, θ αποτελούν σταθερές ολοκλήρωσης που θα προσδιορισθούν από τις αρχικές συνθήκες κίνησης της µάζας m. Παραγωγίζοντας την (5 ως προς τον χρόνο t παίρνουµε την ταχύτητα της µάζας m στο σύστηµα αναφοράς του κεκλιµένου επιπέ δου, δηλαδή θα έχουµε: v(t = dr(t dt = R"$ (t + (7 Oι σχέσεις (5 και (7 για t= δίνουν: = mgµ" / k + Rµ ( = R$' * Rµ" = -mgµ / k " = $/ ' R = -mgµ" / k = $/ ' οπότε η (5 γράφεται: r(t = mgµ" k - mgµ" k µ t + $ ( ' * (8 H (8 δηλώνει ότι η σχετική κίνηση της µάζας; m ως προς το κεκλιµένο επίπεδο, είναι αρµονική ταλάντωση περί την θέση ισορροπίας της r =mgηµφ/k. ii Aν παραγωγίσουµε την (8 δύο φορές ως προς τον χρόνο t, αντικαταστήσουµε στην (3 την δεύτερη παράρωγο d r/dt και λάβουµε ακόµη υπ όψη µας την (6, θα πάρουµε τελικά την σχέση: d x dt = - mgµ"$" M + mµ " $t (9 η οποία δηλώνει ότι η επιτάχυνση του κεκλιµένου επιπέδου στο σύστηµα αναφοράς του δαπέδου µεταβάλλεται αρµονικά µε τον χρόνο, δηλαδή η κίνησή του είναι αρµονι κή ταλάντωση κυκλικης συχνότητας ω. iii Η σχέση (3 για Μ>>m παίρνει την προσεγγιστική µορφή: d x dt - m"$ ( + ' M * d r dt από την οποία προκύπτει ότι η επιτάχυνση του κεκλιµένου επιπέδου είναι πολύ µικρή, δηλαδή µπορούµε να δεχθούµε µε ικανοποιητική προσέγγιση ότι αυτό µένει περίπου ακίνητο όταν το σύστηµα αφεθεί ελευθερο. Έτσι η µάζα m θα εκτελεί αρµονική ταλάν τωση κυκλικής συχνότητας " k / m. δηλαδή περί που ίσης µε εκείνη που αντιστοι χεί στην περίπτωση που το κεκλιµένο επίπεδο είναι πακτωµένο.

13 H οριζόντια συνιστώσα της επιτάχυνσης της µάζας m στο σύστηµα αναφοράς του δαπέ δου είναι: a x = d dt ( x + r"$ = d x dt + d r "$ (1 dt Eξάλλου η (3 για Μ<<m παίρνει την προσεγγιστική µορφή: d x dt - m"$ ( + ' m * d r dt d x dt + "$ d r dt και η (1 δίνει α x, που σηµαίνει ότι το σώµα δεν θα µετακινείται οριζόντια ως προς το δάπεδο θα εκτελεί δε ως προς αυτό κατακόρυφη ταλάντωση µε εξίσωση κίνησης: (8 r y = rµ" r y = mgµ " k ( 1 - $t µε " 1 µ$ k m Όσον αφορά το κεκλιµένο επιπεδο αυτό θα εκτελεί επί του δαπέδου αρµονική ταλάν τωση της ίδιας κυκλικής συχότητας µε το σώµα και θα βρίσκεται συνεχώς σε επαφή µε αυτό. P.M. fysikos

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,! Θεωρούµε µια βαρειά σφαίρα, η οποία ισορροπεί επί σχετικά µαλακού εδάφους, ώστε να προκαλεί σ αυτό µια µικρή παραµόρφωση. Λόγω της συµµετρίας που παρουσιάζει η παραµόρφωση αυτή, ως προς την κατακόρυφη

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει.

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει. Στην διάταξη του σχήµατος η τροχαλία τ 1 έχει µάζα m 1 και ακτίνα R και στο αυλάκι της έχει περιτυλιχθεί αβαρές νήµα, το οποίο διέρ χεται από τον λαιµό της µικρής τροχαλίας τ στο δε άκρο του έχει δε θεί

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου. Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται

Διαβάστε περισσότερα

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a!

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a! Ένας κυκλικός δίσκος ακτίνας R φέρει κυκλική οπή ακτίνας R/, της οποίας το κέντρο Κ βρίσκεται σε απόσταση R/ από το κέντρο Ο του δίσκου, µπορεί δε να κυλίεται σε µη λείο οριζόντιο έδαφος. i) Εκτρέπουµε

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v! ΘΕΩΡΗΜΑ Α Ο ρυθµός µεταβολής της στροφορµής στερεού σώµατος, θεωρούµενης περί ένα σηµείο του ή της επεκτάσεώς του και αναφερόµενης σε κάποιο αδρανειακό σύστηµα, είναι κάθε στιγµή ίσος µε την συνολική ροπή

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T! Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε: Μια λεπτή λαστιχένια ράβδος ΑΒ µήκους L και µάζας m, εκτελεί ελεύθερη πτώση χώρίς να περιστρέφεται και κάποια στιγµή το άκρο της Α συναντά λείο οριζόντιο έδαφος. Την στιγµή αυτή η ράβδος έχει κλίση φ ως

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί

Διαβάστε περισσότερα

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο

Διαβάστε περισσότερα

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v. Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται

Διαβάστε περισσότερα

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα!

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα! Θεωρήστε οριζόντια ράβδο αµελητέας µάζας, η οποία µπορεί να περιστρέφεται περί σταθερό οριζόντιο άξονα κάθετο στη ράβδο. Στα άκρα της υπάρχουν δυο διαφορετικές σηµειακές µάζες m, m, που οι αντίστοιχες

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

i) Να δείξετε ότι η κίνηση του συστήµατος των δύο σφαιριδίων είναι περιοδική και να υπολογίσετε την περίοδο της.

i) Να δείξετε ότι η κίνηση του συστήµατος των δύο σφαιριδίων είναι περιοδική και να υπολογίσετε την περίοδο της. Ένα σφαιρίδιο Σ 1 µάζας m, είναι στερεωµένο στο άκρο ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο είναι ακλόνητο όπως φαίνεται στο σχήµα (α). Το σφαιρίδιο µπορεί να κινείται χωρίς τριβή πάνω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και Oµογενής κύλινδρος µάζας m και ακτίνας R εφάπ τεται στα τοιχώµατα ενός αυλακιού, τα οποία είναι επίπεδες σταθερές επιφάνειες που η τοµή τους είναι οριζόντια. Τα τοιχώµατα είναι ισο κεκλιµένα ως προς τον

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

i) Το επίπεδο της τροχαλίας είναι οριζόντιο και το έδαφος λείο.

i) Το επίπεδο της τροχαλίας είναι οριζόντιο και το έδαφος λείο. Πάνω σε οριζόντιο έδαφος ηρεµεί µια τροχαλία µάζας m και ακτίνας R. Στο αυλάκι της τροχαλίας έχει περιτυλιχ θεί αβαρές νήµα στο ελεύθερο άκρο Α του οποίου εξασκείται σταθε ρή οριζόνια δύναµη F. Eάν µέχρις

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V! Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V 0. O πιλότος του θέλει ν αλλάξει τη διεύθυνση κίνησης του διαστηµόπλοιου, ώστε η νέα διεύθυνση να γίνει κάθετη προς την αρχική. Για

Διαβάστε περισσότερα

Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert

Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert Είναι γνωστό ότι ο δεύτερος νόµος κίνησης του Νεύτωνα ισχύει µόνο για τα λεγόµενα αδρανεικά συστήµατα αναφοράς, δηλαδή για τα συστήµατα εκείνα που είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες.

όπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες. Υλικό σωµατίδιο µάζας m κινείται πάνω σε σταθε ρό άξονα x x υπό την επίδραση δύναµης, της οποίας ο φορέας συµπί πτει µε τον άξονα. Η δύναµη απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Ux) =

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

i) Nα εκφράσετε σε συνάρτηση µε τον χρόνο την γωνιακή ταχύτητα της τροχαλίας.

i) Nα εκφράσετε σε συνάρτηση µε τον χρόνο την γωνιακή ταχύτητα της τροχαλίας. Στην διάταξη του σχήµατος ) οι δύο κυκλικοί δίσκοι Δ, Δ έχουν την ιδια ακτίνα R και αντίστοιχες µάζες m, m µπορούν δε να κυλίωνται χωρίς ολίσθηση κατά µήκος δύο κεκλιµέ νων επιπέδων που είναι µεταξύ τους

Διαβάστε περισσότερα

i) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής:

i) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής: Μικρό σώµα µάζας m στερεώνεται στο ένα άκρο οριζόντιου ιδα νικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο προσδένε ται σε κατακόρυφο τοίχωµα όπως φαίνεται στο σχήµα. Το σώµα µπορεί να ολισθαίνει πάνω

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

i) Nα αποδείξετε ότι το σώµα τελικά θα ηρεµήσει ως προς το δοκάρι και να βρείτε την κοινή τους ταχύτητα στο σύστηµα αναφοράς του εδάφους.

i) Nα αποδείξετε ότι το σώµα τελικά θα ηρεµήσει ως προς το δοκάρι και να βρείτε την κοινή τους ταχύτητα στο σύστηµα αναφοράς του εδάφους. Ένα δοκάρι µεγάλου µήκους και µάζας M, είναι ακίνητο πάνω σε λείο οριζόντιο έδαφος. Στο ένα άκρο του δοκαριού βρίσκεται ξύλινο σώµα µάζας m, το οποίο παρουσιάζει µε την επιφά νεια του δοκαριού συντελεστή

Διαβάστε περισσότερα

θα επιβρα δύνεται. Επειδή η F! /Μ και θα ισχύει η σχέση: /t!

θα επιβρα δύνεται. Επειδή η F! /Μ και θα ισχύει η σχέση: /t! Ξύλινο κιβώτιο µάζας M κινείται πάνω σε λείο οριζόντιο δάπεδο µε ταχύτητα µέτρου v 0. Ένα βλήµα µάζας m, κινούµενο αντίρροπα προς το κιβώτιο προσπίπτει σ αυτό µε ταχύ τητα µέτρου v 0 και εξέρχεται από

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι

Διαβάστε περισσότερα

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T! Tο κέντρο µάζας ενός επιβατηγού αυτοκινήτου απέχει από το οριζόντιο έδαφος απόσταση h. Δίνεται η µάζα Μ του αυτοκινήτου η µάζα m και η ακτίνα R κάθε τροχού, η επιτάχυνση g της βαρύτητας και οι αποστάσεις

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι: ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται

Διαβάστε περισσότερα

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A

( ) ω ( ) = 0. Aπό τις σχέσεις (2) προκύπτει ή ότι το διάνυσµα v K. είναι κάθετο στα διανύσµα τα r A Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση και έστω (S) η κύρια* τοµή του στερεού κατά µια τυχαία χρονική στιγµή t. Να δείξετε ότι το αντίστοιχο προς την κύρια

Διαβάστε περισσότερα

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ. Μικρό σφαιρίδιο µάζας m, προσπίπτει σε σηµεί ο Α της περιφέρειας ενός δακτυλιδιού ακτίνας R, το οποίο µπορεί να περιστρέφεται περί οριζόντιο άξονα που διέρχεται από ένα σηµείο του Ο. Η ταχύτητα πρόσπτωσης

Διαβάστε περισσότερα

ΛΥΣΗ: Κατά τον πολύ µικρό χρόνο Δt (Δt 0) που ενεργεί επί του σφαιριδίου Γ η ώθηση Ω. =mv. το σφαιρίδιο Β δέχεται τις κρουστικές δυνάµεις F

ΛΥΣΗ: Κατά τον πολύ µικρό χρόνο Δt (Δt 0) που ενεργεί επί του σφαιριδίου Γ η ώθηση Ω. =mv. το σφαιρίδιο Β δέχεται τις κρουστικές δυνάµεις F Τρία µικρά σφαιρίδια της ίδιας µάζας είναι αρθρωµένα στις άκρες δύο συνεχόµεων ράβδων ΑΒ και ΒΓ αµελητέας µάζας, όπως φαίνεται στο σχήµα (1), το δε σύστηµα ισορροπεί εκτός πεδίου βαρύτητας. Στο σφαιρίδιο

Διαβάστε περισσότερα

i) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή:

i) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή: Ένας γραµµικός αρµονικός ταλαντωτής µάζας m παρουσιάζει σταθε ρά απόσβεσης b, η δε γωνιακή ιδιοσυχνότητα ω 0 της ελεύθερης και αµείωτης ταλάντωσής του ικανοποιεί την σχέση ω 0 >b/m. i) Xρησιµοποιώντας

Διαβάστε περισσότερα

Nα δείξετε τις εξής προτάσεις:

Nα δείξετε τις εξής προτάσεις: Nα δείξετε τις εξής προτάσεις: i) Εάν ένα υλικό σηµείο µάζας m κινείται πάνω σ ένα άξονα x x, ώστε κάθε στιγµή η ταχύτητά του v και η αποµάκρυνσή του x ως προς µια αρχή Ο του άξονα, να ικανοποιούν τη σχέση:

Διαβάστε περισσότερα

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη.

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη. Η ράβδος του σχήµατος έχει µήκος L, βάρος w και στηρίζεται διά του άκρου της Α επί λείου τοίχου, ενώ το άλλο άκρο της Β ακουµπά ει σε λεία κοίλη επιφάνεια. Η τοµή της επιφάνειας µε κατακόρυφο επίπεδο που

Διαβάστε περισσότερα

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων)

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων) Προσπαθείστε να λύσετε τις: Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων Διάφορες: l. inn: : 7.6, 7.76, 7.78 Serwy: Κεφ.. 9:, 55, 65, 8, 85 Στροφορμή: : : 7.5, 7.8, 7., 7.6 Δυν. Συστ.

Διαβάστε περισσότερα

Eάν L 1, L 2 είναι τα αντίστοιχα φυσικά µήκη των ελατηρίων ε 1 και ε 2 τότε για την απόσταση ΑΒ των σηµείων στήριξης των ελατηρίων θα έχουµε:

Eάν L 1, L 2 είναι τα αντίστοιχα φυσικά µήκη των ελατηρίων ε 1 και ε 2 τότε για την απόσταση ΑΒ των σηµείων στήριξης των ελατηρίων θα έχουµε: Tο µικρό σώµα του σχήµατος (1) έχει µάζα m και συγκρατείται στο λείο οριζόντιο έδαφος σε τέτοια θέση, ώστε τα ελατήρια ε 1 και ε να είναι τεντωµένα κατά α απο την φυσική τους κατάσταση. i) Eάν k, k είναι

Διαβάστε περισσότερα

όπου x η οριζόντια µετατόπιση του σώµατος, k θετική σταθερά και! i το µοναδιαίο διάνυσµα του οριζόντιου άξονα x.

όπου x η οριζόντια µετατόπιση του σώµατος, k θετική σταθερά και! i το µοναδιαίο διάνυσµα του οριζόντιου άξονα x. Ένα µικρό σώµα βάλλεται οριζόντια µε ταχύτητα v 0 εντός του πεδίου βαρύτητας της Γης από ένα σηµείο Α που η απόστασή του από το οριζόντιο έδαφος είναι h. Tο σώµα κατά την κίνησή του δέχεται εκτός από το

Διαβάστε περισσότερα

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,

Διαβάστε περισσότερα

, που είναι στατική τριβή µε κατεύθυνση αντίθετη της ταχύτητας του κέντρου µάζας C 1 της σφαίρας (σχήµα 1) και η δύναµη επαφής!

, που είναι στατική τριβή µε κατεύθυνση αντίθετη της ταχύτητας του κέντρου µάζας C 1 της σφαίρας (σχήµα 1) και η δύναµη επαφής! Δύο οµογενείς σφαίρες Α και Β, της ίδιας ακτίνας R µε αντίστοιχες µάζες m και m είναι ακίνητες επί οριζοντίου εδάφους και εφάπ τονται µεταξύ τους. Κάποια στιγµή που λαµβάνεται ως αρχή µέτρη σης του χρόνου

Διαβάστε περισσότερα

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα