6.003: Signals and Systems

Σχετικά έγγραφα
6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation

Lecture 12 Modulation and Sampling

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

3 Frequency Domain Representation of Continuous Signals and Systems

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1

Sampling Basics (1B) Young Won Lim 9/21/13

Durbin-Levinson recursive method

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

ω = radians per sec, t = 3 sec

Section 8.3 Trigonometric Equations

CT Correlation (2B) Young Won Lim 8/15/14

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order RLC Filters

Forced Pendulum Numerical approach

Math221: HW# 1 solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Note: Please use the actual date you accessed this material in your citation.

Ψηφιακή Επεξεργασία Φωνής

Fourier transform of continuous-time signals

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

HFC SERIES High Freq. Wound Ceramic Chip Inductors

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

What happens when two or more waves overlap in a certain region of space at the same time?

Spectrum Representation (5A) Young Won Lim 11/3/16

Fourier Series. Fourier Series

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Συστήματα Επικοινωνιών Ι

[1] P Q. Fig. 3.1

BandPass (4A) Young Won Lim 1/11/14

D Alembert s Solution to the Wave Equation

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Detection and Recognition of Traffic Signal Using Machine Learning

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Balanced Slope Demodulator EEC 112. v o2

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

HMY 220: Σήματα και Συστήματα Ι

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


Concrete Mathematics Exercises from 30 September 2016

Uniform Convergence of Fourier Series Michael Taylor

Second Order Partial Differential Equations

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Digital Signal Octave Codes (0B)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

Approximation of distance between locations on earth given by latitude and longitude

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

2 Composition. Invertible Mappings

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Solutions to Exercise Sheet 5

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

CRASH COURSE IN PRECALCULUS

Finite Field Problems: Solutions

Χρονοσειρές Μάθημα 3

D-Wave D-Wave Systems Inc.

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

1 String with massive end-points

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

HMY 220: Σήματα και Συστήματα Ι

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.2 Graphs of Polar Equations

Τηλεπικοινωνιακά Συστήματα Ι

Section 7.6 Double and Half Angle Formulas

Can I open a bank account online? Ερώτηση αν μπορείτε να ανοίξετε τραπεζικό λογαριασμό μέσω του ίντερνετ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Lecture 2. Soundness and completeness of propositional logic

PARTIAL NOTES for 6.1 Trigonometric Identities

Lifting Entry (continued)

Galatia SIL Keyboard Information

Block Ciphers Modes. Ramki Thurimella

C.S. 430 Assignment 6, Sample Solutions

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Transcript:

6.3: Signals and Sysems Modulaion December 6, 2

Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio, phonograph, CD, cell phone, MP3 elevision, cinema, HDTV, DVD coax, wised pair, cable TV, DSL, opical fiber, E/M Modulaion can improve mach based on frequency. 2

Ampliude Modulaion Ampliude modulaion can be used o mach audio frequencies o radio frequencies. I allows parallel ransmission of muliple channels. x () z () cos w x 2 () z 2 () z() LPF y() cos w 2 cos w c x 3 () z 3 () cos w 3 3

Superheerodyne Receiver Edwin Howard Armsrong invened he superheerodyne receiver, which made broadcas AM pracical. Edwin Howard Armsrong also invened and paened he regeneraive (posiive feedback) circui for amplifying radio signals (while he was a junior a Columbia Universiy). He also invened wide-band FM. 4

Ampliude, Phase, and Frequency Modulaion There are many ways o embed a message in a carrier. Ampliude Modulaion (AM) + carrier: y () = x() + C cos(ω c ) Phase Modulaion (PM): y 2 () = cos(ω c + kx()) Frequency Modulaion (FM): y 3 () = cos ω c + k x(τ )dτ PM: signal modulaes insananeous phase of he carrier. y 2 () = cos(ω c + kx()) FM: signal modulaes insananeous frequency of carrier. y 3 () = cos ω c + k x(τ)dτ ' v " φ() d ω i () = ω c + φ() = ω c + kx() d 5

Frequency Modulaion Compare AM o FM for x() = cos( ). AM: y () = x() + C cos(ω c ) = (cos( ) +.) cos(ω c ) FM: y 3 () = cos ω c + k x(τ )dτ = cos(ω c + k sin( )) Advanages of FM: consan power no need o ransmi carrier (unless DC imporan) bandwidh? 6

7 Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. ( ) y 3 () = cos ω c + k x(τ)dτ ' v " φ() d ω i () = ω c + φ() = ω c + kx() d Small k small bandwidh. Righ?

Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. Wrong! y 3 () = cos ω c + k x(τ)dτ = cos(ω c ) cos k x(τ)dτ sin(ω c ) sin k x(τ )dτ If k hen cos k x(τ)dτ sin k x(τ )dτ k x(τ)dτ y 3 () cos(ω c ) sin(ω c ) k x(τ)dτ Bandwidh of narrowband FM is he same as ha of AM! (inegraion does no change he highes frequency in he signal) 8

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( )) 9

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 3 sin( ) 3 3 cos(3 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 4 sin( ) 4 4 cos(4 sin( )) 2

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( )) 3

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 6 sin( ) 6 6 cos(6 sin( )) 4

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 7 sin( ) 7 7 cos(7 sin( )) 5

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 8 sin( ) 8 8 cos(8 sin( )) 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 9 sin( ) 9 9 cos(9 sin( )) 7

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( )) 8

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( )) 9

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( )) 2

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. m sin( ) m m cos(m sin( )) 2 increasing m

22 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

23 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

24 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k 2 3 4 5 6

25 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k 2 3 4 5 6

26 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

27 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k 2 3 4 5 6

28 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 3 a k k 2 3 4 5 6

29 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 4 a k k 2 3 4 5 6

3 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k 2 3 4 5 6

3 Phase/Frequency Modulaion Fourier ransform of firs par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) ' v " ya() Y a (jω) m = 5 ω c ω c ωm ω

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. m sin( ) m m sin(m sin( )) increasing m 32 increasing m

33 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

34 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

35 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k 2 3 4 5 6

36 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k 2 3 4 5 6

37 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

38 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k 2 3 4 5 6

39 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 3 b k k 2 3 4 5 6

4 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 4 b k k 2 3 4 5 6

4 Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k 2 3 4 5 6

42 Phase/Frequency Modulaion Fourier ransform of second par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω ' c ) cos(m sin(ω v m ))) sin(ω " c ) sin(m sin( ))) ' v " ya() y b () Y b (jω) m = 5 ω c ω c ωm ω

43 Phase/Frequency Modulaion Fourier ransform. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) ' v " ' v " ya() y b () Y (jω) m = 5 ω c ω c ωm ω

44 Frequency Modulaion Wideband FM is useful because i is robus o noise. AM: y () = (cos( ) +.) cos(ω c ) FM: y 3 () = cos(ω c + m sin( )) FM generaes a redundan signal ha is resilien o addiive noise.

45 Summary Modulaion is useful for maching signals o media. Examples: commercial radio (AM and FM) Close wih unconvenional applicaion of modulaion in microscopy.

6.3 Microscopy Dennis M. Freeman Sanley S. Hong Jekwan Ryu Michael S. Mermelsein Berhold K. P. Horn Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 46

6.3 Model of a Microscope microscope Microscope = low-pass filer Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 47

Phase-Modulaed Microscopy microscope Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 48

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 49

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 5

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 5

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 52

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 53

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 54

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 55

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 56

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 57

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 58

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 59

Couresy of Sanley Hong, Jekwan Ryu, Michael Mermelsein, and Berhold K. P. Horn. Used wih permission. 6

MIT OpenCourseWare hp://ocw.mi.edu 6.3 Signals and Sysems Fall 2 For informaion abou ciing hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms.