Review of Single-Phase AC Circuits

Σχετικά έγγραφα
ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ

ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)

= 0.927rad, t = 1.16ms

EE101: Resonance in RLC circuits

7. Ηµιτονοειδής ανάλυση σταθερής κατάστασης Sinusoidal Steady State Analysis

Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία

CRASH COURSE IN PRECALCULUS

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

και ότι όλες οι τάσεις ή ρεύματα που αναπτύσσονται σε ένα κύκλωμα έχουν την ίδια συχνότητα ω. Οπότε για τον πυκνωτή

Inverse trigonometric functions & General Solution of Trigonometric Equations

Κυκλώματα με Ημιτονοειδή Διέγερση

ΗΜΥ 445/681 Διάλεξη 1 -- Εισαγωγή

Second Order RLC Filters

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ8-1

Section 8.3 Trigonometric Equations

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών

ΑΣΚΗΣΗ 2 Συντονισμός RLC σε σειρά

Trigonometric Formula Sheet

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

PARTIAL NOTES for 6.1 Trigonometric Identities

Te chnical Data Catalog

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Technical Data Catalog

Note: Please use the actual date you accessed this material in your citation.

Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Spectrum Representation (5A) Young Won Lim 11/3/16

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την

6.003: Signals and Systems. Modulation


ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων

IXBH42N170 IXBT42N170

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Te chnical Data Catalog

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

m e j ω t } ja m sinωt A m cosωt

SMD Power Inductor-VLH

16 Electromagnetic induction

ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

BandPass (4A) Young Won Lim 1/11/14

ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

1 String with massive end-points

SMD Power Inductor-VLH

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Capacitors - Capacitance, Charge and Potential Difference

Forced Pendulum Numerical approach

If we restrict the domain of y = sin x to [ π 2, π 2

Lifting Entry (continued)

Section 8.2 Graphs of Polar Equations

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

Homework 8 Model Solution Section

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Answer sheet: Third Midterm for Math 2339

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Solutions - Chapter 4

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Impedance Matching. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

4. Χρονική και συχνοτική ανάλυση της λειτουργίας κυκλωμάτων

Multilayer Chip Capacitors C0G/NP0/CH


Data sheet Thin Film Chip Inductor AL Series

Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ

Έστω μια ΓΜ η οποία περιγράφεται από ένα δίθυρο κύκλωμα με γενικευμένες παραμέτρους ABCD, όπως φαίνεται στο Σχήμα 5.1. Οι σταθερές ABCD είναι:

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

TRIGONOMETRIC FUNCTIONS

N 1 :N 2. i i 1 v 1 L 1 - L 2 -

Quartz Crystal Test Report

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Uniform Convergence of Fourier Series Michael Taylor

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

COMPLEX NUMBERS. 1. A number of the form.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

ΗΜΙΤΟΝΟΕΙ Η ΡΕΥΜΑΤΑ ΚΑΙ ΤΑΣΕΙΣ ΕΙΣΑΓΩΓΗ

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Areas and Lengths in Polar Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

MathCity.org Merging man and maths

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Durbin-Levinson recursive method

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

IXBK64N250 IXBX64N250

Fourier Analysis of Waves

Matrices and Determinants

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

Ηλεκτροτεχνία ΙΙ. Ενότητα 3: Ηλεκτρικά κυκλώματα εναλλασσομένου ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Transcript:

Single-Phase AC Circuits

in a DC Circuit In a DC circuit, we deal with one type of power. P = I I W = t2 t 1 Pdt = P(t 2 t 1 ) = P t (J) DC CIRCUIT

in an AC Circuit Instantaneous : p(t) v(t)i(t) i(t)=i max cos( ω t θ i ) v(t)= max cos( ω t θ v ) AC CIRCUIT Trigonometric Identity 1 cosxcosy = [cos(x y) cos(x y)] 2 p(t) = maxi maxcos(ωtθ v)cos(ωtθ i ) p(t) = 1 2 maximaxcos(θv θ i) 1 2 maximaxcos(2ωtθv θ i)

in an AC Circuit p(t) = 1 2 maximaxcos(θv θ i) 1 2 maximaxcos(2ωt2θv (θv θ i)) = 1 2 maximaxcos(θv θ i) 1 2 maximaxcos(θv θ i) cos(2ωt2θ v) }{{}}{{} P (W) P (W) 1 2 maximaxsin(θv θ i) sin(2ωt2θ v) }{{} Q ( Ar) Trigonometric Identity cos(x y) = cosxcosy sinxsiny

p(t) = 1 2 maximaxcos(θv θ i) 1 2 maximaxcos(2ωt2θ i (θ v θ i )) = 1 2 maximaxcos(θv θ i) 1 2 maximaxcos(θv θ i) cos(2ωt2θ i ) }{{}}{{} P (W) P (W) 1 2 maximaxsin(θv θ i) sin(2ωt2θ i ) }{{} Q ( Ar) Trigonometric Identity cos(x y) = cosxcosy sinxsiny

Interpretation of Real or Active p(t) v(t)i(t) = P Scos(2ωt θ v θ i ) = P P cos(2ωt2θ v)qsin(2ωt2θ v) = P P cos(2ωt2θ i )Qsin(2ωt2θ i ) P avg = 1 T T 0 p(t)dt = P

Triangle P = 1 2 maxi max cos(θ v θ i ) Q = 1 2 maxi max sin(θ v θ i ) S = 1 2 maxi max S = P 2 Q 2 S φ=θ θ v P i Triangle Q

for Parallel Loads p 1 (t) = P 1 P 1 cos(2ωt 2θv) Q 1 sin(2ωt 2θv) p 2 (t) = P 2 P 2 cos(2ωt 2θv) Q 2 sin(2ωt 2θv) p(t) v(t)i(t) = v(t)[i 1 (t)i 2 (t)] = p 1 (t)p 2 (t) P,Q v(t)= max cos( ω t θ v ) P 1,Q 1 p(t) = (P 1 P 2 ) (P 1 P 2 ) cos(2ωt2θ v)(q 1 Q 2 ) sin(2ωt 2θ v) }{{}}{{}}{{} P P Q i(t) i 1 (t) P 2,Q 2 i 2 (t) Therefore, KPL: P = P 1 P 2 KQL: Q = Q 1 Q 2

for Series Loads p 1 (t) = P 1 P 1 cos(2ωt 2θ i ) Q 1 sin(2ωt 2θ i ) p 2 (t) = P 2 P 2 cos(2ωt 2θ i ) Q 2 sin(2ωt 2θ i ) p(t) v(t)i(t) = i(t)[v 1 (t)v 2 (t)] = p 1 (t)p 2 (t) P 1,Q 1 v (t) 1 v 2 (t) P 2,Q 2 P(t) = (P 1 P 2 ) (P 1 P 2 ) cos(2ωt2θ i )(Q 1 Q 2 ) cos(2ωt2θ i ) }{{}}{{}}{{} P P Q P,Q i(t)=i max cos( ω t θ i ) v(t) Therefore, KPL: P = P 1 P 2 KQL: Q = Q 1 Q 2

p(t) v(t)i(t) = P Scos(2ωt θ v θ i) = P P cos(2ωt 2θ v) Qsin(2ωt 2θ v) = P P cos(2ωt 2θ i) Qsin(2ωt 2θ i) i(t)=i max cos( ω t θ i ) v(t)= max cos( ω t θ v ) AC CIRCUIT

Definitions Real or Active : P = 1 2 maximaxcos(θv θ i) = rmsi rmscos(θ v θ i ) Reactive or Imaginary Q = 1 2 maximaxsin(θv θ i) = rmsi rmssin(θ v θ i ) Apparent S = 1 maximax = rmsirms 2

Factor Angle Factor φ = θ v θ i pf = cosφ Definitions: pf is said to be lagging if 0 φ 90 o (Inductive Load) pf is said to be leading if 90 o φ 0 (Capacitive Load)

Resistor v(t) = max cos(ωt θ v) i(t) = I max cos(ωt θ i) i(t) R Ohm s Law: v(t) = Ri(t) maxcos(ωtθ v) = RI maxcos(ωtθ i) { max = RI max θ v = θ i rms v(t) R φ = θ v θ i = 0 (v(t) and i(t) are in phase) P = 1 2 maximax = 1 2 RI2 max = 1 2 2 max R rms = rmsi rms = RI 2 rms = 2 rms R Q = 0 and S = 1 maximax = rmsirms = P 2

Inductor v(t) = max cos(ωt θ v) i(t) = I max cos(ωt θ i) i(t) L Ohm s Law: v(t) = L di dt max cos(ωt θ v) = ωli max sin(ωt θ i) = ωli max cos(ωt θ i 90 o ) = ωli max cos(ωt θ i 90 o ) max = ωli max θ v = θ i 90 o rms φ = θ v θ i = 90 o v(t) j ω L Q = 1 2 maximax = 1 2 ωli2 max = 1 2 = rmsi rms = ωli 2 rms = 2 rms ωl 2 max ωl rms P = cos90 o = 0 S = 1 maximax = rmsirms = Q 2

Capacitor v(t) = max cos(ωt θ v) i(t) = I max cos(ωt θ i) i(t) C Ohm s Law: i(t) = C dt I max cos(ωt θ i) = ωc max sin(ωt θ v) = ωc max cos(ωt θ v 90 o ) = ωc max cos(ωt θ v 90 o ) I max = ωc max θ i = θ v 90 o φ = θ v θ i = 90 o < 0 Q = 1 2 maximax = 1 2 ωc 2 max = 1 2 = rmsi rms = ωc 2 rms = I2 rms ωc P = S cos90 o = 0 S = 1 maximax = rmsirms = Q 2 I 2 max ωc rms v(t) 1 j ω C rms

a Resistor v(t) = max cos(ωt θ v) i(t) = I max cos(ωt θ i) Ohm s Law: v(t) = Ri(t) 2rms cos(ωt θ v) = 2RI rms cos(ωt θ i ) ω 2 rms sin(ωt θ v) = ω 2RI rms sin(ωt θ i ) ω 2j rms sin(ωt θ v) = ωj 2RI rms sin(ωt θ i ) rms [cos(ωt θ v) j sin(ωt θ v)] = RI rms [cos(ωt θ i ) j sin(ωt θ i )] rmse j(ωtθv) = RI rmse j(ωtθ i ) I R rmse jθv = RI rmse jθ i Ohm s Law: Ṽ rms = RĨrms

an Inductor v(t) = max cos(ωt θ v) i(t) = I max cos(ωt θ i) Ohm s Law: v(t) = L di dt v(t) = L di dt 2 cos(ωt θ v) = 2ωLI sin(ωt θ i) ωj 2 sin(ωt θ v) = jω 2 2LI cos(ωt θ i) I jx=j ω L [cos(ωt θ v) j sin(ωt θ v)] = jωli [cos(ωt θ i) j sin(ωt θ i)] e j(ωtθv) = jωlie j(ωtθ i ) e jθv Ṽ = jωlie jθ i = jωlĩ

a Capacitance v(t) = 2 cos(ωt θ v) i(t) = 2I cos(ωt θ i) Ohm s Law: v(t) = C dv dt 2I cos(ωt θi) = 2ωC sin(ωt θ v) I 1 1 jx= =j j ω C ω C = 2ωC cos(ωt θ v 90 o ) = 2ωC cos(ωt θ v 90 o ) Ie jθ i = jωc e jθ Ĩ = jωcṽ

AC Loads in Time and Phasor s i(t)= 2Icos( ω t θ i ) v(t)= 2cos( ω t θ v ) Time Circuit P(t) = v(t)i(t) = P S cos(2ωt θ v θ i ) = P P cos(2ωt 2θ v) Qsin(2ωt 2θ v) = P P cos(2ωt 2θ v) Qsin(2ωt 2θ i ) = I=I θ v θ i _ Z= 1 _ Y Phasor Circuit P = I cos(θ v θ i) Q = I sin(θ v θ i) S = I = p 2 Q 2

in Phasor I S = P jq S=PjQ = I cos(θ v θ i ) j I sin(θ v θ i ) = I [cos(θ v θ i ) j sin(θ v θ i )] = ( e jθv )(Ie jθ i) S = ( e jθv )(Ie jθ i) = Ṽ Ĩ = P jq S=I= P 2 Q 2 φ P Q Triangle φ = θ v θ i S = P 2 Q 2 P = S cosφ = I cosφ Q = S sinφ = I sinφ S P jq = Ṽ Ĩ = S φ tanφ = Q P

Impedance Triangle Z Ṽ Ĩ = θ v I θ i where: Z : R : X : = I (θ v θ i ) = Z φ RjX Impedance (Ω) Resistance (Ω) Reactance (Ω) I Z=RjX Z φ R X

Admittance Triangle I G Y=GjB Y φ B Ȳ = Ĩ Ṽ = I θ i = I θ v (θ i θ v ) = Y φ Ȳ = GjB Y : Admittance (S) G : Conductance (S) B : Susceptance (S)

in a Resistor Also, S = ṼĨ = RĨĨ = }{{} R Ĩ 2 j0 }{{} P R Q R S = ṼĨ = Ṽ { P = R Ĩ 2 = Ṽ 2 R Q = 0 ) (Ṽ = R Ṽ Ṽ R = Ṽ 2 R }{{} P R j0 }{{} Q R

in an Inductor P = 0 Q = X Ĩ 2 = Ṽ 2 X > 0 Q = ωl Ĩ 2 = Ṽ 2 ωl > 0

in a Capacitor P = 0 Q = X Ĩ 2 = Ṽ 2 X < 0 Q = Ĩ 2 ωc = ωc Ṽ 2 < 0 Hence, Q = B Ṽ 2 < 0

in a Series Load { S = ṼĨ { = (R s jx s )ĨĨ = R s }{{ Ĩ 2 jx s Ĩs 2 }}{{} P Q X s = ωl > 0 X s = 1 ωc < 0 if X s > 0 0 o φ 90 o if X s < 0 90 o φ o o Z = R s jx s = Z φ Ṽ = Ĩ = Ṽ Z ZĨ = Ṽ = Z Ĩ I R s jx s

RL Circuit I = I θ i z = RjωL = Z φ φ = tan 1 ωl R > 0 Ĩ = Ĩ θ i = Ṽ Z = Ṽ 0o Z φ Ĩ = Ĩ φ = Ĩ θ i R j ω L = 0 o θ = φ i I = I θ i 0 o φ = tan 1 ω L 90 o R

RC Circuit I = I θ i z = Rj 1 ωc = Z φ φ = tan 1 1 ωcr < 0 Ĩ = Ĩ θ i = Ṽ Z = Ṽ 0o Z φ Ĩ = Ĩ φ = Ĩ θ i R 1 j ωc I = I θ i θ = φ i = 0 o 90 o 1 φ = tan 1 0 ω CR

Algebra z = z 1 z 2 z = z 1 z 2 Proof: Application: z = z 1 z 2 z = z 1 z 2 z = ( z 1 θ 1 )( z 2 θ 2 ) z θ = z 1 z 2 (θ 1 θ 2 ) Z = R s jx s Z = R s X s Ṽ = ZĪ Ṽ = Z Ĩ

in a Parallel Load 1 Z = 1 1 = 1 j 1 R p jx p R p X p 1 Z = 1 j 1 R p X p ) (Ṽ S = ṼĨ = Ṽ = Ṽ 2 Z Z = ( 1 R p j 1 X p ) Ṽ 2 = Ṽ 2 R p }{{} P j Ṽ 2 X p }{{} Q I R p jx p

and Reactive Factors Factor: I S=PjQ pf = cosφ = P S = Reactive Factor: rf = sinφ = Q S = S=I= P 2 Q 2 φ P P P 2 Q 2 P P 2 Q 2 pf is said to be { lagging if rf = sinφ > 0 φ > 0 Q > 0 leading if rf = sinφ < 0 φ < 0 Q < 0 Q