Σχετικά έγγραφα
A Classical Perspective on Non-Diffractive Disorder

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Between Square and Circle

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.

ITU-R P (2012/02)

Κλασσική Θεωρία Ελέγχου


d 2 y dt 2 xdy dt + d2 x


Solutions - Chapter 4

m 1, m 2 F 12, F 21 F12 = F 21

ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ


= 0.927rad, t = 1.16ms

Εισαγωγή στην Τεχνολογία Αυτοματισμού

TeSys contactors a.c. coils for 3-pole contactors LC1-D

ITU-R P (2012/02) &' (

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

March 14, ( ) March 14, / 52

!"#$ % &# &%#'()(! $ * +



... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*




ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)

Review of Single-Phase AC Circuits

MICROMASTER Vector MIDIMASTER Vector

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &


!"!# ""$ %%"" %$" &" %" "!'! " #$!

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

M p f(p, q) = (p + q) O(1)

-! " #!$ %& ' %( #! )! ' 2003

الهندسة ( )( ) مذكرة رقم 14 :ملخص لدرس:الجداءالسلمي مع تمارين وأمثلةمحلولة اھافواراتاة ارس : ( ) ( ) I. #"ر! :#"! 1 :ااءا&%$: v

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

! " #$% & '()()*+.,/0.

A 1 A 2 A 3 B 1 B 2 B 3


ITU-R P ITU-R P (ITU-R 204/3 ( )

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

SAW FILTER - RF RF SAW FILTER


ITU-R P (2009/10)

Answers to practice exercises

και ότι όλες οι τάσεις ή ρεύματα που αναπτύσσονται σε ένα κύκλωμα έχουν την ίδια συχνότητα ω. Οπότε για τον πυκνωτή

Erkki Mäkinen ja Timo Poranen Algoritmit

Diamond platforms for nanoscale photonics and metrology


DC BOOKS. a-pl½-z-v iao-w Da-c-n

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

(... )..!, ".. (! ) # - $ % % $ & % 2007

Spectrum Representation (5A) Young Won Lim 11/3/16

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Cable Systems - Postive/Negative Seq Impedance

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

Γραμμές Μεταφοράς και Ακεραιότητα Σήματος

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων


Το άτομο του Υδρογόνου

Διευθύνοντα Μέλη του mathematica.gr

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων


(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

m i N 1 F i = j i F ij + F x

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές

= (2)det (1)det ( 5)det 1 2. u

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

HONDA. Έτος κατασκευής

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA



Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

19 ΙΑΦΟΡΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Η μέθοδος του κινουμένου τριάκμου

Περιεχόμενα. A(x 1, x 2 )

Transcript:

01

π π

4

1

2

I(t) C V C L V L C L Q(t) Φ(t) (L, C) Q(t) V C + V L =0 Q(t) C + Q(t) Ld2 =0 dt 2 d 2 Q(t) + Q(t) dt 2 LC =0 d 2 Q(t) + ω dt 0Q(t) 2 =0 2 Q(t) ω0 2 = 1 LC

V L + V C =0 d 2 Φ(t) + Φ(t) dt 2 LC =0 d 2 Φ(t) + ω dt 0Φ(t) 2 =0 2 Φ(t) ω 2 0 = 1 LC

1) 2) I(t) C C V C L Z 0 = 50 Ω L R V L V R C L Z 0 = 50 Ω R Q(t) Ω R V R = dq(t) R + V dt N(t) V N (t)

d 2 Q(t) dt 2 d 2 Q(t) dt 2 + dq(t) R dt L + Q(t) LC =0 +2α dq(t) dt + ω 2 0Q(t) =0 α = R 2L ω2 0 = 1 ζ LC ζ = α ω 0 = R 2 L C = R 2ω 0 C = ω 0 = 1

P d P d = V 2 2R E c E c = 1 4 V 2 C E i V 2 E i = 1 4 ω0l 2 = ω 0 1 4 V 2 C + 1 4 V 2 /(ω 2 0L) V 2 2R = ω 0 RC = ω 0 τ τ

= ω 0 ω 0 = f 0 f 0 Z(ω) = Im[Z(ω)] Re[Z(ω)] Y (ω) = Im[Y (ω)] Re[Y (ω)]

C c Z 0 C L C c Z 0 Z 0 Ω C c Z 0 Ω Y s Y s = jωc c 1 jq 1+q 2 q = ωz 0 C c Re[Y s ] q2 Z 0

q 1 Q = ω 0C Re[Y s ] Q = ω 0CZ 0 q 2 ω 0 Z c ω 0 = Z c = 1 LC L C C = 1 ω 0 Z c Q = 1 q 2 Z 0 Z c Q 1 q 2 C c = 1 ω 0 Z 0 Q

Ω 10 10 ϵ = ϵ r + iϵ i i = 1

A d! =! r + i! i C r G shunt C r G shunt Y c = jωc C ω j j = i C pp = ϵ A d ϵ A d

Y cpp = jωϵ A d Y cpp = jω(ϵ r + iϵ i ) A d A Y cpp = jωϵ r d + jiωϵ A i d Y cpp = jωϵ r A d + ωϵ i A d Y cpp = jωc r + G E D G shunt cpp = Im[Y cpp] Re[Y cpp ] cpp = ϵ r = 1 ϵ i tan δ

A 1 A 2 C 1 C 2 d! 1 =! 1r + i! 1i! 2 =! 2r + i! 2i G 1 G 2 E D ϵ 1,2 C 1,2 G 1,2 tan δ E D ϵ 1 ϵ 2 E D

A 1,A 2 C 1 = ϵ 1r A 1 d G 1 = tanδ 1 C 1 ω C 2 = ϵ 2r A 2 d G 2 = tanδ 2 C 2 ω C tot G tot A 1 C tot = C 1 + C 2 = ϵ 1r d + ϵ A 2 2r d G tot = G 1 + G 2 =tanδ 1 C 1 ω +tanδ 2 C 2 ω Z cp = G tot + jωc tot

Z cp cp = Im[Z cp] Re[Z cp ] cp = C tot tan δ 1 C 1 +tanδ 2 C 2 1 = C 1 tan δ 1 + C 2 tan δ 2 cp C tot C tot 1 = C 1 1 + C 2 1 cp C tot Q 1 C tot Q 2 1 = p 1 + p 2 cp Q 1 Q 2 p i = C i C tot 10 7 10 5

1 µ µ ϵ 1 ϵ 2 E D Y cs1 = jωc 1 + ωc 1 tan δ 1 = G 1 + jωc 1 Y cs2 = jωc 2 + ωc 2 tan δ 2 = G 2 + jωc 2

A C 1 G 1 d 1! 1 =! 1r + i! 1i d 2! 2 =! 2r + i! 2i C 2 G 2 E D ϵ 1,2 C 1,2 G 1,2

C 1,2 = ϵ 1,2r A d 1,2 Z tot Z tot = 1 Y cs1 + 1 Y cs2 Z tot C 2 tan δ 1 + C 1 tan δ 2 + j(c 1 + C 2 ) ωc 1 C 2 C tot = C 1C 2 C 1 +C 2 1 = Re[Z tot] tots Im[Z tot ] 1 = p 1 tan δ 1 + p 2 tan δ 2 tots p i = Ctot C i p 1 = C tot C 1 = C 2 C 1 + C 2 = ( ϵ 2r A/d 2 = 1+ ϵ ) 1 1r d 2 ϵ 1r A/d 1 + ϵ 2r A/d 2 ϵ 2r d 1

A L' l µ = µ r + iµ i R l A µ n L R E D B H n

µ A l L = µn 2 Al Z solenoid = jωl = jωµn 2 Al = jω(µ r +iµ i )n 2 Al = ωµ i n 2 Al+jωµ r n 2 Al = R+jωL solenoid = Im[Z solenoid] Re[Z solenoid ] solenoid = µ r = 1 µ i tan δ l tan δ l = µ i µ r B H

µ 1 = µ 1r + iµ 1i A L 1 l 1 R 1 l 2 L 2 µ 2 = µ 2r + iµ 2i R 2 µ 1,2 B H L 1,2 R 1,2 L 1,2 = µ r 1,2 n 2 Al 1,2 R 1,2 = ω tan δ l 1,2 L 1,2 L tot = n 2 A(µ r 1 l 1 + µ r 2 l 2 ) R tot = ωn 2 A(tan δ l 1 µ r 1 l 1 +tanδ l 2 µ r 2 l 2 )

µ 1 = µ 1r + iµ 1i A 1 l L 1 R 1 L 2 R 2 A µ 2 = µ 2r + iµ 2 2i µ 1,2 B H L 1,2 R 1,2 1 = Re[Z tot] tots Im[Z tot ] 1 = p 1 tan δ l 1 + p 2 tan δ l 2 tots B H p i = µ r i l i /(Σµ r j l j )

B H L 1,2 = µ r 1,2 n 2 A 1,2 l R 1,2 = ω tan δ 1,2 L 1,2 Z 1,2 = R 1,2 + jωl 1,2 Z net = Z 1 Z 2 Z 1 + Z 2 Z net ω2 L 2 1R 2 + ω 2 L 2 2R 1 + jω 3 L 1 L 2 (L 1 + L 2 ) ω 2 (L 1 + L 2 ) 2 1 totp = Re[Z tot] Im[Z tot ] 1 totp = p 2 tan δ l 2 + p 1 tan δ l 1 L tot = L 1L 2 L 1 +L 2 p i = L tot L i

p 1 = L tot L 1 p 1 = ( ) 1 µr 1 A 1 +1 µ r 2 A 2

3

H ϵ r W t Z c Z c = 60 ( ) 4H ln ϵr.67πw(.8+ t ) W

A B C

t W H 2! r H 2 H ϵ r W t t W Z c = 60 ( ) 4H ln ϵr.54πw Ω ϵ r =10

f c,mn a b f c,mn = c (mπ ) 2 ( nπ 2π + µ r ϵ r a b ) 2 c µ r ϵ r m, n

a b c ˆb, ĉ f c, = c 2a µ r ϵ r

a b c f mnl = c (mπ ) 2 ( nπ 2π + µ r ϵ r a b ) 2 + ( lπ c ) 2 c µ r ϵ r m, n l 101 c>a>b 101 c a ϵ r =10

a 1.2mm Al b 25mm Al Vacuum λ/2 Al/Nb 1mm Al/Nb Al/Nb Al/Nb 1mm Sapphire Sapphire c 25mm Al SMA Sapphire Wire bonds Al Wire bonds SMA

L c V U tot L = 1 2 cv 2 t L U surf = 1 2 Lt ϵ E surf 2 dw E surf

σ E surf = σ ϵ 0 ϵ r E surf Q L W E surf = σ ϵ 0 ϵ r = Q LW ϵ 0 ϵ r Q L = cv E surf = cv Wϵ 0 ϵ r U surf = 1 2 Lt ϵ E surf 2 dw U surf = 1 ( cv 2 LtW ϵ 0ϵ r Wϵ 0 ϵ r U surf = 1 t (cv ) 2 L 2 Wϵ 0 ϵ r ) 2

p surf = p surf = p surf = ( )( ) 1 Usurf Utot L L ( )( 1 t 1 (cv ) 2 2 Wϵ 0 ϵ r 2 cv 2 tc Wϵ 0 ϵ r ) 1 t w ϵ r c l c Z c = l c v = 1 lc c = 1 Z c v

p surf = t Wϵ 0 ϵ r Z c v c ϵ r v = c ϵr p surf = t Wϵ 0 ϵr Z c c µ Z c =50Ω 10 5

P surface [10-5 ] 4 3 2 1 Theory Simulation t=1nm 0 0 100 200 300 400 500 Center Trace Width [µm] 600 µ µ

U bulk = 1 2 ϵ 0 ϵ r E 2 dv U vac = 1 2 ϵ 0 E 2 dv p E p E = p E = p E = U bulk U vac + U bulk 1 ϵ0 ϵ 2 r E 2 dv 1 ϵ0 E 2 2 dv + 1 ϵ0 ϵ 2 r E 2 dv ϵ r 1+ϵ r ϵ r =10 p E =.91 p E =.92 α X k = ωµ 0 λ 0 = ωl k

ω µ 0 λ 0 µ 0 λ 0 L k w l k = L k w = µ 0λ 0 w l k l g α = l k l g l g 1 v = lg c g Z 0 = l g c g l g = Z 0 ϵr c α sl = l k l g = µ 0λ 0 c wz 0 ϵr

Kinetic Inductance Ratio [10-3 ] 1.6 1.2 0.8 0.4 0.0 100 200 300 400 Theory Simulation λ 0 =50nm 500 600 Center Trace Width [µm] λ 0 =50 ϵ r =6 Z 0

( πx ) ( πy ) E x,t EM (x, y, z) = E 0x cos sin e j(βz ωt) ( a b πx ) ( πy ) E y,tem (x, y, z) = E 0y sin cos e j(βz ωt) ( a b πx ) ( πy ) H x,t EM (x, y, z) = H 0x sin cos e j(βz ωt) ( a b πx ) ( πy ) H y,tem (x, y, z) = H 0y cos sin e j(βz ωt) a b β β = k = 2π λ mn mn mn E x,t E (x, y, z) = jωµnπ A kcb 2 mn cos E y,te (x, y, z) = jωµnπ kca A 2 mn sin H x,t E (x, y, z) = jβmπ kca A 2 mn sin H y,te (x, y, z) = jβmπ k 2 cb A mn cos ( mπx a ( mπx a ( mπx a ( mπx a ) sin ) cos ( nπy b ( nπy b ( nπy ) cos ) sin b ( nπy b ) e j(βz ωt) ) e j(βz ωt) ) e j(βz ωt) ) e j(βz ωt)

mn E x,t M (x, y, z) = jβmπ k 2 ca B mn cos E y,tm (x, y, z) = jβnπ k 2 cb B mn sin H x,t M (x, y, z) = jωϵmπ B kcb 2 mn sin H y,tm (x, y, z) = jωϵmπ kca B 2 mn cos ( mπx a ( mπx a ( mπx a ( mπx a ) sin ) cos ) cos ( nπy b ( nπy b ( nπy b ( nπy b ) sin ) e j(βz ωt) ) e j(βz ωt) ) e j(βz ωt) ) e j(βz ωt) k k c β = k 2 k 2 c k<k c O = a b 0 0 E TEM E TE/TM dxdy

11 11 11 E x,hw (x, y, z) = 0 E y,hw (x, y, z) = E 0y Θ(y b ( ) (2m +1)π 2 )cos z e jωt L H x,hw (x, y, z) = H y,hw (x, y, z) =0 Θ(y b ) 2 t =0 11 Q c Q c e 2βz z Q c

a Q couple 10 8 10 6 10 4 10 2 10 0 0 20 Room Temperature Data Simulation Evanescent Coupling TM 11 40 Distance [mils] 60 80 b Q couple 10 9 10 7 10 5 10 3 10 1 400 Evanescent coupling TM 11 Evanescent coupling TE 01 Simulation First generation stripline 800 1200 Gap [microns] 1600 S 21 2 β β 2β =5.2mm 1 2β =2.7mm 1 2β =8.2mm 1 2β =8.3mm 1

ϵ r =10 2β 8.2 1 01 ϵ r 10 01 2β =5.2mm 1

2β meas = 2.7mm 1 1 Q tot = k p k Q k Ω

Total Quality Factor [10 5 ] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 Temperature [K] 0.8 1.0 1200 µ 265, 000 500, 000

Q i Q i 1 Q tot = 2 Q c + 1 Q i Q i = ( 2 1 ) 1 Q c Q tot 2 Q c 1 Q tot

R s X s 1 Q tot +2j df f = α ωµλ 0 (R s + jδx s ) α ω λ 0 δ α T c

a [ppm] df f 0 90 180 270 360 450 0 200 400 600 800 Temperature [mk] 1000 b [ppm] df f 0 20 40 60 80 100 120 0 200 400 600 800 Temperature [mk] 1000 α total = 1.06 10 3 α outer =2.4 10 4 α center =.82 10 4 µ.8 10 3.6 10 3 µ α c.8 10 3

50mm 6B;m`2 jxry, a2+qm/ ;2M2` ibqm bi`bthbm2 /2bB;MX AM i?2 b2+qm/ ;2M2` ibqm Q7 i?2 bi`bthbm2?qh/2`b i?2 K DQ` Bbbm2b iq //`2bb r2`2 i?2 +QmTHBM; iq i?2 `2bQM iq`b b r2hh b i?2 7`2[m2M+v bi #BHBiv Q7 i?2 `2bQM iq`bx hq //`2bb i?2 +QmTHBM; BM@ /BmK ;`QQp2b r2`2 //2/ iq BKT`Qp2 +QMi +i #2ir22M i?2 irq? Hp2bX HbQ- i?2 +mi r b MQr TH +2 i i?2 iqt Q7 i?2 `2+i M;mH ` bi`m+im`2 ` i?2` i? M i i?2 KB//H2X hq //`2bb 7`2[m2M+v bi #BHBiv i?2 KB+`Qr p2 H mm+?2`b r2`2 /2bB;M2/ iq #2 Qp2` i?2 +?BT bq i? i BM/BmK b r2hh b TQ;Q TBMb U#2`vHHBmK@+QTT2` +2M@ i2`v +QmH/ +H KT i?2 2/;2b Q7 i?2 +?BTX lm7q`imm i2hv- HH Q7 i?2b2 +? M;2b /B/ MQi BKT`Qp2 i?2 +QmTHBM; MQ` i?2 7`2[m2M+v bi #BHBivX 6`QK i?bb r2 +QM+Hm/2 i? i? pbm; i`m2 _6 b?q`i Bb M2+2bb `v 7Q`?B;? [m HBiv 7 +iq` `2bQM iq`b BM i?bb /2bB;M b r2hh b Qi?2` /2bB;Mb i? i /`Bp2 +m``2mi +`Qbb M BMi2`7 +2 bbkb@ H `Hv iq r? i Bb 7QmM/ #v Qi?2`b (dj)x ek

µs

4

H JC = ω c a a + ω a σ z 2 + g(aσ + + a σ ) ω c a, a ω a σ z σ + σ g, e σ z = e e g g σ + = e g σ = g e

g κ γ g κ, γ 2g n

1 2

I J V J I J = I 0 sin δ(t) V J = 2e δ(t)

a b c V J s I s! l! r I J I J V J δ = δ l δ r L J

I 0 δ(t) = δ l δ r e δ(t) δ(t) I J = I 0 cos δ(t) δ(t) δ(t) = I J I 0 cos δ(t) δ(t) V J = 2e δ(t) = 2eI 0 cos δ(t) I J V J I J L J L J = 2eI 0 cos δ(t)

µ µ

q φ H LC = q2 2C + φ2 2L ω Z ω = 1 LC Z = L C q φ a a H LC = ω(a a + 1 /2) a a [a, a ]=1 φ =Φ ZPF (a + a ) q = iq ZPF (a a )

Z Φ ZPF = 2 Q ZPF = 2 Z ( ) H T = ω a (a a + 1 /2) E J cos(φ)+ φ2 2 E J = I 0Φ 0 2π I 0 Φ 0 = h 2e cos φ H T = ω a a a E J 24 φ4 + O(φ 6 ) φ L L J H T ω a a a E J 24 Φ4 ZPF(a + a ) 4

a) b) L J! q C l! Mg E J L J C φ 1 H T ω a a a α 2 a 2 a 2 ω a = ω a α α = E J 12 Φ4 ZPF α α = E 0 E 1

φ q g, e H Tr = ω a e e H T

2C c L J C! C L 2C c L J C Σ C C H LC H O H tot = H T + H LC + H O H T H T ω T a a α 2 a 2 a 2 H LC H LC = ω r (b b + 1 /2)

q T q LC H O = q T q LC C net C net C net = CC Σ + C Σ C C + C C C C C H O = ( iq T,ZPF (a a ) )( iq r,zp F (b b ) ) 1 C net H O H O,rwa = Q T,ZPFQ r,zp F C net (a b + ab (ab + a b )) = Q T,ZPFQ r,zp F C net (a b + ab ) H O,rwa = g(a b + ab ) g g = 1 2 Z T Z LC C net

g ω g ω C c 2 C Σ C C =320 C Σ =70 C c = 5 H tot ω r (b b + 1 /2)+ ω T a a α 2 a 2 a 2 + g(a b + ab ) g g γ T,κ r γ T κ r g 100 γ T 3 κ r 24

a b c d e 6B;m`2 9Xd, ak HH CmM+iBQM UEJ/EC 1V amt2`+qm/m+ibm; Zm#BibX V h?2 Q`B;BM H bk HH DmM+iBQM bmt2`+qm/m+ibm; [m#bi, i?2 *QQT2` T B` #QtX #V h?2 QzbT`BM; Q7 i?2 *QQT2` T B` #Qt `2 i?2 + T +BiBp2Hv b?mmi2/ CQb2T?bQM DmM+iBQM- i` MbKQM M/ +V i?2 BM/m+iBp2Hv b?mmi2/ CQb2T?bQM DmM+iBQM- ~mtqmbmkx /V M/ 2V `2 i?2 j. p2`bbqmb Q7 i?2 i` MbKQM M/ ~mtqmbmk r?b+? /m2 iq i?2b` r2hh /2}M2/ 2H2+@ i`qk ;M2iB+ 2MpB`QMK2Mi? p2- i i?2 r`bibm; Q7 i?bb i?2bbb- i?2 #2bi +Q?2`2M+2 M/ 2M2`;v `2H t ibqm ibk2b Q7 Mv bmt2`+qm/m+ibm; [m#bix 3j

= ω r ω T g H tot ω T (A A+ 1 /2)+ ω r(b B+ 1 /2) α T 2 A 2 A 2 α r 2 B 2 B 2 χa AB B χ 2g2,α T E c,α r 0 φ H 4 = i (ω i a a α i 2 a 2 a 2 ) χ ij a ab b i,j i ω i α i χ ij i j

Y (ω) Y (ω i )=0 L Z c,i = i C i Y (ω) =jωc i + 1 jωl i + 1 R i Y (ω) =j(c i + 1 ω 2 L i )

ω 2 i = 1 L i C i L i = 1 ω 2 i C i Y (ω) =2jC Z c,i = 1 ω i C i C i C = Im[Y (ω)] 2 Z c,i = 2 ω i Im[Y (ω i )] Y (ω) L J C j R j

a b c ω)] (ms) 1 2 3 L j

φ H m = ω m a a α m a 2 a 2 ω m α m ω m = ω 0 α m α m = e2 Z 2 c L j

χ ij 2 α i α j

5

ϵ r, 9.3 ϵ r, 11.5 µ µ µ

.5 µ

A bridge B substrate substrate C D substrate substrate

0 10 8

0 35

< n > ω κ P =< n> ωκ

300K 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 A B 4K 313 LNF 20dB 20dB 359D CalTech 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20dB 20mK LP 10GHz Ecco 14_1 30dB 30dB 30dB 30dB 30dB 30dB LP 12GHz 10dB 10dB 10dB LP 10GHz LP 10GHz Ecco 14_2 LP 10GHz LP 10GHz LP 10GHz LP 12GHz 10dB 20dB 10dB 20dB 10dB 10dB Ecco 14_4 Ecco 14_2 10dB Ecco 14_7 10dB Ecco 8 Ecco 7 Ecco 4 Ecco 5 180-H Ecco C 10dB 180-H S S D_1_re FS_2 S S JPC 180-H JPSX 43 I I

1

AWG5014C D 1 I 1 Q 1 I 2 Q 2 D 2 D 3 RF S S Quantum DUT Reference Signal LO AlazarTech

21 20 10 3 S 21 2 = P 2 P 1

S 21 2 I = VG tot P 1 = I2 4G 1 P 2 = I2 G G 2 2 tot S 21 2 = I 2 4G 1 I 2 G 2 tot G 2 S 21 2 = G2 tot 4G 1 G 2 S 21 2 = Q 1Q 2 4Q 2 tot S 21 2 = Q2 C 4Q 2 tot Q C = 2Q tot S 21

g < 1 χ a, b a, b H disp = χa ab b

Amplitude a Readout spectrum f C e χ f C g b Frequency Dispersive readout qubit spectrum

χ

Signal (mv) 100 80 60 40 20 Qubit excited state Qubit ground state 0-4 -2 0 2 4 Readout power (dbm) 6 8

n 1

6

Z 0 cold bath 1%

ω ds Ω f 0 1 ω ds ω dc Ω

a Storage cavity Cooling cavity 1 f c f s,1 2 f c 0 f s,0 1 As κ s χ sc κ c b Ω S Ω C 1,0 Ω C!! sc... (n!1)!! sc n!! sc (n +1)!! sc 1,1 Ω S 0,1... 0,n-1 0,n 0,n+1 0,0 A s χ sc Ω Ω 0, 0

ω dc = ω 0 c χ sc Ω Ω κ s κ

α α α κ κ κ κ κ Ω κ κ κ n 1 κ κ = κ = κ κ Ω κ κ Ω κ

! BC 1,0 1,α! AB!! 0,α 0,0! DA κ = ( 1 κ + 1 κ + 1 ) 1 Ω Ω κ κ κ 3 κ κ κ κ n

κ P (1) = κ P (0) P (1) P (1) + P (0) = 1 P (1) = ( 1+ κ ) 1 κ P (1) ( P (1) = 1+ κ ) n 1 κ n =3 κ κ P (1) 0.9 H/ = ω s b b + ω c c c A s 2 b 2 b 2 A c 2 c 2 c 2 χ sc b bc c

b, c b, c χ sc >κ c κ s A s κ s Ω (b +b) Ω (c + c) Ω Ω U s = (ib bω ds t) U s = (ic cω dc t) s = ω s ω ds c = ω c ω dc ω ds ω dc H/ = s b b + c c c A s 2 b 2 b 2 A c 2 c 2 c 2 χ sc b bc c +Ω (b + b)+ω (c + c) κ s κ c ρ = i[h,ρ]+κ s D[b]ρ + κ c D[c]ρ

κ κ/9 ω d =(ωc g +ωc)/2 e I I m σ I m σ = 1 Tm ηκt m α g (t) α e (t) T 2 dt 2ηκT m n sin m 0 ( ) θ 2 T m η κ α e,g (t) n

α g,α e θ 2σ

( Im σ ) 2 ( ) θ 2ηκT m n sin 2 Γ φ 2 T A = exp(γ φ T ) ( ( θ A = exp 2ηκT m n sin 2 2 A = exp(γt )exp ) ) T ( 2κT m n sin 2 ( θ 2 )) χ κ sin 2 ( θ 2 ) χ2 χ 2 + κ 2 Ae Bn B = 2κT m sin 2 ( θ 2) P d P d De CP d B = C ) χ n = (2κT 2 1 m CP χ 2 + κ 2 d

C π 2 ω d π 2 C ω d =(ωc g + ωc)/2 e

a b Readout Signal (µv) R ˆx (! 2 ) 300 250 200 150 0 Cavity Drive 3! 2 2µs 500 ns R ˆx (!) 5! 7! 9! 2 2 2 Rotation Angle (radians) Measurement 11! 2 π /2 (ωc g + ωc)/2 e κ 1 c 100 π /2

AC Stark Cal. Amplitude (uv) 70 60 50 40 30 20 10 0 10-7 10-6 10-5 10-4 Power (Watts) C

A s χ sc ω i A i χ ij H/ = ω q a a + ω s b b + ω c c c A q 2 a 2 a 2 A s 2 b 2 b 2 A c 2 c 2 c 2 χ qs a ab b χ qc a ac c χ sc b bc c

Readout (µv) 400 380 360 340 320 300 280 8.480 f s,1 2 f s,0 2 2 f s,0 1 8.485 8.490 8.495 Frequency (GHz) 8.500 Data Model f 0 2 2 f 1 2 f 0 1 A s κ s f 0 1 f i = ω i/2π

Readout (µv) 6 4 2 f c 3 f c 2 χ sc f c 1 f c 0 Data Fit 0 9.312 9.316 9.320 Frequency (GHz) n 1.5 χ sc (2π) 1 =2.59 ±.06 f 0 2 2 f 0 1 i = A i/2π s =4.0 c =300 q =26.1 Ω

µ n 1.5 χ sc/2π =2.59 ±.06 χ qs µ χ qc π/2 µ χ ij = χ ij/2π i = A i/2π

f q 7249.46 ±.01 f s 8493.73 ±.02 f c 9320.11 ±.02 q 26.1 ±.3 s 4.0 ±.1 c 300 ± 80 χ qs 21.1 ±.1 χ qc 4.9 ±.1 χ sc 2.59 ±.06 κ s 65 ± 5 κ c 1.7 ±.1 µm

π χ sc >κ c κ s A s κ s π fq n fq 0 nχ qs π π π

n 2 n 2 π π S π S = (1+ π 8 exp ( (χ qs /σ w ) 2)) 1 σ w χ qs χ qs π χ qs =21.1 σ w =4 π π N =0 N =1

Readout (mv) 16 12 8 4 N0 N1 N2 N3 N4 0 0 2000 4000 6000 Amplitude (DAC) 8000 π π

Ω κ f s,0 1 Ω κ κ c

b c Probability P drive (db) 5 0-5 -10 1.0 0.5 0.0 a Stabilization drives ON Stabilization time (Ts) -1 0 1 2 3 Drive frequency ( sc ) 300 ns 1.0 0.8 0.6 0.4 0.2 0.0 Probability -1.5dB -8.5dB P drive (db) detect N in storage N R ˆx,! Probability 5 0-5 -10 1.0 0.5 0.0 Measurement N=0 N=1-1 0 1 2 3 Drive frequency ( sc ) -1.5dB -8.5dB T s π =ω 0 c ω χ /χ 1

π σ t =40 f,0 1 κ c =ω 0 ω χ sc = χ sc 1.5χ sc

0.993 ± 0.005 0.96 ± 0.03 κ c /κ (q,s) A (q,s)/a c χ (q,s)c/κ c N P (N) N =0 N =3 P (0) = 0.96 ± 0.03 P (1) = 0.63 ± 0.02

Q N (α) = 1 π N D α Ψ 2 D α Ψ Ψ N = 3 W (α) = 2 π ( 1) n Q n (α) n=0

χ qs π π σ t =5 P (0) = 0.37 ± 0.03 P (1) = 0.63 ± 0.02 N = 2, 3

p p = P (0) P (1) P (0)+P (1) B T

Wigner Tomography a Stabilization drives ON D!! N R ˆx,! Measurement Stabilization time (Ts) 300 ns b 0.3 α 0.0 Parity -0.3 c α α Parity α α N =1 N =0 (α) (α) N =1

T = hf 0 1 2k tanh 1 (p) h k 0.77 ± 0.06 Ω p =0.95 ±.04 p = 0.26 ± 0.04 P (1) > 0.99

detect N in storage a Stabilization drives ON Stabilization time (Ts) b P drive (db) 5 0-5 300 ns N R ˆx,! Measurement 1.0 0.0-1.0 Polarization c d Polarization Polarization -10 1.0 0.0-1.0-1 1.0 0.0-1.0 0.0 0 1 2 3 Normalized detuning ( sc ) region of T<0 0.5 1.0 40 80 120 160 200 Stabilization time (µs) -1.5 db -8.5 db T s π =ωc 0 ω dc χ /χ sc 1

κ c/κ s 25 26 κ g 2 g 2 κ 2 2 χ κ 2α P (1) >.87 p<.74

P (1) >.99

7

ω N C = ω0 C Nχ SC =1, =0 N > 1

ω 00 c ω NN c

A

2

80%

680µ 2 220µ 2 2 2

B