ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Επιχειρήσεων ΙΙ

5. Έλεγχοι Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Έλεγχος Υποθέσεων (Hypothesis Testing)

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Συμπερασματολογία

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

Στατιστική Συμπερασματολογία

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

Στατιστική Συμπερασματολογία

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

X = = 81 9 = 9

Γ. Πειραματισμός - Βιομετρία

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Συμπερασματολογία

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

Στατιστική. Εκτιμητική

Στατιστική Συμπερασματολογία

Εφαρμοσμένη Στατιστική

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

Δειγματοληπτικές κατανομές

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Συμπερασματολογία

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Αναλυτική Στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική

Έλεγχος υποθέσεων Ι z-test & t-test

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Εφαρμοσμένη Στατιστική

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

5. Έλεγχοι Υποθέσεων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

5 o Μάθημα Έλεγχοι Υποθέσεων

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Εισόδημα Κατανάλωση

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468

Σε αρκετές εφαρμογές παρουσιάζεται η ανάγκη λήψης αποφάσεων σχετικών με την κατανομή ενός πληθυσμού Πιο συγκεκριμένα, σε πολλές περιπτώσεις πρέπει, βάσει ενός τ.δ. Χ, Χ,..., Χ από έναν πληθυσμό με κατανομή F(x;θ), να αποφασίσουμε αν ευσταθεί ή όχι μία πληροφορία (υπόθεση) σχετική με την κατανομή F ή τις παραμέτρους θ

Παράδειγμα : Έστω ότι ένα εργοστάσιο παράγει κάποιες ηλεκτρονικές συσκευές (π.χ. μικροεπεξεργαστές). Κατά τακτά χρονικά διαστήματα (π.χ. ανά ώρα) γίνεται έλεγχος της ποιότητας και των συσκευών της ωριαίας παραγωγής. Κατά τον έλεγχο αυτό απομακρύνονται όλες οι τυχόν ελαττωματικές συσκευές. Η παραγωγική διαδικασία θεωρείται ότι βρίσκεται μέσα στις προδιαγραφές της αν η πιθανότητα παραγωγής ελαττωματικής συσκευής είναι ίση (ή το πολύ) 5%. Σε περίπτωση που αυξηθεί αυτή η πιθανότητα θεωρείται ότι υπάρχει κάποιο πρόβλημα, σταματά η παραγωγή, και αναζητείται ο λόγος της ανωμαλίας.

Στο παράδειγμα αυτό θα πρέπει να κατασκευάσουμε έναν έλεγχο με βάση τον οποίο θα κρίνουμε αν για την τελευταία ώρα ισχύει για την (άγνωστη) πιθανότητα p παραγωγής ελαττωματικής μονάδας η υπόθεση ότι p = 5% (ή 5%), ή p > 5%, οπότε συνεχίζεται η παραγωγή, όποτε διακόπτεται η παραγωγή Είναι λογικό ο έλεγχος αυτός να βασίζεται στον αριθμό των ελαττωματικών μονάδων που βρέθηκαν ανάμεσα στις της ωριαίας παραγωγής Αν θέσουμε Χ i = ή ανάλογα με το αν η i-μονάδα βρέθηκε ελαττωματική ή όχι, i=,,..., τότε το δειγματικό ποσοστό αποτελεί κατά τα γνωστά μία εκτιμήτρια της πιθανότητας p παραγωγής ελαττωματικής μονάδας

Σύμφωνα με τα όσα γνωρίζουμε, αν το p είναι ίσο του 5% τότε αναμένουμε το δειγματικό ποσοστό να παίρνει τιμές «κοντά» και «γύρω» από το 5%. Συνεπώς, δεδομένου ότι p = 5%, είναι «απίθανο» να βρεθεί ένα μεγαλύτερο του 5% (π.χ. να βρεθεί > % ή γενικότερα > c) «σημαντικά»

Στην περίπτωση λοιπόν που συμβεί κάτι τέτοιο ( > c) είναι λογικό να θεωρήσουμε ότι το βρέθηκε τόσο μεγάλο διότι στην πραγματικότητα δεν ισχύει ότι p = 5% αλλά p > 5% Άρα σε αυτή την περίπτωση θα πρέπει να διακόψουμε την παραγωγή (απορρίπτουμε ότι p = 5%) Επομένως, κατά κάποιον τρόπο κατασκευάσαμε έναν έλεγχο της υπόθεσης p = 5% έναντι της p > 5% σύμφωνα με τον οποίον: - αν > c απορρίπτουμε ότι p = 5% - αν c δεχόμαστε ότι p = 5%

Το ερώτημα που τίθεται τώρα είναι: ποια θα πρέπει να είναι αυτή η τιμή c για από την οποία, δεδομένου ότι p = 5%, θεωρείται «απίθανο» να συμβεί > c??? Είναι φανερό ότι όσο μεγαλύτερο είναι το c, τόσο πιο απίθανο γίνεται το ενδεχόμενο > c Από την άλλη όμως, αν πάρουμε c υπερβολικά μεγάλο (π.χ. c = %) τότε εμφανίζεται ο κίνδυνος να ισχύει π.χ. ότι p = % > 5% και εμείς να βρούμε ότι να δεχτούμε την αρχική υπόθεση ότι p = 5%!!!!!!!!! % και επομένως Συνεπώς θα πρέπει να βρεθεί το βέλτιστο c κάτω από κάποιες συγκεκριμένες προϋποθέσεις. Ο καθορισμός αυτών των προϋποθέσεων καθώς και η εύρεση κατάλληλου ελέγχου αποτελεί αντικείμενο της θεωρίας των στατιστικών ελέγχων υποθέσεων που θα περιγράψουμε στη συνέχεια

Ας δούμε το παραπάνω πρόβλημα στη γενικότερή του μορφή. Έστω Χ,Χ,...,Χ ένα τ.δ. από έναν πληθυσμό με κατανομή F(x;θ). Επιθυμούμε να ελέγξουμε την υπόθεση θ Θ έναντι της θ Θ όπου Θ, Θ είναι υποσύνολα του παραμετρικού χώρου Θ (σύνολο επιτρεπτών τιμών της παραμέτρου θ) ενώ φυσικά Θ Θ = (τα Θ, Θ είναι ξένα). Η βασική υπόθεση θ Θ θα καλείται μηδενική υπόθεση και θα συμβολίζεται με Η ενώ η ενάντια θ Θ θα καλείται εναλλακτική υπόθεση και θα συμβολίζεται με H. Συνοπτικά θα έχουμε: H : θ Θ, H : θ Θ, μηδενική (ή βασική) υπόθεση, εναλλακτική υπόθεση

Κρίσιμη περιοχή ΣΗΜΕΙΩΣΗ: Μία υπόθεση θα καλείται μονόπλευρη αν είναι της μορφής H :θ>θ ή H :θ<θ ενώ θα καλείται δίπλευρη αν είναι της μορφής H : θ θ Στη συνέχεια, βάσει του τ.δ. Χ, Χ,..., Χ, κατασκευάζουμε μία διαδικασία ελέγχου της παραπάνω υπόθεσης Συγκεκριμένα, χωρίζουμε το δειγματοληπτικό χώρο Ω (το σύνολο των δυνατών τιμών του δείγματος) σε δύο ξένα υποσύνολα Α και R (Α R=Ω) έτσι ώστε, - αν (Χ, Χ,..., Χ ) R, απορρίπτουμε την H : θ Θ - αν (Χ, Χ,..., Χ ) Α, δεχόμαστε την H : θ Θ Η περιοχή R καλείται κρίσιμη περιοχή ή περιοχή απόρριψης της Η ενώ η περιοχή Α καλείται περιοχή αποδοχής της μηδενικής υπόθεσης Η

Στατιστική συνάρτηση ελέγχου Στην ουσία επιλέγεται μια κατάλληλη στατιστική συνάρτηση του τ.δ. Χ, Χ,..., Χ : Τ(Χ)=Τ(Χ, Χ,..., Χ ) η οποία ζητάμε να έχει χαρακτηριστικά: όταν ισχύει η Η να λαμβάνει τιμές σε μια περιοχή (σύμφωνα με μια γνωστή κατανομή F T χωρίς άγνωστες παραμέτρους) ενώ όταν ισχύει η Η να παίρνει τιμές εκτός αυτής της περιοχής Δηλαδή - αν Τ(Χ, Χ,..., Χ )> c, απορρίπτουμε την H : θ Θ - αν T(Χ, Χ,..., Χ ) c, δεχόμαστε την H : θ Θ

Σφάλματα Ανάλογα με την απόφαση που θα πάρουμε ενδέχεται να κάνουμε κάποιο σφάλμα Μας ενδιαφέρει περισσότερο να μην απορρίπτουμε την Η ενώ αυτή είναι αληθής, και επομένως πρέπει να επιλέγουμε το κρίσιμο σημείο c έτσι ώστε: Pr σφάλμα Ι PrT ( ) c H a ΓΕΝΙΚΑ α = Pr(σφάλμα τύπου Ι) = Pr(απορρίπτεται η Η Η αληθής) β = Pr(σφάλμα τύπου ΙΙ) = Pr(αποδεκτή η Η Η λανθασμένη) Μέγεθος της κρίσιμης περιοχής ή επίπεδο σημαντικότητας του ελέγχου γ = -β ισχύς του ελέγχου

γ Τέλος, αξίζει να παρατηρήσουμε ότι, με βάση την παραπάνω διαδικασία, αυτό που μας ενδιαφέρει περισσότερο είναι να διατηρηθεί μικρή η Pr(I) και για αυτό απαιτούμε Pr(I) α (μικρή πιθανότητα εσφαλμένης απόρριψης της Η ). H Pr(IΙ) μπορεί να είναι και αυτή μικρή, μπορεί όμως να είναι και αρκετά μεγάλη, ανάλογα την περίπτωση. Για το λόγο αυτό αν (Χ, Χ,..., Χ ) R τότε λέμε ότι «απορρίπτουμε την Η» με πιθανότητα να κάνουμε λάθος μικρότερη του α, ενώ αν (Χ, Χ,..., Χ ) Α, τότε συνήθως λέμε ότι «δεν έχουμε αρκετά στοιχεία ώστε να απορρίψουμε την Η»

Εύρεση κρίσιμης περιοχής Η διεξαγωγή ενός στατιστικού ελέγχου προϋποθέτει να ορίζουμε κάποιον κανόνα για την λήψη αποφάσεων Ας υποθέσουμε ότι θέλουμε να ελέγξουμε για έναν πληθυσμό που ακολουθεί Ν(μ,σ ): Η : μ = μ έναντι Η : μ > μ Για να κάνουμε τον παραπάνω έλεγχο για την μέση τιμή, θεωρούμε σαν κατάλληλη σ.σ. την T( ) και επομένως απορρίπτουμε την Η αν c Για να υπολογίσουμε το σημείο c πρέπει να ορίσουμε ένα επίπεδο στατιστικής σημαντικότητας α. Για το σφάλμα τύπου Ι γνωρίζουμε ότι: ΠΡΟΣΟΧΗ!!!!!! To -α λέγεται βαθμός εμπιστοσύνης

Εύρεση κρίσιμης περιοχής z c c z c a c z Pr a c Z Pr a c Z Pr a H c Pr a H c Pr a a a Φ : :

Εύρεση κρίσιμης περιοχής Για κάθε στατιστικό έλεγχο Η με επίπεδο σημαντικότητας α το κρίσιμο σημείο c δίνεται από την σχέση c z a Επομένως απορρίπτουμε την Η αν x c ή z a Με βάση την παραπάνω σχέση μπορούμε ισοδύναμα να πούμε ότι απορρίπτουμε την Η σε επίπεδο στατιστικής σημαντικότητας α, αν Z x z a / Άρα για δοθέν επίπεδο στατιστικής σημαντικότητας α, συγκρίνω την σ.σ. ελέγχου Ζ με το σημείο z -α

Μεθοδολογία. Ορίζουμε την μηδενική υπόθεση. Ορίζουμε την εναλλακτική υπόθεση 3. Υπολογίζω την κατάλληλη στατιστική συνάρτηση ελέγχου, π.χ. Ζ, Τ κλπ 4. Συγκρίνω με την κατανομή που ισχύει κάτω από την μηδενική υπόθεση 5. Συμπερασματολογία

Στατιστικές συναρτήσεις ελέγχου z-test χρήση κανονικής κατανομής στατιστική συνάρτηση ελέγχου Z / t-test χρήση t-κατανομής στατιστική συνάρτηση ελέγχου T S /

Παράδειγμα : Παίρνουμε 5 τιμές από έναν κανονικό πληθυσμό Ν(μ,4). Θέλουμε να ελέγξουμε αν μ = 5 έναντι της υπόθεσης ότι η μέση τιμή του πληθυσμού μπορεί να είναι και μεγαλύτερη από 5. Βρέθηκε ότι η μέση τιμή του δείγματος είναι 5.45 (= ) x Η : μ =5 Η : μ > 5 Γνωρίζουμε ότι Στατιστική συνάρτηση ελέγχου ( <3 και σ γνωστή) z-test Σύγκριση: α = % α = 5% 4 ~ N(, ) N(5, ) 5 Z a Z. Z.9.8 Z.5 Z Z.645 Z. 5 Z a.5.95 x Συμπερασματολογία: Ζ < Ζ -α ΑΠΟΔΕΧΟΜΑΙ Η ( δεν μπορώ να απορρίψω) Z /.5

p-τιμή Στον έλεγχο μπορεί να χρησιμοποιηθεί η p-τιμή Εκφράζει το πόσο σημαντική είναι η τιμή της στατιστικής συνάρτησης ελέγχου που δίνει το δείγμα: «Είναι η ελάχιστη τιμή του επιπέδου σημαντικότητας για την οποία απορρίπτεται η Η» Μπορούμε να πούμε ότι είναι ένα μέτρο που εκφράζει το πόσο ισχυρές είναι οι αποδείξεις που προκύπτουν εναντίον της Η - αν p-τιμή α απορρίπτεται η Η - αν p-τιμή >α αποδοχή Η

p-τιμή H Η απορρίπτεται αν η στατιστική συνάρτηση ελέγχου Τ(x) > c Έστω η τ.μ. Τ(Χ). Η πιθανότητα να εμφανιστεί ένα τόσο ή ακόμη και πιο «ακραίο» δείγμα από αυτό που εμφανίστηκε (το Τ(x) δηλαδή), δεδομένου ότι ισχύει η Η είναι το p-value Pr T ( ) T( x) H p value (συνήθως η Τ(Χ) είναι συνεχής οπότε μπορεί να θεωρηθεί ότι έχουμε μέσα στην παραπάνω πιθανότητα). Όταν η εναλλακτική υπόθεση είναι δίπλευρη, το p-value βρίσκεται συνήθως με τον διπλασιασμό του αντίστοιχου p-value που αντιστοιχεί στη μονόπλευρη εναλλακτική υπόθεση: T ( ) T( ) H p value x Pr

p-τιμή Παράδειγμα συνέχεια: p value Pr Pr / x H Pr 5.45 H : 5 5.45 H / 5.45 5 Pr / / 5 p.3 value : 5 Pr Z.5 PrZ.5.8686 p-τιμή > α =.5 (5%) ή p-τιμή > α =. (%) αποδέχομαι την Η (δεν μπορώ να την απορρίψω)

p-τιμή Παράδειγμα 3: Επιθυμούμε να ελέγξουμε αν ο μέσος μ ενός κανονικού πληθυσμού (με γνωστή διασπορά σ ) είναι ίσος με μ ή μεγαλύτερος Δηλαδή: Η : μ =μ έναντι Η : μ > μ Παίρνουμε ένα τ.δ. Χ, Χ,, Χ από τον πληθυσμό και χρησιμοποιούμε την στατιστική συνάρτηση ελέγχου Z ήt / η οποία όταν ισχύει η Η ακολουθεί τυπική κανονική κατανομή Ν(,) ενώ όταν ισχύει η εναλλακτική Η παίρνει «μεγάλες» τιμές. Επομένως απορρίπτουμε την Η αν x c / z a

p-τιμή Σημειώνεται ότι πήραμε c = z -α για να εξασφαλίσουμε Pr(σφάλμα Ι)=α Η p-τιμή ενός τ.δ. x, x,., x εδώ θα είναι: x p value Pr / T t H PrT t H ( t) ( ) Στο σχήμα φαίνεται η p-τιμή και το επίπεδο σημαντικότητας α στο συγκεκριμένο παράδειγμα. Από το σχήμα φαίνεται ότι αν t < c τότε και p-τιμή >α και αντίστροφα

p-τιμή Αριθμητική Εφαρμογή έστω ότι για ένα δείγμα μεγέθους = 5 πήραμε x ελέγξουμε αν ισχύει Η : μ = έναντι Η : μ > σε επίπεδο στατιστικής σημαντικότητας α =5% με σ = 5 και θέλουμε να Περιοχή απόρριψης της Η : x 5 / 5 R : t z a z. 95 /. 645 το οποίο δεν ισχύει και άρα δεν μπορώ να απορρίψω την Η p-τιμή: T t H PrT H ().58. 5 p value Pr και άρα δεν μπορώ να απορρίψω την Η

Μέση τιμή μ του πληθυσμού Έστω ένα τ.δ. Χ, Χ,, Χ από έναν κανονικό πληθυσμό Ν(μ,σ ) Γνωρίζουμε ότι Ο καλύτερος εκτιμητής του μέσου μ είναι ο σφάλμα ˆ S / Από το γεγονός ότι i S i ~ S / t με βαθμό εμπιστοσύνης -α για το μέσο μ είναι το: i i ˆ με εκτιμώμενο τυπικό προκύπτει ότι το διάστημα εμπιστοσύνης t S, t,, S

Μέση τιμή μ του πληθυσμού Για να ελέγξουμε τις υποθέσεις: a) Η : μ μ έναντι Η : μ > μ b) Η : μ μ έναντι Η : μ < μ c) Η : μ = μ έναντι Η : μ μ με επίπεδο σημαντικότητας α, χρησιμοποιούμε ~ / N(,) ~ N(,) / ~ S / t

Μέση τιμή μ του πληθυσμού Γενικεύοντας: Αν η διασπορά είναι γνωστή Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν έναντι της εναλλακτικής Η : μ < μ όταν έναντι της εναλλακτικής Η : μ μ όταν ή z x z x ή z x z x ή ισοδύναμα ή a a a a z x z x z z x

Μέση τιμή μ του πληθυσμού Και οι αντίστοιχες περιοχές απόρριψης είναι a) R z a, b) R, z a c) R z a z, a, Σημείωση: Λόγω συμμετρίας της κανονικής κατανομής z α =- z -α

Μέση τιμή μ του πληθυσμού Γενικεύοντας: Αν η διασπορά είναι άγνωστη Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν x T t, s έναντι της εναλλακτικής Η : μ < μ όταν T x t, a s έναντι της εναλλακτικής Η : μ μ όταν T x s t a,

Μέση τιμή μ του πληθυσμού Και οι αντίστοιχες περιοχές απόρριψης είναι a) R t, a, b) R, t, a c) R, t a, t a,, Σημείωση: Λόγω συμμετρίας της κατανομής t t -,-α = - t -,α

Μέση τιμή μ του πληθυσμού Παράδειγμα 4: Ένας υγειονομικός σταθμός θέλει να ελέγξει αν ο μέσος αριθμός βακτηριδίων ανά μονάδα όγκου θαλασσινού νερού σε μια παραλία υπερβαίνει το επίπεδο ασφαλείας. Δώδεκα δείγματα νερού συλλέγονται και βρίσκονται οι ακόλουθοι αριθμοί βακτηριδίων ανά μονάδα όγκου. 7 75 9 98 5 85 84 7 93 96 8 Υπάρχει λόγος ανησυχίας σε επίπεδο σημαντικότητας α=%;

Μέση τιμή μ του πληθυσμού Παράδειγμα 5: Σε μια προσπάθεια να προσδιοριστεί αν η ειδική εκπαίδευση αυξάνει ή όχι τον δείκτη ευφυΐας, 5 παιδιά εξετάζονται με ένα βασικό τυποποιημένο τεστ ευφυΐας. Κατόπιν τα παιδιά αυτά παρακολουθούν ένα ειδικό μάθημα, σκοπός του οποίου είναι η αύξηση του συγκεκριμένου δείκτη. Στο τέλος του μαθήματος εξετάζονται για δεύτερη φορά. Η διαφορά μεταξύ των βαθμών της δεύτερης και της πρώτης εξέτασης καταγράφεται για κάθε παιδί. Έστω ότι η μέση τιμή των διαφορών είναι 6 μονάδες και η διακύμανση 64 (ΠΡΟΣΟΧΗ!!! Η μέση τιμή και η διακύμανση είναι του δείγματος). Έχει η ειδική εκπαίδευση αυξήσει τον δείκτη ευφυΐας σε επίπεδο σημαντικότητας 5%;

Μέση τιμή μ του πληθυσμού ενός μη κανονικού πληθυσμού Μεγάλο δείγμα & η διασπορά είναι γνωστή Σε επίπεδο σημαντικότητας α, απορρίπτουμε την Η : μ = μ έναντι της εναλλακτικής Η : μ > μ όταν έναντι της εναλλακτικής Η : μ < μ όταν έναντι της εναλλακτικής Η : μ μ όταν z x x z x x ή a x a x z x z x Z

Διωνυμικό p Ένας ακόμα σημαντικός έλεγχος είναι αυτός για το διωνυμικό p Έστω ότι γίνονται ανεξάρτητες δοκιμές Berouli με πιθανότητα επιτυχίας p και έστω Χ ο αριθμός των επιτυχιών. Δηλαδή η τ.μ. Χ~Β(,p) Ο καλύτερος εκτιμητής για το p είναι ο ο οποίος είναι αμερόληπτος αφού έχει τυπικό σφάλμα το οποίο εκτιμάται με pˆ ˆ pˆ p E pˆ p/ pˆ pˆ pˆ / E / p/ p / Από το ΚΟΘ η Χ~Ν(p,p(-p)) γεγονός που οδηγεί στην χρήση της στατιστικής συνάρτησης για ελέγχους που αφορούν το διωνυμικό p pˆ p p Z p p / p p

Διωνυμικό p a) Η : p p έναντι Η : p > p κρίσιμη περιοχή R z, δηλαδή p p p z b) Η : p p έναντι Η : p < p p κρίσιμη περιοχή R, z δηλαδή a p p z c) Η : p = μ έναντι Η : p p κρίσιμη περιοχή, z z R / a / a, δηλαδή p p p z /

Διωνυμικό p Παράδειγμα 6: Πριν από τις δημοτικές εκλογές ο Α υποψήφιος σε μια μεγάλη πόλη, παρήγγειλε μια δημοσκόπηση η οποία έδειξε ότι από τους ερωτηθέντες οι 6 θα τον ψηφίσουν. Να ελεγχθεί σε επίπεδο σημαντικότητας α =.5 η υπόθεση να μην να εκλεγεί ο Α. Για να εκλεγεί θα πρέπει το ποσοστό του p να είναι πάνω από 5%. Έστω ότι αν ο Χ i ψηφοφόρος ψήφισε τον Α τότε Χ i = διαφορετικά Χ i =, ακολουθεί δηλαδή την διωνυμική κατανομή. Έλεγχος Η : p p =.5 έναντι Η : p > p =.5

Διωνυμικό p Στατιστική συνάρτηση ελέγχου Z p pˆ p 6. 5 / p /. 5. 5.. 5 Κρίσιμη περιοχή z, z,. C. a 5 645, Συμπερασματολογία : z,. Z a 645, και άρα απορρίπτω την Η Άρα είμαστε κατά τουλάχιστον 95% βέβαιοι ότι θα εκλεγεί

Διαφορά μέσων μ -μ Έχουμε δύο πληθυσμούς με μέσες τιμές μ και μ και τυπικές αποκλίσεις σ και σ και θέλουμε να ελέγξουμε υποθέσεις σχετικές με τις μέσες τιμές τους π.χ. αν είναι ίσες ή αν κάποια είναι μεγαλύτερη και ποια Βασιζόμαστε λοιπόν σε ένα δείγμα από τον κάθε πληθυσμό Σημαντικό ρόλο παίζουν οι διασπορές των πληθυσμών Για τα δείγματα μπορούμε να γνωρίζουμε τους δειγματικούς μέσους, Αν δεν γνωρίζουμε τις διασπορές των δύο πληθυσμών τις εκτιμούμε με S, S Αν οι διασπορές είναι άγνωστες αλλά ίσες: η κοινή τους διασπορά είναι S p S S

Διαφορά μέσων μ -μ Α. Κανονικοί πληθυσμοί, γνωστές διασπορές Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η (ii) z z a z x x ~ N(), Η : μ - μ = μ έναντι Η : μ - μ < μ Απόρριψη Η z z (iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η z z

Διαφορά μέσων μ -μ Β. Κανονικοί πληθυσμοί, άγνωστες διασπορές και ίσες Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η t t t (ii) Η : μ - μ = μ έναντι Η : μ - μ < μ x S p x a, ~ t Απόρριψη Η t t, a (iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η t t, a

Διαφορά μέσων μ -μ Γ. Κανονικοί πληθυσμοί, άγνωστες διασπορές και άνισες Στατιστική συνάρτηση ελέγχου (i) Απόρριψη Η (ii) Απόρριψη Η (iii) Απόρριψη Η ~ t S S x x t, a t t Η : μ - μ = μ έναντι Η : μ - μ μ Η : μ - μ = μ έναντι Η : μ - μ < μ Η : μ - μ = μ έναντι Η : μ - μ > μ a, t t a, t t S S S S

Διαφορά μέσων μ -μ Γ. Μεγάλα Δείγματα ( > 3) Στατιστική συνάρτηση ελέγχου (i) Η : μ - μ = μ έναντι Η : μ - μ μ Απόρριψη Η z z z a x x x x ii) Η : μ - μ = μ έναντι Η : μ - μ < μ z s s Απόρριψη Η z z iii) Η : μ - μ = μ έναντι Η : μ - μ > μ Απόρριψη Η z z

Διαφορά μέσων μ -μ Δ. Ζευγάρια Υπάρχουν περιπτώσεις στις οποίες τα δυο δείγματα που θέλουμε να συγκρίνουμε δεν είναι ανεξάρτητα μεταξύ τους, αλλά είτε εξαρτώνται οι οι τιμές του ενός από τις τιμές του άλλου, είτε πρόκειται για επαναλαμβανόμενη μέτρηση.. Έστω λοιπόν δύο σειρές μετρήσεων: Χ, Χ,, Χ και Υ, Υ,, Υ. Εφόσον τα δείγματα δεν είναι ανεξάρτητα, στην ουσία έχουμε ζευγάρια παρατηρήσεων ( i,y i ), i =,,,. Στην συνέχεια φτιάχνουμε τις διαφορές τους D i = i Y i, i =,,,, οπότε πλέον δουλεύουμε με αυτές, και αντιμετωπίζουμε το πρόβλημα σαν περίπτωση ενός δείγματος. Η σ.σ. ελέγχου είναι η T D i D i D ~ t

Διαφορά μέσων μ -μ (i) Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ μ Απόρριψη Η (ii) T t a, Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ < μ Απόρριψη Η T t, a (iii) Η : μ D = μ - μ = μ έναντι Η : μ D = μ - μ > μ Απόρριψη Η T t, a

Διαφορά μέσων μ -μ Παράδειγμα 7: Δύο ανεξάρτητες ομάδες παιδιών και αποτελούνται από παιδιά η κάθε μια. Τα παιδιά της ομάδας προέρχονται από υπερτασικούς γονείς ενώ της από γονείς με κανονική πίεση. Η συστολική πίεση του αίματος μετριέται για κάθε παιδί των δύο ομάδων και έχουμε τα ακόλουθα αποτελέσματα: Ομάδα 96 6 9 Ομάδα 4 88 98 96 96 96 9 Με επίπεδο σημαντικότητας α = 5% να ελεγχθεί αν υπάρχει διαφορά μεταξύ της μέσης πίεσης μ παιδιών από υπερτασικούς γονείς και της μέσης πίεσης μ παιδιών από γονείς με κανονική συστολική πίεση.

Διαφορά μέσων μ -μ Άγνωστες διασπορές 97 9 88 4 58 9.. i i i i 7 5 3. S. S S S i i i i

Διαφορά μέσων μ -μ Έλεγχος: Η : μ - μ = έναντι Η : μ - μ Στατιστική συνάρτηση ελέγχου: t x x 58. 97. S ~ t t. 7. 7 Απόρριψη Η αν: t,..,, t t, t t a t 8,. 975,.,., Συμπερασματολογία:,7 απορρίπτω Η 8 975

Διασπορά σ Η στατιστική υπόθεση για τη διασπορά σ είναι όπως και για τη μέση τιμή, δηλαδή Η : σ = σ με κατάλληλη εναλλακτική υπόθεση Η ανάλογα αν ο έλεγχος είναι δίπλευρος ή μονόπλευρος Η στατιστική q του ελέγχου είναι q ή (i) Η : σ = σ έναντι Η : σ σ χ s ~ Απόρριψη Η q, / ή q, / (ii) Η : σ = σ έναντι Η : σ < σ Απόρριψη Η q, (iii) Η : σ = σ έναντι Η : σ > σ Απόρριψη Η q,

Διασπορά σ Παράδειγμα 8: Ο κατασκευαστής ενός οργάνου ακριβείας ισχυρίζεται ότι η τυπική απόκλιση των μετρήσεων που γίνονται με το όργανο είναι σ =. Αν σε ένα πείραμα πάρουμε τις μετρήσεις 4. 5.3.3 αληθεύει ο ισχυρισμός του κατασκευαστή σε επίπεδο σημαντικότητας 5%; i i 4. 5. 3. 3 3 6. 6 S i i 4. 6. 6 5. 3 6. 6. 3 6. 6. 57 Έλεγχος: Η : σ = έναντι Η : σ

Διασπορά σ Στατιστική συνάρτηση ελέγχου: s. 57 q ~ 5. 85 4 Απόρριψη Η αν: q.,. 5 ή q, 975 q 7. 378ή q. 56 Συμπερασματολογία: 5.85 < 7.378 απορρίπτω Η