(ΘΕΜΑ 17ο)
|
|
- ÏἈχαϊκός Ταμτάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε τρεις αναρτήσεις στις οποίες µπορείτε να έχετε πρόσβαση, µέσω των επόµενων διευθύνσεων: (ΘΕΜΑ 7ο) (ΘΕΜΑ ο) (ΘΕΜΑ 7ο) Επειδή κατά την αντίληψή µου το θέµα σχετίζεται µε την κεντρική κί νηση, σκεύθηκα ότι µπορώ να εξετάσω τις πτυχές του εκµεταλευόµε νος την θεωρία των κεντρικών κινήσεων, εστιάζοντας όµως στον ενερ γειακό πυρήνα του προβλήµατος. Για να παρουσιάσω όσο πιο αναλυ τικά γίνεται το θέµα, το τεµάχισα σε τρείς ασκήσεις και µάλιστα η τρί τη άσκηση είναι µια παραλλαγή του γενικού προβλήµατος την λύση της οποίας έχω συναντήσει σε κάποιες ιστοσελίδες του διαδυκτί ου, αλλά προτιµώ την δική µου λύση. Δύο µικρά σφαιρίδια Σ, Σ µε αντίστοιχες µάζες και m συνδέον ται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, το οποίο διέρχεται από µια µικρή κυκλική οπή Ο, λείου οριζόντιου τραπεζιού. Το σφαιρίδιο Σ κρατείται πάνω στο τραπέζι σε απόσταση α από την οπή, ενώ το Σ κρέµεται µε το νήµα κατακόρυφο. Την χρονική στιγµή t= δίνουµε στο σφαιρίδιο Σ οριζόντια ταχύτητα, της οποίας ο φορέας είναι κάθετος στην ευθεία ΟΣ. i) Αφού αποδείξετε ότι η στροφορµή L του σφαιριδίου Σ περί το Ο είναι σταθερή, στην συνέχεια χρησιµοποιώντας για το σφαιρίδιο πολι κές συντεταγµένες (, φ) να δείξετε την σχέση:
2 + m & & dt L + + mg = E όπου Ε σταθερή ποσότητα, η επιτάχυνση της βαρύτητας και <<L. ii) Εάν η συνάρτηση: U ef ( ) = L + m g ονοµαστεί ενεργός δυναµική ενέργεια του συστήµατος των µαζών, m, να δείξετε ότι αυτή για ορισµένη τιµή της παρουσιάζει τοπικό ελάχιστο και ότι η είναι η απόσταση που αντιστοιχεί σε κυκ λική τροχιά της µάζας περί το Ο και σε ηρεµία της µάζας m. iii) Εάν οι αρχικές συνθήκες κίνησης του συστήµατος εξασφαλίζουν για την µεταβλητή τον περιορισµό <<L, να δείξετε ότι η κυµαί νεται µεταξύ µιας ελάχιστης και µιας µέγιστης τιµής. Να βρείτε τις ακραίες αυτές τιµές στην περίπτωση που =m =m, v = g, α=l/ και να σχεδιάσετε την γραφική παράσταση της συνάρτησης U ef (). vi) Εάν οι αρχικές συνθήκες επιβάλλουν η µάζα να εκτελεί κυκλι κή τροχιά και η µάζα m να ηρεµεί, να δείξετε ότι µια µικρή κατακό ρυφη εκτροπή της µάζας m από την αρχική της θέση θα την αναγκά σει να εκτελεί αρµονική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Τι είδους κίνηση θα εκτελέσει η µάζα ; ΛΥΣΗ: i) To σφαιρίδιο Σ δέχεται το βάρος του, που εξουδετερώνεται από την κατακόρυφη αντίδραση του λείου ορίζόντιου τραπεζιού και την τάση T του νή µατος, η οποία κατευθύνεται συνεχώς προς την οπή Ο, δηλαδή αποτελεί κεν τρική ελκτική δύναµη. Όλα τα παραπάνω εγγυώνται ότι η κίνηση του σφαι ριδίου Σ είναι επίπεδη και µάλιστα η τροχιά του βρίσκεται στο επίπεδο του τραπεζιού, αφού το διάνυσµα της αρχικής του ταχύτητας v ανήκει στο επίπε δο αυτό. Επί πλέον η στροφορµη L του σφαιριδίου περί το Ο, διατηρείται στα θερή διότι η συνισταµένη των ροπών περί το Ο των εξασκούµενων στο σφαιρί διο δυνάµεων είναι µηδέν. Εξάλλου κατά την κίνηση του συστήµατος η µη χανική του ενέργεια δεν µεταβάλλεται, οπότε µπορούµε να γράψουµε την σχέ ση: K + U = K + U v v v ( ) = m v - m g L - + m v + m v + m g = m v + m v - m g( L - ) + m g + m g = v / + m g = E ()
3 όπου v, v οι ταχύτητες των σφαιριδίων Σ, Σ αντιστοίχως την χρονική στιγ µή που οι πολικές συντεταγµένες του Σ είναι (, θ), ενώ το Ε αποτελεί στα θερή ποσότητα µε φυσικές διαστάσεις ενέργειας. Όµως για το µέτρο της v ισχύει η σχέση: v = v + v = ' dt& + d ' dt& () Σχήµα όπου v, v η ακτινική και η αζιµουθιακή συνιστώσα αντιστοίχως της v, ενώ για το µέτρο της v ισχύει: v = v = & dt () Η () λόγω των () και () γράφεται: & dt + m d' & dt + m & dt + m g = E + m & & dt + m d' & dt Aκόµη για το µέτρο της στροφορµής L έχουµε την σχέση: L = v = d ' d dt& dt = oπότε η (4) γράφεται: + m g = E (4) L
4 + m & & dt + L + m g = E (5) ii) Εάν η συνάρτηση: U ef ( ) = L + m g (6) ονοµαστεί ενεργός δυναµική ενέργεια του συστήµατος, τότε η σχέση (5) παίρνει την µορφή: + m & & dt + U ef ( ) = E (7) Ας δεχθούµε τώρα ότι το σύστηµα βρίσκεται στην ιδιόµορφη κατάσταση, όπου η µάζα διαγράφει κυκλική τροχιά κέντρου Ο και η µάζα m ηρεµεί. Η κατά σταση αυτή χαρακτηρίζεται ως κατάσταση ισορροπίας του συστήµατος και τότε η µεταβλητή έχει ορισµένη τιµή για την οποία η τάση T του νήµατος παίζει ρόλο κεντροµόλου δύναµης για την µάζα, δηλαδή ισχύει: T = m v m g = m v (8) Όµως L = v v = L m οπότε η (8) γράφεται: m g = m & L m = L (9) m g Θα δείξουµε ότι στην κατάσταση ισορροπίας του συστήµατος ισχύουν οι σχέ σεις: d U & = και ef & > = = Παραγωγίζοντας την (6) ως προς παίρνουµε: & = - L = + m g & = - L (9) m = + m g & = - L m g + m = L g = Θεωρώντας την δεύτερη παράγωγο της (6) έχουµε:
5 d U ef & = > L 4 & = = L > 4 δηλαδή στην κατάσταση ισορροπίας του συστήµατος η ενεργός του δυναµική ενέργεια παρουσιάζει τοπικό ελάχιστο. Εξάλλου αν δεχθούµε ότι οι αρχικές συνθήκες του προβλήµατος εξασφαλίζουν ότι τα δύο σφαιρίδια δεν φθάνουν στην οπή (<<L), τότε η µεταβλητή θα παρουσιάζει µια µέγιστη και µια ελά χιστη τιµή που θα προκύψουν από το γεγονός ότι για τις αποστάσεις αυτές η ακτινική ταχύτητα της µάζας είναι µηδενική. Εάν λοιπόν R είναι η µέγιστη ή η ελάχιστη τιµή της τότε την αντίστοιχη χρονική στιγµή θα ισχύει: dt = (5) E - L R - m gr = E R - L - m gr = R - E L m g R + m g = R - v / + m g m g ' & R + m v m g = m R - v m g + ' & R + v m g = () H () είναι µια εξίσωση τρίτου βαθµού ως προς R και εύκολα αποδεικνύεται ότι έχει µια ρίζα ίση µε α. Από τις άλλες δύο ρίζες R, της () αποδεκτή θα είναι εκείνη που ικανοποιεί την σχέση <R, <L. Συγκρίνοντας µεταξύ τους τις ρίζες της () αποφαινόµαστε για τα όρια της µεταβλητής. Xάριν παραδεί γµατος ας δεχθούµε την περίπτωση που =m =m, v =gα και α=l/. Τότε η () παίρνει την µορφή: R - R + = () Eύκολα αποδεικνύεται ότι η () δέχεται ως ρίζα την R=α, ενώ για να βρούµε τις άλλες δύο ρίζες της R, R θέτουµε το πρώτο µέλος της υπό την µορφή: R - R + = ( R - )( R - R )( R - R ) και αφού εκτελέσουµε µερικές πράξεις βρίσκουµε ότι: R = ( + 5 ) και R = ( - 5 ) από τις οποίες δεκτή είναι η R. Άρα οι τιµές α, (+ 5)/ αποτελούν την µικρότερη αντιστοίχως την µεγαλύτερη τιµή της. Eξάλλου η τιµή της όταν το σύστηµα βρίσκεται στην κατάσταση ισορροπίας του είναι:
6 = m v = m g g = g δηλαδή θα έχουµε: Σχήµα < < (+ 5)/ H γραφική παράσταση της U ef () στην περίπτωση που επιλέξαµε, έχει την µορ φή του σχήµατος (). iii) Στην συνέχεια θα εξετάσουµε πως συµπεριφέρεται το σύστηµα όταν ευρι σκόµενο στην κατάσταση ισορροπίας του (= ) εκτραπεί πολύ λίγο από αυτήν, λογουχάρη µε µικρή κατακόρυφη µετατόπιση της µάζας m. Παραγωγίζοντας την (5) ως προς τον χρόνο t, παίρνουµε: ( + m ) d dt dt + dt = ( + m ) d dt dt + dt = d dt = - & + m dt () Eάν η συνάρτηση U ef αναπτυχθεί κατά Taylo σε µια περιοχή της τιµής ισορ ροπίας θα λάβουµε την σχέση: U ef ( ) = U ef ( ) + & - = ( ) + d U ef & - = ( ) +... U ef ( ) = U ef ( ) + + d U ef & - = ( ) +... () Eπειδή δεχθήκαµε ότι το σύστηµα εκτρέπεται πολύ λίγο από την κατάσταση ισορροπίας του, η µεταβλητή εγκλωβίζεται σε µια περιοχή του πολύ µικρού εύρους, µε αποτέλεσµα τους όρους που περιέχουν την διαφορά - σε δύναµη µεγαλύτερη του δύο να τους παραλείψουµε στην σχέση () και τότε αυτή παίρ νει την προσεγγιστική µορφή:
7 U ef ( ) U ef ( ) + d U ef ' - & = ( ) ( ) ( ) = - d U ef & (4) = Όµως παραγωγίζοντας δύο φορές την (6) ως προς, έχουµε: ( ) = - L + m g d U ef ( ) = L 4 d U ef & = = L 4 και η (4) γράφεται: ( ) = ( - ) L (5) 4 Συνδυάζοντας τις () και (5) παίρνουµε: d dt = - L + m & ( - ) d x 4 dt + L x ( + m ) = 4 d x dt + x = (6) όπου τέθηκε x=- και = L 4 ( ) + m Σχήµα Η (6) είναι µια οµογενής γραµµική διαφορική εξίσωση δευτέρας τάξεως µε σταθερούς συντελεστές και δέχεται λύση της µορφής:
8 x = Aµ (t + ) = + Aµ (t + ) (7) όπου Α, φ σταθερές που καθορίζονται από τις αρχικές συνθήκες εκτροπής του συστήµατος. Η (7) εξασφαλίζει ότι η ακτινική κίνηση της µάζας είναι αρµο νική ταλάντωση κυκλικής συχνότητας ω, δηλαδή η µάζα αυτή εκτελεί περί την ευσταθή της κυκλική τροχιά ακτίνας κυµατοειδή κίνηση, στην διάρκεια της οποίας η απόστασή της από την οπή µεταβάλλεται αρµονικά µε τον χρόνο, µε κυκλική συχνότητα ω (σχ. ) Παρατήρηση: Εάν οι αρχικές συνθήκες κίνησης του συστήµατος των µαζών, m εξασφα λίζουν µεταβολή της απόστασης µεταξύ µιας ελάχιστης τιµής R min και µιας µέγιστης τιµής R max, τότε η µεν ακτινική κίνηση της µάζας θα είναι µη αρ µονική ταλάντωση µεταξύ των ακραίων θέσεων R min και R max, η δε κίνηση της µάζας m θα είναι κατακόρυφη µη αρµονική ταλάντωση µεταξύ των ακραίων θέσεων L-R mim και L-R max. Οι δύο αυτές ταλαντώσεις είναι περιοδικές της ίδιας περίοδο τ, που υπολογίζεται µέσω της σχέσεως (7), από την οποία λαµβάνουµε: & dt = E - U ef ( ) + m ( ) dt = E - U ef + m dt = + m E - U ef ( ) R max = m + m E - U ef R min ( ) R max = + m (8) E - U ef R min ( ) O υπολογισµός του ολοκληρώµατος στην σχέση (8) µπορεί να γίνει µε κατάλ ληλο µαθηµατικό πρόγραµµα που τρέχει σε ηλεκτρονικό υπολόγιστή P.M. fysikos Δύο µικρά σφαιρίδια Σ, Σ της ίδιας µάζας m συν δέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, το οποίο διέρχεται από µια µικρή οπή Ο, λείου οριζόντιου τραπεζιού. Το σφαιρίδιο Σ κρατείται πάνω στο τραπέζι σε απόσταση α από την οπή, το δε Σ κρέµεται κάτω από την οπή µε το νήµα κατακόρυφο. Την χρονική στιγµή t= το σφαιρίδιο Σ δέχεται ώθηση βραχείας διάρ κειας, µε αποτέλεσµα να αποκτά οριζόντια ταχύτητα v, της οποίας ο φορέας είναι κάθετος στην ευθεία ΟΣ. i) Nα εξετάσετε αν το σφαιριδίο Σ διαγράφει κυκλική τροχιά ακτί νας α, στην περίπτωση που το µέτρο της v είναι v = g, όπου g η
9 επιτάχυνση της βαρύτητας. Ποια είναι η µέγιστη κινητική ενέργεια του σφαιριδίου Σ ; ii) Να βρείτε την συνθήκη, ώστε για α=l/ το σφαιρίδιο Σ µόλις να προσεγγίζει την οπή. ΛΥΣΗ: i) Ας δεχθούµε ότι το σφαιρίδιο Σ διαγράφει πάνω στο τραπέζι κυκ λική τροχιά κέντρου Ο και ακτίνας α. Τότε το σφαιρίδιο Σ θα είναι ακίνητο και η τάση T του νήµατος επί του σφαιριδίου Σ θα έχει µέτρο ίσο µε mg. Όµως η τάση T αποτελεί για το Σ κεντροµόλο δύναµη και εποµένως πρέπει να ισχύει: T = v mg = mg g = g () Σχήµα 4 Όµως η () είναι άτοπη σχέση, που σηµαίνει ότι το Σ δεν διαγράφει κυκλική τροχιά ούτε το Σ είναι ακίνητο. ii) Σε κάθε θέση του συστήµατος η απόσταση του σφαιριδίου Σ από την οπή Ο µεταβάλλεται χρονικά ακολουθώντας τις επόµενες δύο διαφορικές εξισώσεις, οι οποίες αποδείχτηκαν στην προηγούµενη άσκηση: και + m & & dt + L + m g = E () ( + m ) d dt = L - m g () όπου L η σταθερή στροφορµή του Σ περί το Ο και Ε σταθερή ποσότητα που δίνεται από την σχέση: E = m v + m g (4)
10 Όµως η ταχύτητα του σφαιριδίου Σ έχει το ίδιο µέτρο µε την ακτινική συνι στώσα της ταχύτητας του Σ, που σηµαίνει ότι το σφαιρίδιο Σ αποκτά την µεγαλύτερη ταχύτητά του v max όταν ισχύει d /dt =, δηλαδή στην θέση = στην οποία, σύµφωνα µε την () ισχύει: L - m g = L m = mg = L m g = m v m g = g g = (5) Τότε η σχέση () δίνει: mv max + L (4),(5) m + mg = E mv max + m v m ( ) + mg = mv + mg v max + g ( ) + g = g + g v max = g - g - / - g / (6) H µέγιστη κινητική ενέργεια του σφαιριδίου Σ είναι: K max = mv max (6) K max = mg ( - / - ) - / (7) ii) Όταν το σφαιρίδιο Σ οριακά προσεγγίζει την οπή τότε /dt και L, οπότε στην περίπτωση αυτή η () δίνει: + L (4) L + m gl = E m v + mgl = mv ml + mg L v ( L/ ) + gl = v L + gl v - v 8 = gl - gl 4gL = v v = 4gL/ (8) H (8) αποτελεί την ζητούµενη συνθήκη. P.M. fysikos
11 Ένα µικρό σφαιρίδιο µάζας m βρίσκεται πάνω σε λείο οριζόντιο τραπέζι που φέρει µικρή κυκλική οπή Ο. Το σφαιρίδιο είναι δεµένο στο ένα άκρο αβαρούς και µη εκτατού νήµατος που διέρ χεται από την οπή. Την χρονική στιγµή t= δίνεται στο σφαιρίδιο κα τάλληλη ορίζόντια ώθηση βραχείας διάρκειας, ενώ ταυτόχρονα εφαρ µόζεται στο ελεύθερο άκρο του νήµατος κατακόρυφη δύναµη F. Εάν µε ειδικό µηχανισµό το µέτρο της F ρυθµίζεται, ώστε το άκρο του νήµατος να κατέρχεται µε σταθερή ταχύτητα, να δείξετε ότι το µέτρο αυτό µετα βάλλεται µε την απόσταση του σφαιριδίου από την οπή, σύµφωνα µε την σχέση: F =L /m όπου L η σταθερή στροφορµή του σφαιριδίου περί το Ο. ΛΥΣΗ: Το σφαιρίδιο εκτελεί πάνω στο τραπέζι καµπυλόγραµµη κίνηση, στην διάρκεια της οποίας η ακτινική συνιστώσα v της ταχύτητάς του v έχει µέτρο ίσο µε το µέτρο της σταθερής ταχύτητας V µε την οποία κατέρχεται το ελεύ θερο άκρο του νήµατος. Εξάλλου το µέτρο της αζιµουθιακής συνιστώσας v της ταχύτητας του σφαιριδίου µεταβάλλεται µε την απόστασή του από την οπή Ο, σύµφωνα µε την σχέση: d L = mv = m ' d dt& dt = L m () Σχήµα 5 Aν a είναι η ακτινική επιτάχυνση του σφαιριδίου, συµφωνα µε τον δεύτερο νόµο της κίνησης του Νεύτωνα θα έχουµε: ma = -T = -F () διότι το µέτρο της τάσεως T του νήµατος επί του σφαιριδίου είναι ίσο µε το µέτρο της F. Όµως για την ακτινική επιτάχυνση a ισχύει η σχέση:
12 a = d dt - d ' dt& = - d ' dt& () διότι /dt=-v=σταθερό, οπότε d /dt =. Συνδυάζοντας τις σχέσεις () και () παίρνουµε: m d ' dt& () = F L F = m m & F = L m (4) Aπό την (4) παρατηρούµε ότι η δύναµη F ακολουθεί τον νόµο του αντιστρόφου κύβου της απόστασης. Στο σχήµα (5) φαίνεται η τροχιά που διαγράφει το σφαι ρίδιο πάνω στο τραπέζι. P.M. fysikos
όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!
Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της
Διαβάστε περισσότεραii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.
Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε
Διαβάστε περισσότερα. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!
Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή
Διαβάστε περισσότεραΥλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!
Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται
Διαβάστε περισσότεραii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.
Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο
Διαβάστε περισσότεραΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F
Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία
Διαβάστε περισσότεραΟµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!
Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της
Διαβάστε περισσότεραi) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και
Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση
Διαβάστε περισσότερα! =A'B=C!! C! = R" (1)
Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει
Διαβάστε περισσότεραi) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,
Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο
Διαβάστε περισσότεραόπου x η συντεταγµένη του σωµατιδίου, θεωρούµενη µε αρχή ένα στα θερό σηµείο Ο του άξονα και α, U 0 σταθερές και θετικές ποσότητες.
Υλικό σωµατίδιο µάζας m κινείται πάνω σε σταθε ρό άξονα x x υπό την επίδραση δύναµης, της οποίας ο φορέας συµπί πτει µε τον άξονα. Η δύναµη απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Ux) =
Διαβάστε περισσότεραΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων
ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί
Διαβάστε περισσότερα, της οποίας το µέτρο ικανοποιεί τη σχέση:
Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του
Διαβάστε περισσότεραΈνα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή
Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα
Διαβάστε περισσότεραµε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!
Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την
Διαβάστε περισσότερατης οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.
Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει
Διαβάστε περισσότεραi) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και
Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m
Διαβάστε περισσότεραΘεωρούµε δύο υλικά σηµεία µε µάζες m 1, m 2 τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα.
Θεωρούµε δύο υλικά σηµεία µε µάζες m, m τα οποία αλληλοεπιδ ρούν µε βαρυτική δύναµη, που ακολουθεί τον νόµο της παγκόσµιας έλξεως του Νεύτωνα. i) Εάν είναι το διάνυσµα θέσεως του ενός υλικού σηµείου σε
Διαβάστε περισσότεραi) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.
Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί
Διαβάστε περισσότεραii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.
Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία
Διαβάστε περισσότερα) ω ω. L λίγο πριν. . Nα βρεθούν:
Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α
Διαβάστε περισσότεραΟµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.
Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται
Διαβάστε περισσότερακαι όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.
Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει
Διαβάστε περισσότερατης µορφής:! F = -mk! r
Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα
Διαβάστε περισσότεραΘετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη.
Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R
Διαβάστε περισσότεραi) Εάν η κρούση είναι µετωπική και πλαστική, να δείξετε ότι η τρο χιά του συσσωµατώµατος που δηµιουργείται είναι ελλειπτική.
Ένας δορυφόρος µάζας m κινείται περί την Γη επί κυκλικής τροχιάς ακτίνας και κάποια στιγµή προσκρούει ακτινικά πάνω σ αυτόν σώµα µάζας m και της ίδιας κινητικής ενέργειας µε τον δορυφόρο. i) Εάν η κρούση
Διαβάστε περισσότεραΔίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.
Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται
Διαβάστε περισσότερααπό τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!
Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο
Διαβάστε περισσότεραόπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:
Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας
Διαβάστε περισσότερα(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον
Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο
Διαβάστε περισσότεραi) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.
Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί
Διαβάστε περισσότεραΔυναµική της κίνησης συστήµατος δύο σωµατιδίων
Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Θεωρούµε δύο σωµατίδια Σ και Σ µε αντίστοιχες µάζες m και m, των οποίων τα διανύσµατα θέσεως ως προς την αρχή Ο ενός αδρανειακού συστή µατος αναφοράς Oxyz
Διαβάστε περισσότεραΘεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.
Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως
Διαβάστε περισσότεραΘεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.
Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας
Διαβάστε περισσότερατων Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12
Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο
Διαβάστε περισσότερα( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.
Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται
Διαβάστε περισσότεραQ του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!
Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται
Διαβάστε περισσότεραi) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.
Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει
Διαβάστε περισσότερατα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!
Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο
Διαβάστε περισσότεραακτινικής διεύθυνσης και στην οριακή τριβή T!"
Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Διαβάστε περισσότερα(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!
Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ
Διαβάστε περισσότεραδιέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!
Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο
Διαβάστε περισσότερα. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και
Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού
Διαβάστε περισσότεραi) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και
Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση
Διαβάστε περισσότερα, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:
Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου
Διαβάστε περισσότεραi) Nα δείξετε ότι η κυµατοσυνάρτηση που περιγράφει το κύµα έχει την µορφή: ) µε t! t + T x - x0 ( )
Ένα µονοδιάστατο εγκάρσιο αρµονικό κύµα, πλάτους Α, περιόδου Τ και µήκους κύµατος λ, διαδίδεται κατά µήκος του άξονα x x. Στο σχήµα 1 απεικονίζεται ένα στιγµιότυπο του κύµατος την χρονική στιγµή t=t, όπου
Διαβάστε περισσότεραi) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή:
Ένας γραµµικός αρµονικός ταλαντωτής µάζας m παρουσιάζει σταθε ρά απόσβεσης b, η δε γωνιακή ιδιοσυχνότητα ω 0 της ελεύθερης και αµείωτης ταλάντωσής του ικανοποιεί την σχέση ω 0 >b/m. i) Xρησιµοποιώντας
Διαβάστε περισσότεραA! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2
A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,
Διαβάστε περισσότεραd 2! dt 2 #$%(! - "t) - g L &µ! = " 2 R L όπου! g η επιτάχυνση της βαρύτητας.
Mια αβαρής ράβδος µήκους L έχει το ένα της άκ ρο Α αρθρωµένο κοντά στην περιφέρεια κυκλικής τροχαλίας ακτίνας R, όπως φαίνεται στο σχήµα 1. Στο άλλο άκρο της ράβδου είναι στε ρεωµένο σφαιρίδιο Σ που η
Διαβάστε περισσότεραi) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει.
Στην διάταξη του σχήµατος η τροχαλία τ 1 έχει µάζα m 1 και ακτίνα R και στο αυλάκι της έχει περιτυλιχθεί αβαρές νήµα, το οποίο διέρ χεται από τον λαιµό της µικρής τροχαλίας τ στο δε άκρο του έχει δε θεί
Διαβάστε περισσότεραΤροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!
Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής
Διαβάστε περισσότερα1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Διαβάστε περισσότεραi) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.
H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ
Διαβάστε περισσότεραi) Να γράψετε τη διαφορική εξίσωση κίνησης του σώµατος και να δείξετε ότι δέχεται λύση της µορφής:
Μικρό σώµα µάζας m στερεώνεται στο ένα άκρο οριζόντιου ιδα νικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο προσδένε ται σε κατακόρυφο τοίχωµα όπως φαίνεται στο σχήµα. Το σώµα µπορεί να ολισθαίνει πάνω
Διαβάστε περισσότεραEφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:
ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει
Διαβάστε περισσότεραi) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.
Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της
Διαβάστε περισσότερα. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:
Μια λεπτή λαστιχένια ράβδος ΑΒ µήκους L και µάζας m, εκτελεί ελεύθερη πτώση χώρίς να περιστρέφεται και κάποια στιγµή το άκρο της Α συναντά λείο οριζόντιο έδαφος. Την στιγµή αυτή η ράβδος έχει κλίση φ ως
Διαβάστε περισσότερααπό την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!
Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει
Διαβάστε περισσότεραΕπαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότερατου σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.
Μικρό σφαιρίδιο µάζας m, προσπίπτει σε σηµεί ο Α της περιφέρειας ενός δακτυλιδιού ακτίνας R, το οποίο µπορεί να περιστρέφεται περί οριζόντιο άξονα που διέρχεται από ένα σηµείο του Ο. Η ταχύτητα πρόσπτωσης
Διαβάστε περισσότεραΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας
ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης
Διαβάστε περισσότεραπερί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!
Θεωρούµε µια βαρειά σφαίρα, η οποία ισορροπεί επί σχετικά µαλακού εδάφους, ώστε να προκαλεί σ αυτό µια µικρή παραµόρφωση. Λόγω της συµµετρίας που παρουσιάζει η παραµόρφωση αυτή, ως προς την κατακόρυφη
Διαβάστε περισσότεραΟ δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας
Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Όταν εξετάζουµε ένα υλικό σύστηµα µεταβλητής µάζας, δηλαδή ένα σύστη µα που ανταλλάσσει µάζα µε το περιβάλλον του, τότε πρέπει να είµαστε πολύ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Διαβάστε περισσότερα[ Απ. α) , β) µατος. Εκτρέπουµε το σύστηµα προς τα κάτω κατά x=0,5 m και το αφήνουµε ελεύθερο.
47. Σώµα (Σ 1 ) είναι τοποθετηµένο πάνω σε σώµα (Σ ) και το σύστηµα εκτελεί Α.Α.Τ. κατακόρυφα µε περίοδο Τ. α) Να εκφράσετε τη δύναµη αντίδρασης F του σώµατος (Σ ) στο σώµα (Σ 1 ), σε συνάρτηση µε την
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)
4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003
ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραγ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003
ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί
Διαβάστε περισσότερα1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Διαβάστε περισσότεραii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.
Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται
Διαβάστε περισσότεραΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας
Διαβάστε περισσότεραmu R mu = = =. R Γενική περίπτωση ανακύκλωσης
Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,
Διαβάστε περισσότεραΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!
ΘΕΩΡΗΜΑ Α Ο ρυθµός µεταβολής της στροφορµής στερεού σώµατος, θεωρούµενης περί ένα σηµείο του ή της επεκτάσεώς του και αναφερόµενης σε κάποιο αδρανειακό σύστηµα, είναι κάθε στιγµή ίσος µε την συνολική ροπή
Διαβάστε περισσότεραη αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!
Tο νήµα µαθηµατικού εκκρεµούς µήκους L, είναι στερεωµένο στην οροφή µικρού οχήµατος µάζας M, το οποίο µπορεί να ολισθαίνει χωρίς τριβή πάνω σε οριζόντιο επίπεδο (σχήµα 1). i) Eάν το σφαιρίδιο του εκκρεµούς
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α
Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος
Διαβάστε περισσότεραΜπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια
Διαβάστε περισσότερα1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).
1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 1/11/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
Διαβάστε περισσότεραΛΥΣΗ: Κατά τον πολύ µικρό χρόνο Δt (Δt 0) που ενεργεί επί του σφαιριδίου Γ η ώθηση Ω. =mv. το σφαιρίδιο Β δέχεται τις κρουστικές δυνάµεις F
Τρία µικρά σφαιρίδια της ίδιας µάζας είναι αρθρωµένα στις άκρες δύο συνεχόµεων ράβδων ΑΒ και ΒΓ αµελητέας µάζας, όπως φαίνεται στο σχήµα (1), το δε σύστηµα ισορροπεί εκτός πεδίου βαρύτητας. Στο σφαιρίδιο
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ
Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία
Διαβάστε περισσότεραΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
Διαβάστε περισσότεραΥλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:
Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: U = k 2 x2 + y ) 2 α) όπου k θετική και σταθερή ποσότητα
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Αν η
Διαβάστε περισσότεραΜΕΡΟΣ Γ! 1η οµάδα λυµένων παραδειγµάτων
ΜΕΡΟΣ Γ 1η οµάδα λυµένων παραδειγµάτων Ένας τροχός, µάζας m η οποία θεωρείται συγ κεντωµενη στην περιφέρειά του, περιστρέφεται περί οριζόντιο άξονα ασήµαντης µάζας, ο οποίος διέρχεται από το κέντρο του
Διαβάστε περισσότεραΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:
ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Διαβάστε περισσότερα7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι
Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε
Διαβάστε περισσότερα