ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Αλγεβρικές Παραστάσεις

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Μαθηματικά Γ Γυμνασίου

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

Μαθηματικά Α Τάξης Γυμνασίου

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθημαηικά Γ Γυμμαζίου

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

Ιωάννης Σ. Μιχέλης Μαθηματικός

1ο Κεφάλαιο: Συστήματα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

1.5 Αξιοσημείωτες Ταυτότητες

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας.

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

1 ΘΕΩΡΙΑΣ...με απάντηση

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Μαθηματικα Γ Γυμνασιου

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

τα βιβλία των επιτυχιών

2.3 ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ ΜΙΑΣ ΓΩΝΙΑΣ Βασικές τριγωνομετρικές ταυτότητες

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

9 Πολυώνυμα Διαίρεση πολυωνύμων

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα

Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

3, ( 4), ( 3),( 2), 2017

Ορισμένες σελίδες του βιβλίου

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

Μαθηματικά A Γυμνασίου

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Αλγεβρικές Παραστάσεις-Μονώνυμα

Transcript:

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής παράστασης; Είναι ο αριθμός που προκύπτει εάν σε μία αλγεβρική παράσταση αντικαταστήσουμε τις μεταβλητές με αριθμούς και εκτελέσουμε τις πράξεις.. Πότε μία αλγεβρική παράσταση ονομάζεται ακέραια; Όταν μεταξύ των μεταβλητών της σημειώνονται μόνο οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί. 4. Τι ονομάζεται μονώνυμο; Είναι η ακέραια αλγεβρική παράσταση, στην οποία μεταξύ των μεταβλητών σημειώνεται μόνο η πράξη του πολλαπλασιασμού. 5. Τι ονομάζεται συντελεστής και τι κύριο μέρος του μονωνύμου; Συντελεστής μονωνύμου: είναι ο αριθμητικός παράγοντας του μονωνύμου. Κύριο μέρος μονωνύμου : είναι το γινόμενο των μεταβλητών του με τους αντίστοιχους εκθέτες του. 6. Ποια μονώνυμα λέγονται όμοια; Είναι τα μονώνυμα που έχουν το ίδιο κύριο μέρος, π.χ. α β, 4α β. 7. Ποια μονώνυμα λέγονται αντίθετα; Είναι τα μονώνυμα που έχουν το ίδιο κύριο μέρος και αντίθετο συντελεστή, π.χ. α β, α β. 8. Ποια μονώνυμα λέγονται ίσα; Είναι τα μονώνυμα που έχουν το ίδιο κύριο μέρος και ίδιο συντελεστή. ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17 1

9. Τι ονομάζεται βαθμός μονωνύμου ως προς μια μεταβλητή του; Τι ονομάζεται βαθμός μονωνύμου ως προς όλες τις μεταβλητές του; Βαθμός μονωνύμου ως προς μια μεταβλητή του ονομάζεται ο εκθέτης της μεταβλητής αυτής. Βαθμός μονωνύμου ως προς όλες τις μεταβλητές του ονομάζεται το άθροισμα των εκθετών των μεταβλητών του. 10. Οι αριθμοί είναι μονώνυμα; Συμφωνούμε να θεωρούνται και οι αριθμοί ως μονώνυμα και τα ονομάζουμε σταθερά μονώνυμα. Ο βαθμός τους είναι μηδέν. Ειδικότερα, ο αριθμός 0 λέγεται μηδενικό μονώνυμο και δεν έχει βαθμό. 11. Πως ορίζεται το άθροισμα όμοιων μονωνύμων; Το άθροισμα ομοίων μονωνύμων είναι μονώνυμο όμοιο με αυτά και έχει συντελεστή το άθροισμα των συντελεστών τους. π.χ. αβ + 7αβ = 10αβ 1. Πως ορίζεται το γινόμενο μονωνύμων; Το γινόμενο μονωνύμων είναι μονώνυμο με: συντελεστή το γινόμενο των συντελεστών τους και κύριο μέρος το γινόμενο όλων των μεταβλητών τους με εκθέτη κάθε μεταβλητής το άθροισμα των εκθετών της. 4 1 π.χ. 1. Τι ονομάζεται πολυώνυμο; Είναι το άθροισμα δύο ή περισσοτέρων μονωνύμων τα οποία δεν είναι όμοια. Π.χ. - +6. 14. Τι λέγεται όρος του πολυωνύμου; Όρος του πολυωνύμου λέγεται κάθε ένα από τα μονώνυμα που περιέχεται στο πολυώνυμο. 15. Τι ονομάζεται βαθμός ενός πολυωνύμου ως προς μία ή περισσότερες μεταβλητές του; Είναι ο μεγαλύτερος από τους βαθμούς των όρων του. ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17

ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17 16. Οι αριθμοί είναι πολυώνυμα; Συμφωνούμε να θεωρούνται και οι αριθμοί ως πολυώνυμα και τα ονομάζουμε σταθερά πολυώνυμα. Ο βαθμός τους είναι μηδέν. Ειδικότερα, ο αριθμός 0 λέγεται μηδενικό πολυώνυμο και δεν έχει βαθμό. 17. Τι ονομάζεται αναγωγή ομοίων όρων; Είναι η αντικατάσταση των όμοιων μονωνύμων ενός πολυωνύμου από το άθροισμά τους. 18. Τι ονομάζεται ταυτότητα; Ταυτότητα λέγεται κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της. 19. Να αποδειχθούν οι παρακάτω ταυτότητες: α. Τετράγωνο αθροίσματος: β. Τετράγωνο διαφοράς: γ. Κύβος αθροίσματος: δ. Κύβος διαφοράς : ε. Γινόμενο αθροίσματος επί διαφορά: α. β. γ. δ.

ε. 0. Τι ονομάζεται παραγοντοποίηση; Παραγοντοποίηση λέγεται η διαδικασία με την οποία μια παράσταση, που είναι άθροισμα, μετατρέπεται σε γινόμενο παραγόντων. 1. Ποιες είναι οι πιο χαρακτηριστικές περιπτώσεις παραγοντοποίησης μιας αλγεβρικής παράστασης; 1. Κοινός παράγοντας 1 π.χ. 6. Ομαδοποίηση π.χ. 1 1 1 1 1. Διαφορά τετραγώνων : π.χ. 5 6 5 6 5 65 6 4. Ανάπτυγμα τετραγώνου : π.χ. 4 8 49 7 7 7. Τι ονομάζεται ρητή αλγεβρική παράσταση; Ρητή αλγεβρική παράσταση ονομάζεται μια αλγεβρική παράσταση που είναι κλάσμα και οι όροι του είναι πολυώνυμα.. Πότε μια ρητή αλγεβρική παράσταση ορίζεται; Μια ρητή αλγεβρική παράσταση ορίζεται για όλες τις τιμές των μεταβλητών που περιέχει εκτός από αυτές που μηδενίζουν τον παρονομαστή. 1 π.χ. η κλασματική παράσταση έχει νόημα, όταν 0,. 4. Τι ονομάζεται εξίσωση ου βαθμού με έναν άγνωστο (δευτεροβάθμια εξίσωση); Λέγεται κάθε ισότητα της μορφής α + β + γ = 0, με α, β, γ πραγματικούς αριθμούς και α 0. Οι αριθμοί α, β, γ λέγονται συντελεστές της εξίσωσης και ειδικότερα ο γ λέγεται και σταθερός όρος. 4 ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17

5. Ποιος είναι ο τύπος της διακρίνουσας Δ; Δ = β 4αγ 6. Πότε μία εξίσωση δευτέρου βαθμού έχει ρίζες άνισες και με ποιον τύπο υπολογίζονται; Μία εξίσωση δευτέρου βαθμού έχει ρίζες άνισες όταν Δ > 0. Υπολογίζονται με τον τύπο: 1,. 7. Πότε μία εξίσωση δευτέρου βαθμού έχει μια διπλή ρίζα και με ποιον τύπο υπολογίζεται; Μία εξίσωση δευτέρου βαθμού έχει μια διπλή ρίζα όταν Δ = 0. Υπολογίζεται με τον τύπο:. 8. Πότε μία εξίσωση δευτέρου βαθμού δεν έχει ρίζες ; Μία εξίσωση δευτέρου βαθμού δεν έχει ρίζες όταν Δ < 0. 9. Να αναφέρετε τα κριτήρια ισότητας τριγώνων. 1ο κριτήριο ισότητας (Π - Γ - Π) Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μία προς μία και την περιεχόμενη γωνία τους ίση, τότε είναι ίσα. ο κριτήριο ισότητας (Γ - Π - Γ). Αν δύο τρίγωνα έχουν μία πλευρά ίση και τις προσκείμενες στην πλευρά αυτή γωνίες ίσες μία προς μία, τότε είναι ίσα. ο κριτήριο ισότητας (Π Π - Π) Αν δύο τρίγωνα έχουν τις πλευρές τους ίσες μία προς μία, τότε είναι ίσα. ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17 5

0. Πότε δύο ορθογώνια τρίγωνα είναι ίσα; Δύο ορθογώνια τρίγωνα είναι ίσα, όταν έχουν : δύο αντίστοιχες πλευρές ίσες μία προς μία ή μία αντίστοιχη πλευρά ίση και μία αντίστοιχη οξεία γωνία ίση. 1. Ποια είναι η χαρακτηριστική ιδιότητα των σημείων της μεσοκαθέτου ενός ευθύγραμμου τμήματος; Κάθε σημείο της μεσοκαθέτου ενός ευθύγραμμου τμήματος ισαπέχει από τα άκρα του. Κάθε σημείο που ισαπέχει από τα άκρα ενός ευθύγραμμου τμήματος είναι σημείο της μεσοκαθέτου του ευθύγραμμου τμήματος.. Ποια είναι η χαρακτηριστική ιδιότητα των σημείων της διχοτόμου μιας γωνίας; Κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει από τις πλευρές της γωνίας. Κάθε εσωτερικό σημείο μιας γωνίας που ισαπέχει από τις πλευρές είναι σημείο της διχοτόμου της.. Πότε δύο τρίγωνα είναι όμοια; Δύο τρίγωνα είναι όμοια όταν έχουν δύο γωνίες τους ίσες μία προς μία. 4. Έστω ένα σύστημα αξόνων, σημείο Μ(,) με ΟΜ = ρ και ˆ Α. Να συμπληρώσετε τις ισότητες: ημω =, συνω =.., εφω=.., ρ = Β. Να αποδείξετε ότι για την γωνία ω ισχύουν οι τύποι: Β1. 1 και Β. Α.,,, 6 ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17

Β1. Είναι, οπότε + = ρ Αν διαιρέσουμε και τα δύο μέλη με το ρ, έχουμε: ή 1 ή 1 ή συντομότερα 1 Β. 5. Ποιες σχέσεις συνδέουν τους τριγωνομετρικούς αριθμούς δύο παραπληρωματικών γωνιών; ημ(180 -ω) = ημω συν(180 -ω) = - συνω εφ(180 -ω) = - εφω ΜΟΥΣΙΚΟ ΣΧΟΛΕΙΟ ΠΡΕΒΕΖΑΣ 016-17 7