|
|
- Ευρώπη Μεταξάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 1
20 µ
21
22
23
24
25 H = p m + mω x x, p m, ω H = ω ( P + X ) P = p/ mω X = x/ mω p X = x x ZPF, P = p ZPF x ZPF =,p mω mω ZPF = P = 1 i (a a ) X = 1 (a + a ) [ a, a ] = H = ωa a H n = ωn n n
26 a n = n n 1 a n = n +1 n +1 a a n = n n. a) b) p x M C k q L p M k x φ q L C X P i XP T X = e P X i PX T P = e [X, P] = constant e B e A e B = e A+B [A, B] =
27 D X, P = T 1 X T PT1 X = ( XP PX) ei D X, P = e ( X i P)a ( X +i P)a X P a) b) c) d) α = X + i P D α = e α a αa α = D α 0 α = α e iφ n
28 α = e α α n n n! n α(t) = e iht α 0 = e iωa a e α 0 α0 n n n! = e α 0 n = α 0 e iωt n (α 0 e iωt ) n n! n α ω n α I Q ( ) ( ) a+a ω I =cosωt a a sin ωt i ( ) ( ) Q = sin ωt cos ωt a a i a+a
29 a) b) Q ωt ωt I φ = ωt I Q P = e iπa a =( 1) a a. P P ±1 Pa = ap Pa = a P PD = D P ψ cat = N ( α + e iφ α ) 1 N = (1+e α )cosφ
30 α α = e α N 1 φ =0,π ψ even = N + ( α + α ) ψ even = N ( α α ) P ψ even = + ψ even P ψ odd = ψ odd H = 1 L ˆφ + 1 C ˆq φ q
31 ρ = m,n c mn m n m, n c mn = n n n. 0 n N N a m a n m, n N = 15
32 = 1 π d α α α 1 π d α α α = 1 π n,m 1 n m n!m! d αe α α n (α ) m d αe α α n (α ) m = πγ( n+m +1)δ nm
33 a) b) W(α) c) Q(α) 1 π d α α α = n,m Γ( n+m +1) n!m! δ nm n m = n n n = α α = 0 C(λ) C a C s C a (λ) = e λ a e λa C s (λ) = e λa λ a
34 Q(α) =F{C a (λ)} W (α) =F{C s (λ)} F{C(λ)} = 1 π d λc(λ)e αλ α λ p(α) = α ρ α ρ α Q(α) = 1 π α ρ α ρ ψ = N ( α + α ) α α Q(α) = 1 α ρ α = 1 π π 0 D αρd α 0
35 a) b) W(α) Q(α) ψ = N ( β β ) β =
36 a) b) W(α) W(α) β β =4 n n =4 Re(α) = P D α W (α) = π Tr[D αρd α P ]= π D αpd α = π P α P α D α PD α P π α ±1
37 ρ =π d αw (α)p α Tr[ρO(a, a )] = d αw (α)o(α). O(α) =Tr[D αo(a, a )D α P ] β β W (α) = π e α β F = ψ ρ ψ = 1 π W (α)w (α)d α W t (α) = ψ t P α ψ t F =Tr[ρ t ρ] ρ ρ
38 I (α ) Q (α ) I Q α = α + iα I (α )= dα W (α) Q (α )= dα W (α). P ρ = ρp C s (λ) =Tr[D λ ρ]=tr[d λ /ρd λ /P ]= π W (λ/). ρ W (α) = 1 π F{W ( λ )} Q(α) = d αe α W (α) Q(α) =e α W (α).
39 C s (λ) =Tr[ρD λ ] β + β n (n =0 ) 0 1
40 a σ = ( ) a σ + = ( ) X P N σ x = ( ) σ y = ( ) 0 i i 0 σ z = ( ) σ + σ = 1 σ z = e e = ( ) e σ x, σ y, σ z N N S = i η i log η i η i
41 N η i = 1 N S q = N i 1 N log N = N N η i = 1 N+1 N S c = N+1 i 1 N +1 log (N +1)=log (N +1)
42 a) b) log (N +1) N Γ max Γ max Γ 0 Γ /Γ 0 Γ 0 4Γ 0
43 3
44 I = I c sin πφ Φ 0 Φ 0 I c ϕ =πφ/φ 0
45 ( ) H = ω q a a E J cos ϕ + ϕ E J = I cφ 0 π ϕ = ϕ q (a + a ) ϕ q E J ϕ 6 q ω 70 1 H = ω q a a E J 4 ϕ4 + O(ϕ 6 ) ( ω q a a ) E J 4 ϕ4 q a + a 4 H = ω qa a α a a α = E J 4 ϕ 4 q ω q = ω q α α E = E n+1 E n = ω q α 0, 1 H = ω q e e E C E J H/ = 8E C E J a a E C (a a)
46 a) b) c) C q π 0 π L J C φ 1 H = ω r a a + ω q e e + g(a + a )σ x
47 a e H = ω r a a + ω q e e + g(aσ + + a σ ). a, σ σ +,a κ γ g g κ, γ g ω r ω q = H = (ω r χ e e )a a + ω q e e χ = g χ
48 γ,κ χ nκ, γ n = a a g H quasi = H disp Ka a σ z K = g4 3 σ z = e e Ka a σ z K a a Ka a e e K
49 ω q a) b) ω c freq ω q 3 ω c e ω q 5 ω q 4 ω q ω q 3 0 ω q 1 ω q ω c e ω c g ω c g ω c g ω c g ω q 1 ω q 0 ω q ω c e ω c e H = i=q,r ( ) ω i a i a i E J cos ϕ + ϕ a q,r ϕ = i=q,r ϕ i(a i + a i ) ϕ q >> ϕ r ϕ H = ( ω i a i a i K i i=q,r a i a i ) χa qa q a ra r K i = E Jϕ 4 i χ = E J ϕ qϕ r K r
50 K r α = K q ϕ q ϕ r ϕ = i ϕ i(a i + a i ) H 4 = i ( ω i a i a i K i a i a i ) χ ij a i a ia j a j i,j>i K i = E Jϕ 4 i χ ij = E J ϕ i ϕ j K i ϕ 4 i χ ij χ ϕ H 6 = H 4 + i K i 3 6 a i a 3 i + i, j χ ij a i a i a j a j K i = E Jϕ 6 i 6 χ ij = E Jϕ 4 i ϕ i K χ n K i (n) (K + K 3 K 3 n i) χ ij (n i ) (χ ij + χ ij χ ij n i)
51 ω i /π O(ϕ 4 ) K i /π 1 4!( 4 )( ) EJ ϕ 4 i O(ϕ 4 ) χ ij /π 1 4!( 4 1)( 3 1)( 1)( 1 1) EJ ϕ i ϕ j O(ϕ 6 ) K i/π 1 6!( 6 3)( 3 3) EJ ϕ 6 i O(ϕ 6 ) χ ij/π 1 6!( 6 )( 4 )( 1)( 1 1) EJ ϕ i ϕ 4 j E J ϕ = ϕ i (a i + a i ) cos ϕ O(φ 6 )
52
53 a).1 mm phase qubit transmission line resonator 00 µm b) compact resonator Josephson junctions transmon qubit 1 µm 00 µm c) three-dimensional cavity resonator 50 mm 50 µm transmon qubit 6B;m` jxj, _bqm iq`b 7Q` +B`+mBi Z1.X a?qrm Bb b KTH Q7 i? p `Biv Q7 `bqm iq` /bb;mb BMpbiB; i/ 7Q` +B`+mBi Z1.X q?bh i? i` MbKBbbBQM HBM `b@ QM iq` U V M/ +QKT +i `bqm iq` U#V ` 7 #`B+ i/ mbbm; T?QiQ@ Q` H+i`QM # K HBi?Q;` T?v- i? i?`@/bkmbbqm H + pbiv `bqm iq` U+V Bb T`Q/m+/ 7`QK K +?BM/ HmKBMmKX LQiB+ i? HM;i? b+ Hb bbq+b i/ rbi? +? Q7 i?b p `B Mib- ` M;BM; Qp` irq Q`/`b Q7 K ;MBim/X _/m+bm; i? H+i`Q@K ;MiB+ }H/ /MbBiv BM `b@ QM iq` KQ/b?HTb HBKBi i? bm`7 + HQbbb `btqmbb#h 7Q` HBKBi/ `bqm iq` +Q?`@ M+- K FBM; #Qt@KQ/ `bqm M+b M B/ H TH i7q`k 7Q` +` ibm;?b;?hv +Q?`Mi `bqm iq` KQ/bX _T`Q/m+/ 7`QK (>Q7?BMx i HX- kyy3c :`HBM;b i HX- kyrkc S BF i HX- kyrr)x 8k
54 i` `v [m MimK bi ib + M # +` i/ BM i? `bqm iq` mbbm; i?bb i+?mb[m (G r M/ 1#`Hv- RNNe)X h?bb i+?mb[m? b #M tt`bkmi HHv /KQMbi` i/ M/ b?qr/ i? +` ibqm Q7 +QKTHt [m MimK bi ib mbbm; bmt`+qm/m+ibm; +B`+mBib (>Q7?BMx i HX- kyyn)x a) b) 1 +/π /π 1 W(α ) 0 W(α ) Im(α ) /π Re(α ) 0 1 /π Re(a ) 4 0 Im(a ) 6B;m` jx9, _bqm Mi M/ /BbT`bBp K MBTmH ibqmx lbbm; Bi?` `bqm Mi Q` /BbT`bBp BMi` +ibqmb- +QKTHt [m MimK bi ib + M # +` i/ BM i? + pbivx U V lbbm; bmt`+qm/m+ibm; +B`+mBib rbi? `bqm Mi +QMi`QH- i? T?QiQM MmK#` bi ib M/ i?b` bmt`tqbbibqm + M K MBTmH i/ rbi? [m#bi (>Q7?BMx i HX- kyyn)x qbi? + pbiv Z1. bimt- i? /BbT`bBp BMi` +ibqm HHQrb i? T`QD+iBp K bm`kmib Q7 i? + pbiv iq +` i bmt`tqbbibqm bi ib (.Hû;HBb i HX- kyy3)x qbi? M Qz@`bQM Mi- /BbT`bBp BMi` +ibqm i? [m#bi M/ + pbiv KQ/b rbhh MQi b? ` t+bi ibqmb- #mi #+QK Mi M;H/ /m iq +QM/BiBQM H b?b7ib BM +? KQ/Ƕb i` MbBiBQM 7`[mM+vX qbi? i?bb i+?mb[m- [m MimK MQM@/KQHBiBQM K bm`kmib + M # T`7Q`K/ #v +Q``H ibm; i? T? b Q7 +Q?`Mi }H/ BM i? + pbiv KQ/ rbi? i? ;`QmM/ Q` t+bi/ bi i Q7 i? [m#bix *QmTH/ rbi? M ` [m MimK@HBKBi/ K@ THB}`b ("`; H i HX- kyryc obd v i HX- kyyn) [m MimK DmKTb Q7 [m#bi bi ib? p #M T`7Q`K/ (obd v i HX- kyrrc > i`b/; i HX- kyrj)x "vqm/ [m MimK bm`kmi- i? /BbT`bBp BMi` +ibqm? b b?qrm i? bthbiibm; Q7 M`;v i` MbBiBQMb Q7 i? [m#bi iq # /TM/Mi QM T?QiQM MmK#` (a+?mbi` i HX- kyyd)- r?qb ibqmb BM+Hm/ i? Mi M;HBM; Q7 T?QiQM MmK#` bi ib rbi? i? [m#bi KQ/ (CQ?MbQM 8j
55
56 4
57 100 µs 10 ms
58 H = ω ra ra r + ω s a sa s + ω q e e χ qr a ra r e e χ qs a sa s e e χ qr (χ qs ) κ r κ s κ r
59 l h w f mnk = c (m ) ( n ) ( ) k + + l h w c m, n, k f 101
60 6B;m` 9XR, * pbiv Z1. [mbp HMiX hrq@+ pbiv j. +B`+mBi Z1. + M # BHHmb@ i` i/ #v + pbiv Z1. [mbp HMi /B ;` K rbi? 6 #`v@s`qi `bqm iq`b U VX "Qi? bvbikb mb irq + pbibb +QmTH/ iq bbm;h U `ib}+b HV iqkx PM + pbiv Bb /bb;m/ iq # HQM;@HBp/ 7Q` T?QiQM K MBTmH ibqm M/ biq` ; r?bh i? Qi?` + pbiv +QM@ i BMb H Fv KB``Q` UQp`@+QmTH/ QmiTmi +QmTH`V 7Q` iqk bi i /i+ibqmx U#V a?qrm Bb QM? H7 Q7 i? T?vbB+ H /pb+ rbi? irq #Qt@KQ/ `bqm iq`b M/ i` Mb@ KQM [m#bi +QmTH/ iq #Qi? KQ/bX hvtb+ H BKTHKMi ibqmb H p +? + pbiv rbi? 1 GHz bt ` ibqm BM i` MbBiBQM 7`[mM+Bb Q++m``BM; #irm 7 10 GHzX 9XRXk o`ib+ H i` MbKQM [m#bi AM Q`/` iq ` HBx i? irq@+ pbiv BHHmbi` ibqm b?qrm BM 6B;X 9XR- r M/ iq +Qm@ TH #Qi? + pbibb iq bbm;h [m#bix 6Q` TH M ` +B`+mBi /bb;m- i?bb + M T`7Q`K/ #v BKTHKMiBM; +QmTHBM; + T +BiQ`b r?b+? HBMF BM/BpB/m H + pbibb iq bbm;h [m#bi (CQ?MbQM i HX- kyryc J `B MiQMB i HX- kyrrc aizm i HX- kyrj)x 6Q` i?`@/bkmbbqm H `+?Bi+im` i?bb Bb Hbb Q#pBQmbX lmhbf TH M ` ;QKi`v- j. i` MbKQM [m#bi Bb TH +/ T?vbB+ HHv BMbB/ Q7 i? + pbiv M/ MiMM b ` mb/ iq +` i /BTQH +QmTHBM; #irm i? [m#bi M/ + pbiv `bqm iq`x AMbi /- r M/ iq /phqt [m#bi i? i /Qb MQi M/ iq ǵhbpƕ BMbB/ Q7 i? + pbiv #mi + M K`Hv mb M MiMM i? i ` +?b BMiQ i? + pbiv iq +` i bi`qm; [m#bi@+ pbiv +QmTHBM;X h?bb Bb i? # bbb 7Q` i? ǵp`ib+ H i` MbKQMǶ /bb;m r?b+? r rbhh QmiHBM BM KQ` /i BH?`X h? p`ib+ H i` MbKQM Bb /bb;m/ b +Q tb H KQ/ i? i tbbib #irm i? /@ 8N
61 DQBMBM; + pbiv `bqm iq`bx h?bb +Q tb H KQ/ U HbQ FMQrM b `+i t /m iq Bib `+i M;mH ` /bb;mv Bb +` i/ #v TH +BM; bm#bi` i +QMi BMBM; i? 7 #`B+ i/ /@ pb+ rbi?bm K +?BM/ i`m+? #irm +? + pbiv Ub 6B;X 9XjVX bbm;h CQbT?@ bqm DmM+iBQM Bb HQ+ i/ rbi?bm i?bb i`m+? M/ ; Hp MB+ HHv +QMM+i/ iq irq i` Mb@ KBbbBQM HBMb i? i tim/ BMiQ +? + pbivx h? timbbqm Q7 +? MiMM +` ib + T +BiBp +QmTHBM; iq i? H+i`QK ;MiB+ }H/ BM i? + pbiv HHQrBM; bi`qm; [m#bi@+ pbiv BMi` +ibqm 7Q` #Qi? bt ib HHv bt ` i/ KQ/bX 6B;m` 9Xk, hrq@+ pbiv HM;i? b+ HbX U V a?qrm Bb #Bb+iBQM Q7 irq + pbiv /bb;m K +?BM/ 7`QK H eyerx M BM/BmK i` +F bm``qmm/b #Qi? + pbibb r?b+? T`Q@ pb/b bi`qm; H+i`B+ H +QMM+iBQM i i? /pb+ b KbX U#V h? }`bi BMbi b?qrb i? p`ib+ H i` MbKQM [m#bi #irm #Qi? + pbiv KQ/bX q?bh i? CQbT?bQM DmM+@ ibqm Bb HQ+ i/ rbi?bm i? bk HH i`m+? +QMM+iBM; i? + pbibb- MiMM b 7`QK i? [m#bi tim/ BMiQ #Qi? + pbiv KQ/b T`QpB/BM; bi`qm; [m#bi@+ pbiv +QmTHBM;X U+V 6BM HHv b+qm/ BMbi b?qrb M a1j BK ; Q7 i? i` MbKQM DmM+iBQM rbi? M T@ T`QtBK i DmM+iBQM ` U45 µm V `bmhibm; BM CQbT?bQM BM/m+i M+ Q7 6 nhx *B`+mBi /bb;m Gi mb TT`QtBK i i? /bb;m Q7 i? p`ib+ H i` MbKQM #v +` ibm; +B`+mBi KQ/H iq T`/B+i Bib /TM/M+ QM ;QKi`B+ H 7 im`bx q rbb? iq +` i CQbT?@ bqm DmM+iBQM +B`+mBi r?b+? #? pb HBF i` MbKQM [m#bi #mi rbi?qmi i? mb Q7 HmKT/ HKMi + T +BiQ`b M/ BM/m+iQ`b UiQ KBMBKBx HQbbv bm`7 + z+ibv M/ r?b+? + M? p bb;mb}+ Mi HM;i? BM Q`/` iq +QmTH iq irq bt ib HHv bt ` i/ + p@ ey
62 Al O 3 ϵ r {9.4, 9.4, 10.} Z line (l) =Z 0 Z L + jz 0 tan(βl) Z 0 + jz L tan(βl) Z 0 Z L β l Z L = 1 jωc Z 0 Z line (l) = jz 0 cot (βl).
63 l l ( ) ωl Z line (ω, l) = jz 0 cot ν p ν p = c µr ϵ r c µ r,ϵ r ν p (0. 1)c a) Y in (ω) Z 0,ν p b) Y in (ω) L J Z line (ω) E J Z line (ω) l Z 0 ν p Z 0 80Ω ν p 0.4c Y (ω) L J E J = φ 0 L J 1 ω 0 = Leff C eff Y (ω 0 )=0 L Z eff = eff C eff = ω 0 Im[Y (ω 0 )] H/ = ω q a a α a a ϕ
64 ω q = ω 0 α α = e Z eff L J. Y in (ω) = 1 + j tan jωl J Z 0 Y in (ω 0 )=0 1 = 1 tan ω 0 L J Z 0 ( ω0 l ν p ( ωl ν p ). ). ω 0 Z eff Im[Y (ω)] = 1 + l sec ω L J Z 0 ν p ( ωl ν p ). ( ωl tan ν p ) Y in (ω) 1 + j ωl jωl J Z 0 ν p LC
65 Y in (ω) 1 jωl J + jωc(l) C(l) = l Z 0 ν p ω 0 = Z0 ν p L J l = 1 LJ C(l) α = e Z eff L J = e Z 0 ν p l = e C(l). ω 0 (l) 1 l α(l) 1 l a) b) Resonance (GHz) Anharmonicity (GHz) Antenna length (mm) Antenna length (mm) ω 0 /π α/π L j = 7 nh,z 0 = 80 Ω, and ν p = 0.4c
66 tan ( ωl ν p ) ( Y in (ω) 1 + j ( ) ) ωl 1+ ω l. jωl J Z 0 ν p ν p ω 0 = 3 ( νp l ) ( Z 0 L J ) l 1. ν p ω 0 α = e Z 0 ν p l ( 1 Z 0 L J l ν p ).
67 L J
68 cavity 1 Y in (ω) cavity Z 1 (ω) Z (ω) 4 mm substrate stripline 0.4 mm Z 1 (ω) Admittance (ms) Y in (ω) cavity Frequency (GHz) LC Z 1 (ω), Z (ω) Y in (ω)
69 O (ϕ 6 )
70 Ω
71 6B;m` 9Xd, * pbiv T`T ` ibqmx hq KBMBKBx i? z+ib Q7 bm`7 + HQbbb- r rbb? iq `KQp HH `bb/m 7`QK i? bm`7 + Q7 i? + pbiv r HHbX a?qrm Bb ` QTiB+ H BK ;b Q7 + pbiv r HH, U V mbbm; M +iqm- Ki? MQH +H MBM; T`Q+bb M/ U#V i? b K T`Q+bb rbi? M //BiBQM H H+QMQt /i`;mi +H MBM; bitx 9XkXk 6`B/; M/ rb`bm; /bb;m HH tt`bkmib b?qrm?` r` T`7Q`K/ rbi? +`vq;m@7` /BHmiBQM iq` QT` ibm; i ky KEX S`QT` bb;m H M/ i?`k H }Hi`BM; Kmbi # T`7Q`K/ iq Mbm` +QH/- T`Qi+i/ MpB`QMKMi 7Q` +? tt`bkmi Ub (a `b- kyrj)vx 1 +? irq@+ pbiv tt`bkmi ivtb+ HHv +QMi BMb irq BMTmi TQ`ib- QM 7Q` +? + pbivx //B@ ibqm HHv- QM Q7 i?b TQ`ib rbhh HbQ b`p b M BMTmi 7Q` i? [m#bi KQ/ UivTB+ HHv i?`qm;? i? /bb;m i/ ` /Qmi + pbivvx h? QmiTmi 7Q` i? ` /Qmi + pbiv Bb ivtb@ + HHv Qp`+QmTH/ iq HHQr bb;m H iq tbi i? + pbivx.tm/bm; QM i? ibqm- Bi?` /BbT`bBp Q`?B;?@TQr` ` /Qmi Bb mb/(: K#ii i HX- kyyec _/ i HX- kyry)x 6Q` H i` tt`bkmib U*?X NV- [m MimK KTHB}` Bb HbQ KTHQv/ 7Q`?B;?@}/HBiv ZL. [m#bi ` /QmiX JQbi tt`bkmib rbhh MQi +QMi BM M QmiTmi TQ`i QM i? biq` ; + pbivx h?bb Bb /m i? 7 +i i? i HH BM7Q`K ibqm Q7 i? biq` ; + pbiv KQ/ rbhh # Q#i BM/ #v T`Q#BM; i? [m#bi bi i /BbT`bBpHv +QmTH/ iq i? KQ/X a 6B;X 9X3 7Q` /i BHb QM 7`B/; rb`bm; 7Q` irq@+ pbiv BKTHKMi ibqmb BM@ +Hm/BM; }Hi`BM; M/ i?`k HBx ibqmx dy
72 I + iq ω RF,ω LO V sig V cos (ω IF + δ RF δ LO + δ DUT ) ω IF = ω RF ω LO δ RF, LO, DUT ω RF,ω LO ω IF δ V demod cos ω IF V ref cos (ω IF t + δ RF δ LO )
73
74 300K 4K 0mK JPC I I S S 180-H 180-H 10dB Ecco Ecco Ecco Ecco 180-H S S JPC 10dB Ecco Ecco Ecco Ecco 10dB 10dB LP 10GHz LP 10GHz Ecco Ecco LP 10GHz 30dB 30dB LP 10GHz LP 10GHz 30dB LP 1GHz 30dB LP 10GHz 30dB LP 1GHz 30dB 10dB 0dB 10dB 0dB 10dB 10dB 10dB 10dB HEMT 0dB 0dB HEMT 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB A B
75 a) b) RF δ RF DUT δ signal RF δ RF DUT δ signal signal reference signal LO δ LO LO δ LO ω RF,ω LO ω IF = ω RF ω LO δ RF,δ LO δ signal
76 a) I/O setup Qubit and readout input TO FRIDGE 1 S 1 S Switch Switch Qubit ω μw Readout AWG ω μw I DAC Q 1 S LO ω μw ADC Readout output FROM FRIDGE I Storage input Switch ω μw Storage DAC Q DIGITAL b) I/O setup with feedback 1 S Switch AWG ω μw Readout I DAC Q DIGITAL 1 S LO ω μw Readout output FROM FRIDGE Qubit and readout input TO FRIDGE 1 S Switch Qubit FPGA ω μw I DAC Q Feedback SE ADC DIGITAL Storage input Switch FPGA ω μw Storage I DAC Q SE DIGITAL ADC g e
77 6B;m` 9XRR, _ /Qmi +QM};m` ibqmx q mb irq /Bz`Mi [m#bi bi i ` /Qmi +QM};m` ibqmb- Bi?` rbi? Q` rbi?qmi M `@[m MimK HBKBi/ KTHB}`X U V qbi?@ Qmi KTHB}+ ibqm- bb;m Hb 7`QK i? ` /Qmi `bqm iq` ` bmi /B`+iHv iq i? >1Jh KTHB}+ ibqm +? BM i 9 EX AM H i` tt`bkmib- r BMi;` i/ [m MimK KTHB}`b U#V iq T`@ KTHB7v i? ` /Qmi bb;m HX q? p BKTHKMi/ #Qi? CQbT?bQM T Ki`B+ KTHB}`b UCS*V M/ CQbT?bQM #B7m`+ ibqm KTHB}`b UC" V 7Q` irq@+ pbiv tt`bkmibx de
78 5
79 H/ = ω q e e + ω s a a χa a e e e a a ω q,s χ C Φ = e iφa a e e = g g + e iφa a e e g Φ τ Φ=χτ
80 C Φ { α ( g + e )} = α, g + αe iφ,e α = e α n=0 α n n! n n α C Φ=π π P a) b) e cavity qubit P g X ψ = e, e iφ β Φ=χτ C Φ χ γ,n κ s γ κ s
81 n χa a e e K s a a χ a a e e m R mˆn,θ = m m Rˆn,θ + n m n n Rˆn,θ ˆn θ χ
82 a) P b) P c) P d) P m=0 n max X X X X cavity qubit m n max ωq n = ω q χ n n τ 1/χ m ω m q
83 H/ = χ(a a m) e e + ϵ(t)σ y ϵ(t) σ y H/ = n = n H n / n n { χ(n m) e e + ϵ(t)σ y } n n. H n / = n ϵ(t)e i n,mt e e σ y e i n,mt e e n,m = ω n q ω m q ψ(t) ψ n (t) = i H n (t) ψ n (t). m Rŷ,θ = e i θ σ y θ = ϵ(t) t ψ n m (t) ψ n (t) { 1 i t } s H n (s) ψ n (0). ψ(0) = n m C n g, n
84 ψ(t) C n { g, n i n m = C n { g, n n m i t = n m C n { g, n 0 t 0 s H n (s) g, n } sϵ(s)e i n,ms e e σ y e i n,ms e e g, n } t 0 sϵ(s)e i n,ms e, n } n m C n { g, n ˆϵ{ n,m } e, n } ˆϵ{ω = n,m } ϵ(t) n τ ψ(τ) = 1 1+ˆϵ{ n } n m C n { g, n ˆϵ{ n,m } e, n }. ωq m ϵ ψ = n m C n g, n g S = n, g ψ(τ) = n m C n 1+ˆϵ[ n,m ]. m ϵ(t) = Ae σ ωt / σ ω A = 8/πσ ω π ω m q σ ω /π =800 σ t =00
85 χ/π =3 m (m±1) S =(1+ π 8 e χ /σ ω ) 1 > 99% R m ŷ,π = m m Rŷ,π + n m e iξ n n n m m ξ n σ ω β β R 0 ŷ,π R 0 ŷ,π( β,g + 0,e ) ( β + 0 ) g π 0 n β = n=0 C n n = e β n=0 (β) n n! n σ ω =4 β χ/5 β S = n=1 C n (1 + π 8 e (nχ) /σ ω ) 1 > 99%
86 ξ n n = χn σ ω ξ n ξ n = ϵ(t) dt/ n 1/( β ) 1 n ξ n 1 n/(8 β ) n ϵ χa a e e σ z σ y H/ = n { χ(n m) σ z + ϵ(t)σ y} n n. ϵ τ
87 i H/ τ U(τ) =e = n U n (τ) n n = n e iτ{χ(m n) σz +ϵσ y} n n = n e iφnσ θn n n φ n = ϵτ 1+ [ ] (m n)χ θn = arctan ϵ ( ) (m n)χ σ ϵ θn = cos(θ n )σ y + sin (θ n )σ z U n (τ) =e iφ nσ θ n =cos(φ n ) + i sin(φ n )σ θn =[cos(φ n )+isin(φ n )] sin(θ n ) n, g n, g +[cos(φ n ) i sin(φ n )] sin(θ n ) n, e n, e +sin(φ n )cos(θ n )( n, e n, g n, g n, e ). π/ τ =4n π Rŷ, F = 1 N Tr[R ŷ, U(τ)] 0.96 π n max =0 ω m q = ω q nχ n
88 ωs g ωs e g e ωs e H / =(ω q ω e s) e e χ g g a a + ϵ(t)a + ϵ(t) a. σ ω χ D α e D e α = e iξ g g + D α e e ξ g Dα e Dα{ 0 e ( g + e )} = e iξ 0,g + α, e Dα e C π Dα e = D α/ C π D α/ D α
89 ω g s H / =(ω q ω g s) e e χ e e a a + ϵ(t)a + ϵ(t) a. ϵ χ D α=1 6 ns ϵ 170 MHz χ 3 MHz H / =(ω q χ qs a sa s χ qr a qa q ) e e χ qs χ qr τ 1 χ qs, 1 χ qr
90 a) b) storage cavity - qubit readout cavity- qubit increasing n χ n ω 0n n = ω q n K ω 0n ω 0n n
91 f 01 = ωq f π 0/ = (ωq α) π K Spectroscopy Frequency (GHz) 7.36 f 0 / f 01 K
92 a) b) 80 storage cavity qubit Tone τ=300μs m=0 Readout Voltage (mv) storage cavity - readout cavity increasing n Spectroscopy Frequency (GHz) 8.78 τ 1 χ π Rŷ,π 0 π
93 K s n n =, 3 K Readout Signal (mv) Spectroscopy Frequency (GHz) π n n = 1,, K/π =163
94 χ C Φ Φ=χ qs t t ψ(0) = β,g ψ(t) = Rŷ, π C Φ=χ qs trŷ, π β,g = e π 4 ( e g g e ) e iχ qsta a e e e π 4 ( e g g e ) β,g = 1 {( β βe iχqst ) g +( β + βe iχqst ) e } Rŷ, π π/ P e P e = 1 {1+Re( β βeiχ qst )} = 1 {1+e β (cos(χ qst) 1) cos( β sin(χ qs t))}. t e 1 ( β χ qst)
95 a) cavity qubit b) c) Wait time ( ) Displacement ( ) Wait time ( ) β β =0 β =0.5 β =1.0 β =1.5
96 t =π/χ qs D β β =0.5 t = µ χ qs a a e e χ qs χ qs a a e e χ qsa a e e n nχ qs χ qs n =5 t = π χ qs β χ qs χ qs χ qs χ qs/χ qs = χ qs 3 MHz
97 a) b) Displacment amplitude ( ) Wait time ( ) Wait time ( ) Mean photon number ( ) a a
98 6
99 C Φ R ṋ n,θ D α p 0 (α) P α P 0 (α) =πq(α) P α = π W (α) p n (α) = n D α 0 = e α α n n!. P = e iπa a P (α) =Tr[PD α 0 0 D α]=e α. P (α) P δα/α 0.0
100 a) cavity qubit m or b) Readout signal (mv) c) Drive amplitude (DAC value) 6000 Photon probability Displacement ( ) 4 R0ˆn,π P n P n α χ sr P 0 P n n = P n
101 a) cavity qubit or b) Readout signal (mv) c) Drive amplitude (DAC value) 1 3 Displacement ( ) C π P α P α α P α P α P α
102 χ sr R n π,ŷ e g ρ α Q(α) = 1 π α ρ α α
103 Q(α) = 1 π 0 D αρd α 0 D α α ρ α = D αρd α 0 a) cavity state prep cavity tomography b) Q(α) qubit Im(α) Re(α) Q(α) = 1 π 0 D αρd α 0 β
104 σ z g Q Z (α) = 1 π Tr [ ρ qc σ z D α 0 0 D α ] = 1 π 0,g D αρ qc D α 0,g 1 π 0,e D αρ qc D α 0,e = p g Q g g (α) p e Q e e (α) ρ qc p g,p e g ρ qc g, e ρ qc e α σ z Q g g (α) Q e e (α)
105 a) b) Im(α) Q Z (α) - Q Z (α) - 0 Re(α) - 0 Re(α) Q g g (α) Q e e (α) ψ = N ( g, β + e, e iφ β ) ρ α = D ρd α 0 n Q n (α) = n D αρd α n
106 Q n (α) N W (α) = ρd αpd α = n ( 1) n n D αρd α n = n ( 1) n Q n (α) Im(α) a) b) m = 0 Q 0 (α) Re(α) m = 1 Q 1 (α) Re(α) c) d) m = Q (α) Re(α) m = 3 Q 3 (α) Re(α) Q(α) = 1 π 0 D αρd α 0 Q m (α) = 1 π m D αρd α m 0 Q 0 (α), Q 1 (α), Q (α), Q 3 (α) 0, 1,, 3
107 W (α) = π Tr[D αρd α P ] D αρd α α P P = e iπa a U = π Rŷ, C π Φ=πRŷ, = R ŷ, π a e e e iπa π Rŷ, U U U = n U n n n = n = n = n even = n even Rŷ, π e iπn e e Rŷ, π Rŷ, π n n { (1+( 1) n ) (1 ( 1) + σ n ) z Rŷ, π R ŷ, π n n + Rŷ,π n n + n odd n odd n n } Rŷ, π n n Rŷ, π σ zrŷ, π n n
108 a) state cavity b) prep tomography cavity W(α) qubit Im(α) Re(α) (τ π χ ) P α = D α PD α β β = 3 W i = π σ ip α P α σ i {I, X, Y, Z}
109 a) cavity state prep qubit tomography cavity tomography qubit b) W I (α) W X (α) W Z (α) W Y (α) Im(α) Re(α) ψ = N ( g e ) β β = 3 W Z (α) W Y (α) W X (α) {X, Y, Z} P α = D α PD α
110 ρ nm ij ρ = 1 N i,j=0 n,m=0 ρ nm ij i j n m i, j n, m AB =Tr[ABρ] A B σ i = {I,σ x,σ y,σ z } P α = D α PD α N max = 1 α max,min = ±3.4 α =0.085 W i (α) = σ π ip α A A = i A iσ i A i =Tr[Aσ i ] B = 1 B(α)Pα d α π B(α) =Tr[BP α ] ρ = π i W i (α)σ i P α d α ρ = ρ q ρ c
111 ρ = 1 i Tr[ρ q σ i ]σ i π π Tr[ρ cp α ]P α d α ρ AB =Tr[ABρ] [ =Tr i,j A i B(α)W j (α )σ i σ j P α P α d αd α ] Tr[σ i σ j ]=δ ij Tr[P α P α ]=δ (α α ) AB = i A i B(α)W i (α)d α D α P W (α) = π Tr[D αρd α P ] ρ
112 W (α) = π Tr[D αpd αρ] =Tr[M(α)ρ] = i,j M ji (α)ρ ij M(α) =D α PD α M ji (α) ρ ij M(α) ρ ρ ij W (α) ρ Tr[ρ] =1 n max
113 7
114 φ Kerr = KIτ I τ K ω s H = ω s a a K a a
115 K κ s β RHR R = e i(ω s K )a at H kerr / = K (a a) U(t) =e ih kerr t ψ(t) = U(t) β = e ikt (a a) β = e β n β e ikn t n. n n! n β(t) βe iφ Kerr(t) φ Kerr = K β t n t π T col = π nk T rev = π K U(T rev) =e iπ(a a) =( 1) (a a) =( 1) a a ψ(t rev ) = β
116 a) P b) P c) P X φ Kerr nkt X X P n=0,1,,3 P φ=n Kt P X X X β = n c n n n c n = c n e iφn φ n =0 c n φ n = n Kt t = π K t = Trev q ψ( T rev ) = 1 q q q 1 p=0 q 1 k=0 e ik(k p) π q βe ipπ q. T rev q q q =
117 cavity state prep evolution t cavity tomography qubit β t U(t) =e ih kerr t t ψ = 1 ( β + i β ). β P β 0 1 κ s /π = ω q /π = K q /π =(ω 01 q ω 1 q )/π = 50 MHz K
118 Re(α) - 0 Experiment time Im(α) 0-15 ns 65 ns 440 ns 815 ns Theory - Re(α) 0 Experiment time Im(α) ns 1565 ns 565 ns 3065 ns Theory β β =4 A κ s T 1 =10µ T =8µ ω s /π =9.7 GHz
119 H = ω q e e +(ω s χ) a a e e K a a. χ/π = ω s K/π = K χ /4K q K > 30κ s β = n =4 Q 0
120 H Kerr β 15 ns β = βe iφ Kerr =.0e i0.13 n T col =385ns T rev β t = T rev /q q>1 q = q =3, 4 T rev =3065 β = 1.78 β = κ/π =10 ω s µ
121 - Re(α) Im(α) Q n (α) n = 0 8 t π q =, 3, 4 qk q A = e n q>0 Q n (α)
122 Q n χ - Re(α) 0 a) Im(α) 0 - Theory Reconstruction b) c) t = π q = 3 4 qk
123 t = π/k, π/3k, π/4k F = Ψ id ρ m Ψ id ρ m Ψ id β = e κt/ F = 0.71,F 3 = 0.70,F 4 = 0.71 K >> κ
124 8
125
126 0, 1 β, β ψ = 1 N { cos( θ ) β +sin(θ )eiφ β } θ, φ N = 1+sin(θ)cos(φ)e β N 1 β β +Z c Z c X c Y c ±Z
127 Z β, β +X c, +Y c, +Z c ±Z c = ±β ±X c = 1 N ( β ± β ) ±Y c = 1 N ( β ±j β ) N (β) β β β = e β. S = j η j log η j.
128 η j ρ = j η j j j ρ = 1 ( β β + β β ) ρ E, O ρ = 1 (1 + e β ) E E + 1 (1 e β ) O O S = 1+e β log [ 1+e β ] 1 e β [ ] 1 e β log. S β 0 =0 S β =1 β =0 β β =1 S =0.99 a) P d X b) Entropy (bits) Displacement β β, β β β = 0 d =(β β) β S S 1 β β =1 e d
129 β, β d =β d d β β = e d ρ ρ(t) = 1 [ ] β(t) β(t) + β(t) β(t) + e β(t) (1 e κt) ( β(t) β(t) + β(t) β(t) ) β(t) =βe 1 κt κ e 1 d κt
130 ψ 0 = β ( g + e ) β π ψ 1 = C π ψ 0 = β,g + β,e ψ = D β ψ 1 = β,g + 0,e π 0 ψ 3 Rŷ,π 0 ψ =( β + 0 ) g ψ 4 = D β ψ 3 =( β + β ) g 0 { cos( θ ) g +sin(θ )eiφ e } { cos( θ ) β +sin(θ )eiφ βe iφ } g θ φ β β iφ 1
131 ω s π κ s =7. = 1 π π.1 µ ωr π κ r = 330 = 1 π π 480 = 8.18 = 9.36 ω q π γ =7.46 =36 = 1 π π 4.4 µ χ qs π =.4 K s χ qs n n =min[χ qs /χ qs =560,χ qs /K s =650,χ qs /κ s =330] β C Φ Q = α ρ α α = β
132 βe iφ α = β Q(β) = β βe iφ = e β (1 cos Φ) Φ Φ χ qs β 1 n Q(α) = 1 α ρ α ρ π ψ = 1 { 0 ( g + e )} ψ = N{( β + β ) g } β = 7 N 1 0,g P e Dβ e ρ = 0 0 {P g g g + P e e e } D e β ρde β = P g 0,g 0,g + P e β,e β,e
133 a) mapping cavity qubit m=0 tomography b) 8 4 (1) () (3) (4) Im( ) (5) (6) (7) (8) Im( ) Re( ) Re( ) Re( ) Re( ) ϵ/π =990.5µ β,e β 17 α =6
134 [ρ] =1 W (α) α =1 P e =0.1 P e 0.01 W (α) = [ D α PD αρ ] ρ F = W W α W
135 a) Im( ) Re( ) b) Z Re( ) Im( ) Z Y 0.5 Y 0.5 X X Z Y X Z Y X Z 1.0 Y 0.5 X Z 1.0 Y 0.5 X Z Y X Z Y X ψ = N ( β + β ) β, β ψ = { cos( θ ) g +sin(θ ) e } ψ = 1 { g + e iφ e }
136 β ± β β P n ( β ) = n β = e β β n n! P n ( β ± β ) (1 ± e iπn ) e β β n n! β,g { β + β } g { β β } g β =.3 d = β 1 β β 1 β d W (Re(α) =0, Im(α)) W (0, Im(α)) Ae Im(α) cos(d Im(α) +δ) A δ d
137 φ Z Y X Ramsey angle (φ) θ Z Y X Rabi angle (θ) Im(α) Re(α) Φ C π/3 C π/ F A = 0.60 F B = 0.58 F C = 0.5
138 α cal = α act (1 + δα) α cal α act δα =( (n th +1) n th W (α) e α n th +1 n th 0.01 d d (1 n th ) <d act d d act 109 <d 111 β δφ 1 n n = β
139 1 n g g + e β 0 + β n = β Φ δφ = 1/ P e Φ P e Φ δφ D = e/ n Φ δφ C =1/ n δφ C nκτ 1 κ τ δφ C = e nκτ / n n =
140 σ z F F recov F F recov
141
142 a) b) Spectroscopy frequency (GHz) Normalized spectroscopy signal Photon number Im( ) β β + β β β β = d Ae Im(α) cos(d Im(α) +δ) S A δ
143 Im( ) Re( ) a) b) c) -4 d) C π/3 C π/ β + e iλ 1 βe iπ/3 + e iλ βe i4π/3 β = 7 λ 1 =0.6π λ = 0.3π 0 + e iµ 1 iβ + e iµ βe iπ/3 + e iµ 3 βe iπ/3 β = 7 µ 1 =0.5π µ = 0.4π µ 3 = 0.π β + e iν 1 iβ + β + e iν iβ β = 7 ν 1 = π ν = 0.π
144 a) cavity 1 qubit or or Readout b) Re( ) 0 c) Re( ) 0 Im( ) Im( ) (radians) d) f) Phase (radians) Energy e) (photons) Phase (radians) δφ n Φ P e 1/ n 1/ n δφ C e nκτ / n κ τ nκτ > 1
145 a) cavity 1 b) cavity 1 qubit Readout qubit QPT c) 16 photons photons photons photons Rotation Angle ( ) d) Re( ) Re( ) 16 photons 8 photons I I X X Y Y Z I X Y Z Z 40 photons 100 photons I X Y Z I X Y Z Re( ) Re( ) I X Y Z I X Y Z I X Y Z < %
146 9
147 β β
148 β ψ = 1 ( g + e ) β g, e β t = π χ ψ B = 1 ( g, β + e, β ) ψ = 1 ( gg + ee ) ψ B ψ B = II c + XX c YY c + ZZ c {I, X, Y, Z} {I c,x c,y c,z c }
149 cavity state preparation qubit tomography cavity tomography qubit ψ = 1 ( g + e ) β D β β Rŷπ π ŷ ψ B = 1 ( g, β + e, β ) R i X Y Z P α
150 F C ψ target = 1 ( gg + ee ) F = ψ target ρ ψ target = 1 ( II + XX YY + ZZ ). 4 II, XX, Y Y, ZZ W = 1 ( II XX + YY ZZ ) 4 W F > 1 ±1 O= AA c + AB c BA c + BB c A, B A c,b c
151 τ s =55µs τ r =30ns T 1,T 10 µs 5 8 GHz H/ = ω s a a +(ω q χa a) e e a e e ω s,ω q χ π 1.4 MHz {X, Y, Z} g P α P α = D α PD α D α
152 P W (α) = π P α α W i (α) = π σ ip α σ i {I, X, Y, Z} W i (α) W B i (α)w i (α)d α Wi B (α) F = ψ B ρ ψ B = π i ψ B W i (α) F =(87± )% β = 3 β β = V = IPα d α =(85± 1)% π V F V
153 (a) Im( ) 0 - Re( ) - 0 (b) g e g e Re( ) Mean Value (c) Fock state basis Re( ) g e g Encoded basis e 0.0 W i (α) = σ π ip α σ i = {I,X,Y,Z} P α ψ B β = 3 XP α YP α ρ β β + β β
154 W (α) β β 1 X c = P 0 I c = P β + P β Y c = P jπ 8β Z c = P β P β {I c,x c,y c,z c } ψ B β = 3 F DFE = 1( II 4 c + XX c YY c + ZZ c )= (7 ± )% F DFE V F
155 (a) Re( ) Im( ) (b) Mean Value Re( ) Im( ) Mean Value ψ B β =0 IP α ZP α Im(α) =0 XP α YP α Re(α) =0 β = 3 {II c,xx c,yy c,zz c }
156 X(θ),Z(θ),X c,z c θ β O 1 =.30 ± 0.04 θ = π 4 β =1 X, Y, X c (α),y c (α) α O =.14 ± 0.03 β =1 ± ±M q 1 ± M q 1
157 (a) 3 ideal photon loss visibility 0 Rotation ( ) Cat amplitude ( ) (b) 3 ideal photon loss visibility Displacement ( ) Cat amplitude ( ) X(θ) Z(θ) Z c X c O = AA c + AB c BA c + BB c θ X Y X c (α) Y c (α) α β O =
158 ± ±M c ± M c g AB A, B AB =(A + A )B A + + A = I A + B (1 p c ) A + B p c AB (1 p c ) A + B A B =(1 p c ) A + B A B p c A + B + A B =(1 p c ) AB p c B B = X c,y c,z c ψ c B =0 AB (1 p c ) p c =1 e τ wait T V V pred =(1 p c )V =8% V 85%
159 σ i P α V [0, 1] W meas i (α) =VW ideal (α) V W ideal I (α)d α i V = W meas I (α)d α I V =85% {I,X,Y,Z} {I c,x c,y c,z c } A, B A c,b c O = AA c + AB c BA c + BB c
160 ψ B
161 ψ B Z c,x c Z(θ),X(θ) Z(θ) =Z cos θ X sin θ X(θ) =X cos θ + Z sin θ θ O θ = π 4 A = X+Z ; B = X Z A c = Z c ; B c = X c AZ c BZ c O ideal = ( e 8 β ) V O vis = V( e 8 β ) AX c BX c O loss = (1 e 8 β e β γ )
162 γ = t eff τs τ s t eff O pred = V(1 e 8 β e γ β ) V =0.85 t eff =1.4 µs X, Y X c (α),y c (α) X c (α) =D jα P 0 D jα X c cos α 4β + Y c sin α 4β Y c (α) =D jα P jπ 8β D jα Y c cos α 4β X c sin α 4β α O α =0.15 β =1 A = X; A c = X c+y c B = Y B c = X c Y c O ideal =(cos4α 0 β +sin4α 0 β)e α 0 α 0
163 O pred =Ve γ β (cos 4α 0 β +sin4α 0 β)e α 0 V =0.85 t eff =1.4 µs β 1 P ±jα0 1 ( ˆX c ± Ŷc) β α 0 β + α 0 =tan4α 0 β α 0 D jα0 P jα0 β β 1 ( ˆX c + Ŷc) P α= jπ 16β W = II c XX c +YY c ZZ c ψ = 1 ( gg + ee )
164 β W < 0 W F β β =0 1 ( g + e ) 0
165 W = II ZZ XX + YY F = II + XX YY + ZZ F > 0.5 a) b)
166 M m ψ m = M m ψ ψ M mm m ψ {X, Y, Z} X : 1 Y : 1 Z : ( ) ( ) 1 j j 1 ( ) c, c, 1 c, 1 ( ) ( ) 1 j j 1 ( ) c c c ψ m = ψ q ψ c ψ cav X : N ( β + β ) N ( β β ) Y : N ( β j β ) N ( β + j β ) Z : β β ψ B
167 ψ B = 1 ( g, β + e, β ) X Y e m th m β m =3 β = 3 ψ = C m e, m + n m C n g, n C m = m β Ẑ +1
168 ψ cav = N ( β C m m ) 1 ψ cav = m β β = 3 m th m =3 ψ = C m e, m + n m C n g, n C n n th C n = n β Z +Z ψ c = N n 3 C n n
169
170 10
171 a a α = α α ap = Pa
172 0 L = N ( β + β ) 1 L = N ( jβ + jβ ) N 1 β 0 L 0 L, 1 L 1 L P
173 S n (θ) =e iθ n n S( θ) S( θ)= S n (θ n ) n=0 θ = {θ n } n=0
174 ψ = N ( β,β + β, β ).
175
176 a) 1 P L b) 0 L X Im(α) 0 - c) Readout (mv) Re(α) 100 Time (μs) Parity 0 L 1 L N ( 0 L + 1 L ) P
177 b) Signal (mv) 1 a) c) d) x y 8 x y x Qubit drive detuning (MHz) initial y manipulation final 6B;m` RyXk, * pbiv K MBTmH ibqm rbi? i? al S ; ix U V h? T?QiQM@ MmK#` bthbiibm; /m iq i? /BbT`bBp BMi` +ibqm HHQrb QM iq T`7Q`K [m#bi ibqmb +QM/BiBQM/ QM T?QiQM MmK#` bi i. U+? Ti` 8VX U#V h? + pbiv bi i BM i? T?QiQM MmK#` # bbb Bb r`biim b ψc = n cn n r?` cn Bb +QKTHt MmK#`X U+V "v /`BpBM; i? [m#bi +QM/BiBQM/ QM i? T?QiQM MmK#` bi i n bm+? i? i i? [m#bi bi `ib M/ M/b # +F g - bh+ibp MmK#`@/TM/Mi `#Bi` `v T? b ; i Bb TTHB/ UaL SVX U/V h?bb //BiBQM H T? b K MB7bib BibH7 QM +? T?QiQM bi i +QKTQMMi cn X _T`Q/m+/ 7`QK (>`b i HX- kyr8)x Rde
178 A
179
180 σ x = σ y = σ z = 1 σ x σ y = iσ z σ y σ z = iσ x σ z σ x = iσ y e iθσ n = 1 cos θ + iσ n sin θ e i π σn e i π σm = σ n σ m H / = 1 (ξ + ξ )σ x + 1 i (ξ ξ )σ y + 1 σ z ξ ξ σ x σ y δt U =e i δt 0 H(t)dt ξ(t) ξ(t) =0 t<0 t>δt
181 A x =e i A σ x B y =e i B σ y ξ Ω(t)σ x Ω(t) σ y π/ Uˆx π/ = ( X π/ X π/ ) N Xπ/ = ( e i π 4 σx e i π 4 σx ) N e i π 4 σx
182 N π π (1 + ϵ) [ U ˆx π/ = e i π 4 (1+ϵ)σ x e i π N 4 x] (1+ϵ)σ e i π 4 (1+ϵ)σ x [ Nπ =e i (1+ϵ)+ π ] 4 (1+ϵ) σ x e iθ/σ x Z =cosθ Uˆx π/ 0 Z =cos [ Nπ(1 + ϵ)+ π (1 + ϵ)] =( 1) N+1 sin [ πϵ + Nπϵ] ϵ 1 Z ϵ Z ( 1) N+1 [ Nπϵ+ π ϵ] π π/m Uˆx π/m = ( X π/m ) mn Xπ/ = (e i π m σ x) mn e i π 4 σ x σ x σ y σ y σ y =cosφσ y sin φσ x X Y
183 U = Y π/ (X π Y π X π Y π ) N X π/ =e i π 4 σy (e i π σx e i π σy e i π σx e i π σy ) N e i π 4 σx Y σ y X Y π e i π σ x e i π σ y e i π σ x e i π σ y = σ x σ yσ x σ y = σ x [cos φσ y sin φσ x ] σ x [cos φσ y sin φσ x ] = [cos φσ x σ y +sinφ][cosφσ x σ y +sinφ] = 1 i sin(φ)σ z = 1 cos(π +sin(φ)) + iσ z sin(π +sin(φ)) =e iσz(π+sin(φ)) Z π/ X/Y Z Z =( 1) N+1 sin(n sin(φ)) φ/(π) 1 Z ( 1) N+1 Nφ
184 U =(X π Y π X π Y π ) N X π/ = ( e i π σ x e i π σ y e i π σ x e i π σ y) N e i π 4 σ x σ x σ y σ x + δσ z σ y + δσ z δ e i π σ x e i π σ y e i π σ x e i π σ y = σ xσ yσ xσ y = [σ x + δσ z ][σ y δσ z ][σ x + δσ z ][σ y + δσ z ] = [ σ x σ y + δ(σ z σ y σ x σ z )+δ ][ σ x σ y + δ(σ z σ y + σ x σ z )+δ ] 1 δiσ x = 1 cos( δ)+iσ x sin( δ) =e δiσ x X N Z 4Nδ V out =(1+ϵ)[cos(ω IF t φ)+γ]cos(ω LO t)+(1 ϵ)[sin(ω IF t + φ)+γ]sin(ω LO t) ϵ φ γ
185 V out =cos(ω IF t)cos(ω LO t)+sin(ω IF t)sin(ω LO t) =cos([ω LO ω IF ]t) V out =(1+ϵ)cos(ω IF t)cos(ω LO t)+(1 ϵ)sin(ω IF t)sin(ω LO t) =cos([ω LO ω IF ]t)+ϵ cos([ω LO + ω IF ]t) ϵ ϵ =10 P dbc /0 P dbc V out =cos(ω IF t + φ)cos(ω LO t)+sin(ω IF t + φ)sin(ω LO t) =cos(ω LO t)[cos(ω IF t)cos(φ) sin(ω IF t)sin(φ)] +sin(ω LO t)[cos(ω IF t)cos(φ) sin(ω IF t)sin(φ)] =cos(φ)cos([ω LO ω IF ]t) sin(φ)sin([ω LO + ω IF ]t) tan(φ) tan(φ) =10 P dbc /0 P dbc
186 V out =[cos(ω IF )+γ]cos(ω LO t)+[sin(ω IF t)+γ]sin(ω LO t) =cos([ω LO ω IF ]t)+γ [cos(ω LO t)+sin(ω LO t)] =cos([ω LO ω IF ]t)+γ sin(ω LO t + π/4) F = [χ χ ]
187 α / π = 50MHz
188 α q ξ π φ π ϵ 0.0 σ τ X Y π/ /π
189 a) b) (1 3.5e 3) (1 1.0e 3)
190 a) 6B;m` X9, sny THBim/ 1``Q`X h?bb Bb bbkmh i/ TmHb i` BM iq i+i KTHBim/ ``Q`bX 7i` +? `Qi ibqm- r?qt iq `K BM QM i? [m#bi iq`x qbi? +? bm#b[mmi TmHb- KTHBim/ ``Q` ;ib KTHB}/X h? i` D+iQ`v Q7 i? [m#bi U#HmV Bb b?qrm rbi? M N = 15 i` BMX 1 +? T?vbB+ H ǵk bm`kmiƕ Q+@ +m`b i +? `/ +B`+HX 6B;@ m` U V Bb #7Q` immbm;};m` U#V Bb 7i`X b) `Q`b- r + M }i i?b /pb ibqmb rbi? i? KQ/H + H+mH i/ BM i? #Qp i?q`v% & Z ( 1)N +1 N πϵ + π ϵ - M/ +Q``+i 7Q` i?kx X@ tbb i` BMb, Ux π/! "N = Xπ/ Xπ/ Xπ/ Y@ tbb i` BMb,! "N Uy π/ = Yπ/ Yπ/ Yπ/ Ux π = (Xπ )N Xπ/ Uy π = (Yπ )N Yπ/ S? b TmHb i` BM LQr i? i KTHBim/b ` imm/ mt #irm [m /` im` +? MMHb- r + M MQr /i+i 7Q` KBb HB;MKMi #irm +? MMHb M/ +Q``+i 7Q` i?bb //BiBQM H T? b- Z ( 1)N +1 N φ, U = Yπ/ (Xπ Y π Xπ Yπ )N Xπ/ U XkRV._ : TmHb i` BM Lti r imm mt._ : rbi? i? #HQr b[mm+ M/ }iibm; 7Q` i? +Q``bTQM/BM; ``Q` bvm/`qk- Z 4N δ, R3N
191 a) 6B;m` X8, sr3y THBim/ 1``Q`X TmHb i` BM bbkbh ` iq sny t+ti i? i r ` ibibm; i? /B7@ 7`M+ BM KTHBim/ ``Q` #irm π `Qi ibqm M/ π/x b bm BM i?bb T `ib+@ mh ` BKTHKMi ibqm- tt+i `Qm;?Hv yx8w /Bz`M+ BM i? K bm`/ sr3y K@ THBim/ M/ irb+ i? sny KTHBim/X b) a) 6B;m` Xe, uny KTHB@ im/ 1``Q`X AM i? x`q@a6 `;BK- i?bb tt`bkmi rbhh ibi KBt` KTHBim/ Qz@ bibx a?qrm?` Bb rbi? yx8w /Bz`M+ BM KTHB@ im/ Qzbib #irm KBb@ + HB#` i/ KBt` M/ +Q`@ `+i/ QMX b) RNy
192 a) b) 6B;m` Xd, S? b._ : 1``Q`X S? b M/._ : rbhh K MB7bi i?kbhpb 7`QK i? b K ivt Q7 TmHb i` BM Ur + HH Bi " JyVX S? b Bb M+Q// QM i? t@ tbb Q7 i? "HQ+? bt?` r?bh._ : Bb QM i? x@ tbbx 6B;m` U V b?qrb #7Q` imm@ BM; M/ };m` U#V 7i`X U = (Xπ Y π Xπ Yπ )N Xπ/ U XkkV hmm@mt Q`/` M/ +QMp`;M+ +`Bi`B h? i?q`v T`bMi/ BM i? T`pBQmb b+ibqm bbmkb i? i 7Q` +? TmHb@i` BM i?` Bb QMHv bbm;h ``Q` Ui? QM r ` i`vbm; iq /i+i M/ +Q``+i 7Q`VX h?bb K Mb i? i Qi?` mm+q``+i/ ``Q`b +QmH/ bfr i? }ib M/ BM im`m /BbiQ`i i? +Q`@ `+i/ T ` Ki`bX aqk Q7 i?b TmHb i` BMb ` KQ` bmbbibp iq ti` ``Q`b i? M Qi?`bX hq K/B i i?bb- r rbhh ǵ#qqibi` TǶ #v TB+FBM; T `ib+mh ` Q`/` Q7 i?b TmHb@imMBM;bX h? +m``mi T`7``/ Q`/` Bb b 7QHHQrb, _ #B- _ Kbv- snyuny- sr3y- S? b-._ :- sny- sr3yx A U"`B MV? p +?QbM i?bb Q`/` #+ mb sr3y Bb bmbbibp iq sny KTHBim/ ``Q`bc S? b M/._ : ` bmbbibp iq snyuny- M/ sr3y ``Q`bc M/ }M HHv +? M;b BM._ : T ` Ki`b rbhh z+i sny M/ sr3y /`Bp KTHBim/b Ui?Bb Bb /m iq Qm` +m``mi TmHb T ` Ki` /}MBiBQMb 7Q` RNR
193 e 05 ±3.4e e 06 ±3.7e 05.0e 06 ±6.3e 05.6e 05 ±3.4e e 05 ±9.7e 05
194 1 1e 04.1e 06% 50 > 60 σ z
195 .8e 5 8.9e 5 X π/ π X Y
196 (1 8.e 4) (1 1.4e 3)
197 1 8.e e 3 (0IF) 1.1e 05 ±.7e e 06 ±8.5e e 05 ±1.3e 04
198
199 B
200 ρ Q(α) =F{C a (λ)} ] C a (λ) =Tr [ρe λ a e λa F {} = 1 π d λe αλ α λ Q(α) = 1 π [ d λe αλ α λ Tr ρe λ a e λa ] 1 π d β β = Q(α) = 1 [ρ π Tr 3 ] d λd βe λ (α β) λ(α β ) β β λ e λ µ λµ = π δ(µ) Q(α) = 1 [ρ π Tr ] d βδ(α β) β β = 1 Tr [ρ α α ] π = 1 π α ρ α. α
201 ρ W (α) =F{C s (λ)} C s (λ) =Tr[ρD(λ)] F {} = 1 π d λe αλ α λ W (α) = 1 π d λe αλ α λ Tr [ρd(λ)]. α, λ α + iα,λ + iλ e αλ α λ = e i(α λ α λ ) D(λ) =e λa λ a = e iλ ( a ) ( +a iλ a ) a i = e iλ λ T P =λ T X=λ x C s (λ) =Tr[ρD(λ)] = dx x ρd(λ) x.
202 W (α) = 1 π d λdxe i(α λ α λ ) x ρd(λ) x. D(λ) x = e iλ λ T P =λ T X=λ x = e iλ λ T P =λ x + λ = e iλ λ e iλ (x+λ ) x + λ. W (α) = 1 π = 1 π d λdxe i(α λ α λ ) e iλ λ e iλ (x+λ ) x ρ x + λ d λdxe iλ (λ +x α ) e iα λ x ρ x + λ. dµe iµν =πδ(ν) W (α) = π = π = π dλ dxδ(λ +x α )e iα λ x ρ x + λ dxe iα (α x) x ρ x +α x dxe 4iα (α x) x ρ α x u =(x α ) D(α) u = eiα α e iα u α u u D (α) = α + u e iα α e iα u W (α) = 1 π = 1 π due iα u e iα α e iα α e iα u u D (α)ρd(α) u du u D (α)ρd(α) u.
203 P P x = x W (α) = 1 π = π du u D (α)ρd(α)p u dv v D (α)ρd(α)p v = π Tr [ D (α)ρd(α)p ] = π Tr [ D(α)PD (α)ρ ] P α = D(α)PD (α) W (α) =Tr[D α PD αρ] Q n (α) =Tr[D α n n D αρ] W (α) = i,j W(α) i,j ρ i,j Q n (α) = i,j Q(α) i,j ρ i,j W(α) =D α PD α, Q(α) =D α n n D α
204 W(α) W i,j (α) = j D α PD α i D α a =(a α)d α Pa = ap D αa =(a + α)d α Pa = a P. ad α PD α =αd α PD α D α PD αa D α PD αa =α D α PD α a D α PD α W(α) W 0,0 (α) = 0 D α PD α 0 = 0 α = e α
205 W k,0 (α) = 0 D α PD α k = 1 k 0 D α PD αa k 1 = α k W k 1,0 (α). W(α) W T (α) =W (α) W 0,k (α) = α k W 0,k 1 (α) =W k,0(α). W k,l (α) = l D α PD α k = 1 k l D α PD αa k 1 = 1 (α W k 1,l (α) ) lw k 1,l 1 (α). k W l,k (α) = k D α PD α l = W k,l(α). n max (n max 1) α n max ρ α import numpy as np
206 def designw(basis = 10, alpha = np.zeros([10,10]) ): Returns the design matrix to build a Wigner function from a given density matrix. Parameters basis : integer The truncation number of the density matrix which will be used to determine the Wigner function. alpha : complex matrix An array of complex values which represent the displacement amplitude for a set of measurements Returns Wmat : complex 4-dim array Values representing the design matrix to create a Wigner function given an arbitrary cavity state density matrix. rho_shape = [basis, basis] Wmat = np.zeros(np.append(rho_shape, alpha.shape), dtype = complex) #initial seed calculation for 0><0 Wmat[0][0] = np.exp(-.0 * np.abs(alpha) ** ) for n in range(1,basis): # calculate 0><n and n><0 Wmat[0][n] = (.0 * alpha * Wmat[0][n-1]) / np.sqrt(n) Wmat[n][0] = np.conj(wmat[0][n]) for m in range(1,basis): for n in range(m, basis): # calculate m><n and n><m Wmat[m][n] = (.0 * alpha * Wmat[m][n - 1] - np.sqrt(m) * Wmat[m - 1][n - 1]) / np.sqrt(n) Wmat[n][m] = np.conj(wmat[m][n]) return Wmat Q n (α) Q n (α) =Tr[Q n (α)ρ] Q n i,j(α) = j D α n n D α i ad α 0 0 D α = αd α 0 0 D α
207 D α n n D α = 1 n Da n 1 n 1 ad α = 1 n (a α )D n 1 n 1 D α(a α) = 1 n (a D n 1 n 1 D αa α D n 1 n 1 D αa αa D n 1 n 1 D α + α D n 1 n 1 D α). Q n i,j(α) Q 0 0,0(α) = 0 D α 0 0 D α 0 = e α Q 0 k,l(α) = l D α 0 0 D α k = 1 l l 1 ad α 0 0 D α k = α l l 1 D α 0 0 D α k = α l Q 0 k,l 1(α) Q T (α) =Q (α) Q n l,k(α) =Q n k,l (α). Q n k,l = 1 n ( lkq n 1 k 1,l 1 (α) α kq n 1 k 1,l (α) α lq n 1 k,l 1 (α)+ α Q n 1 k,l )
208 n th Q n (α) (0, 1,...,n 1) import numpy as np def designq(basis = 10, alpha = np.zeros([10,10]), photon_proj = 0): Returns the design matrix to build a generalized Q function from a given density matrix. Parameters basis : integer The truncation number of the density matrix which will be used to determine the generalized Q function. alpha : complex matrix An array of complex values which represent the displacement amplitude for a set of measurements Returns Qmat : complex 5-dim array Values representing the design matrix to create a generalized Q-function given an arbitrary cavity state density matrix. rho_shape = [basis, basis] photon_array = np.arange(photon_proj + 1) Q_size = np.append(rho_shape, photon_array.shape) Q_size = np.append(q_size, alpha.shape) Qmat = np.zeros(q_size,dtype = complex) #initial seed calculation for 0><0, 0 photon Qmat[0][0][0] = np.exp( -np.abs(alpha) ** ) for k in np.arange(1,basis): # calculate k><0 for 0 photon Qmat[0][k][0] = (alpha * Qmat[0][k-1][0]) / np.sqrt(k) Qmat[k][0][0] = np.conj(qmat[0][k][0]) for k in np.arange(1,basis): for l in np.arange(k, basis): # calculate k><l for n photon Qmat[k][l][0] = (alpha * Qmat[k][l-1][0]) / np.sqrt(l) Qmat[l][k][0] = np.conj(qmat[k][l][0]) for n in np.arange(1, photon_proj+1): # calculate 0><0 for n photon Qmat[0][0][n] = np.abs(alpha)** * Qmat[0][0][n-1] / n for k in np.arange(1, basis): # calculate k><0 for n photon Qmat[0][k][n] = ( (1./n) * (np.abs(alpha)** * Qmat[0][k][n-1] - alpha * Qmat[0][k-1][n-1] * np.sqrt(k) ) ) Qmat[k][0][n] = np.conj(qmat[0][k][n]) for k in np.arange(1, basis): for l in np.arange(k, basis): # calculate k><l for n photon Qmat[l][k][n] = ( (1./(n)) * ( 1.*np.sqrt(l*k) * Qmat[l-1][k-1][n-1] - (alpha) * Qmat[l][k-1][n-1] * np.sqrt(k) - np.conj(alpha) * Qmat[l-1][k][n-1] * np.sqrt(l)
209 + np.abs(alpha)** * Qmat[l][k][n-1] ) ) Qmat[k][l][n] = np.conj(qmat[l][k][n]) return Qmat β ψ(t) = U(t) β = e ikt (a a) β = n e iktn e β β n n! t q = π qk q ψ(t q ) = n F n e β β n! n F n = e iπn q F q q F n+q = e iπ q (n+q) = e iπn q e 4πni e 4πqi = e iπn q = F n F n F n = q 1 p f p e iπpn q
210 f p = 1 q q 1 k F k e iπkp q = 1 q q 1 k e iπk q e iπkp q = 1 q q 1 k e iπ q k(k p) ψ(t q ) = = q 1 p q 1 p = 1 q f p ( n f p βe ipπ q q 1 p=0 q 1 k=0 e β β n e iπkn q n! n e iπ q k(k p) βe ipπ q ) q = ( ψ(t ) = 1 e iπ 4 ) iπ β + e 4 β
211 C
212 d X = Z = ω ω ω (d 1) ω = e πi d X, Z d d = d X Z ZX = ωxz Z d = X d = I. j X j = (j +1)modd Z j = ω j j Y Y = ωxz d
213 d = G {±I,±X, ±Y,±Z, } g 1,...,g k G G G g 1,...,g k G = g 1,...,g k G = X, Z, I. d G d = X, Z, ωi d X,Z 3, G d S V S S = g 1,...,g l V S S S V S
214 V S S V S P ψ S P = N l (I + g l ). N 1 S P V S G d S C(S) {E j } E j g l = g l E j C(S) d g l S g l g k = g k g l
215 P V S g l {E i } S C(S) {E i } V S d =4,S = Z C(S) d =4 G 4 = X, Z, ωi X = Z = 0 ω ω ω 3 ω = e iπ S = Z Z Z = S P V S
216 P = 1 (I + Z )= P = L = 0 1 L =. V S Z G 4 XZ = ω Z X = Z X C(S) 0, Z X d =4,S = X S = X X = X P = 1 (I + X )=
217 P = 1 ( 0 + ) c.c. + 1 ( ) c.c. 0 L = 1 ( 0 + ) 1 L = 1 ( ). ZX = ω X Z = X Z C(S) 1 ( 0 + ) 1 ( ) X Z d =4,S = X, Z Z X S Z X = ω 4 X Z = X Z V S P = 1 (I + Z )(I + X )= P = 1 ( 0 + ) c.c. ψ = 1 ( 0 + ) S = X,Z
218 d =8,S = X 4, Z 4 Z 4 X 4 (X 4 ) = X 4, (Z 4 ) = Z 4 Z 4 X 4 = ω 16 X 4 Z 4 = X 4 Z 4 ω = e iπ 4 V S P = 1 (I + Z4 )(I + X 4 ) P = 1 ( ) c.c. + 1 ( + 6 ) c.c. 0 L = 1 ( ) 1 L = 1 ( + 6 ). C(S) 1 ( ), 1 ( + 6 ) S = X 4,Z 4 X, Z d =18 9
219 j = βω j ω = e πi d d βω j β j k δ j,k X j (j +1)modd X = e πi d a a a,a X j
220 j +1 Z j ω j j d =4,S = Z d =4 Z Z =( β β + β β ) ( iβ iβ + iβ iβ ) 0 L = β 1 L = β. X X = e πi a a d =4,S = X d =4 S = X
221 X =( β β + β β )+( iβ iβ + iβ iβ ) ( ) 1 = ( β + β ) c.c. + 1 ( iβ + iβ ) c.c ( ) 1 ( β β ) c.c. + 1 ( iβ iβ ) c.c X P = e iπa a 0 L = 1 ( β + β ) 1 L = 1 ( iβ + iβ ). Z Z a ax = ae iπa a = ap = Pa = X a. d =4 S = X C(S)
222 d =8,S = X 4,Z 4 d =8 X Z X 4 = e iπa a = P Z 4 Z 4 0 L = 1 ( β + β ) 1 L = 1 ( iβ + iβ ) X Z X 4 a
223 d =18
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
01 π π 4 1 2 I(t) C V C L V L C L Q(t) Φ(t) (L, C) Q(t) V C + V L =0 Q(t) C + Q(t) Ld2 =0 dt 2 d 2 Q(t) + Q(t) dt 2 LC =0 d 2 Q(t) + ω dt 0Q(t) 2 =0 2 Q(t) ω0 2 = 1 LC V L + V C =0 d 2 Φ(t)
Between Square and Circle
DOCTORAL T H E SIS Between Square and Circle A Study on the Behaviour of Polygonal Steel Profiles Under Compression Panagiotis Manoleas Steel Structures Printed by Luleå University of Technology, Graphic
A Classical Perspective on Non-Diffractive Disorder
A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Diamond platforms for nanoscale photonics and metrology
Diamond platforms for nanoscale photonics and metrology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
χ 2 1 N =0 1 1 2 3 npn 1 2 1 9 N =0 1 1 1 1 2 6 6 4 9 B V 70 100 10 1 2 2 2 2 a 1 a 2 δ 1, δ 2 δ 3. b 1 b 2 Γ, K, K M K K A B a 1 = ( ) ( ) 3a 2, a 3a, a 2 2 = 2, a, 2 a = a 1 = a 2 2.46 ( ) (
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
TALAR ROSA -. / ',)45$%"67789
TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms
Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms The Harvard community has made this article openly available. Please share how this access benefits
f RF f LO f RF ±f LO Ιδανικός μείκτης RF Είσοδος f RF f RF ± f LO IF Έξοδος f LO LO Είσοδος f RF f LO (ω RF t) (ω LO t) = 1 2 [(ω RF + ω LO )t + (ω RF ω LO )t] RF LO IF f RF ± f LO 0 180 +1 RF IF 1 LO
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
a,b a f a = , , r = = r = T
!" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;
program name definitions of (nonglobal) variables state of the data space before execution transformations by the program { state of the data space after execution } program Inner-Product-1 m: integer
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &
J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--
Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems
Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems The Harvard community has made this article openly available. Please share how this access benefits you. Your story
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
Review of Single-Phase AC Circuits
Single-Phase AC Circuits in a DC Circuit In a DC circuit, we deal with one type of power. P = I I W = t2 t 1 Pdt = P(t 2 t 1 ) = P t (J) DC CIRCUIT in an AC Circuit Instantaneous : p(t) v(t)i(t) i(t)=i
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1
6 Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση 6.1.1 Ελατήριο σε οριζόντιο επίπεδο Υποθέτουµε ότι το ελατήριο έχει αρχικό µήκος µηδέν, ιδανικό ελατήριο. F=-kx x K M x Σχήµα 6.1 ιαστάσεις µεγεθών
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)
Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
WXEY Z Z [\ ] ^] Y _A` Z aebec(y ] ] [Ẍ d _A\e] fe[xe[ga\ [[_Ad
% &! (')*+,$-!., -$!#$ /1032547686)479;:-
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )
(product-operator) I I cos( t) + I sin( t) x x y z 2π (rad) y 1 y t x = 2πν x t (rad) sin t Iy# cos t t Ix# Ix# (t ) z Ix# Iy# Ix# (t ) z Ix cos (t ) + Iy sin (t ) -x -y t y I-y# I-y# (t ) z (t ) z x I-y#
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Gradient Descent for Optimization Problems With Sparse Solutions
Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,
DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v
BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m
R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x
l dmin dmin p k δ i = m p (p l ) p l µ p BCH µ WB t (q+) l l i m h(x) A B C = A B k SNR rec. db k SNR rec. db SNR rec. db p = p = p = SNR rec. db p = k = q = t k σ p(k;{a i} n i= ) n σ p(n;{a i} n i= )
.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).
ΡΧΗ 1Η Ε ε Γ Α Ο ΗΡ Ε Ε Ε Ε Η Ε Ο Ε Ο Ε Η 14 Ο Ο 2001 Ε Ε Ο Ε Ο Η Ε Η εε : Η Ο ΧΕ Η Ο Ο Ε εά : Ε (6) Ε Α 1ο Α.1. π µ µ ά : Ρ ( ) = Ρ ( ) Ρ ( ). 8,5 Α.2. µ π µπ µ π µ µ, (=,, ) : Ρ ( )... 1 Ρ( ) 2 Ρ( )...
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
O.172 ITU-T (SDH) ITU-T O.172 (2005/04)
O.172 ITU-T (2005/04) :O / (SDH) ITU-T O.172 O O.9 O.19 O.39 - - - - O.1 O.10 O.20 O.129 O.40 O.199 - O.130 O.209 O.200 - /. (SDH) ITU-T O.172 (SDH).(SDH).(PDH) (SDH). 2005 13 ITU-T O.172 (2008-2005) 4.ITU-T
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
SAW FILTER - RF RF SAW FILTER
FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic