ΕΙΣΑΓΩΓΗ ΣΤHN ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΓΝΩΣΗ ΚΑΙΡΟΥ - ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΜΟΝΤΕΛΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ Επιστήµη και Τεχνολογία Υδάτινων Πόρων ΕΜΠ Ι ΑΣΚΟΥΣΑ: Β. ΚΟΤΡΩΝΗ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ: 2003-2004 ΙΣΤΟΡΙΚΗ ΑΝΑ ΡΟΜΗ 1888 : von Helmholtz, πρωτοδιατύπωσε τις εξισώσεις ρευστοµηχανικής 1898 : Bjerknes, πρότεινε την εφαρµογή τους στη ατµόσφαιρα 1922 : Richardson, πρόταση για πρόγνωση λύνοντας τις βασικές εξισώσεις µεαριθµοµηχανές 1945 : Νeumann - Zworykin, πρόταση για πρόγνωση σε υπολογιστή 1950 : Στον ΕNIAC (υπολογιστή στο Princeton) έγινε πρόγνωση για τρεις περιπτώσεις 1953 : Rossby βαροτροπικό µοντέλο (δεν λαµβάνει υπ οψην κατακόρυφη µεταβολή της ταχύτητας και οριζόντια µεταβολή της θερµοκρασίας), έκανε επιχειρησιακή πρόγνωση σε ένα επίπεδο (500 hpa)
ΙΣΤΟΡΙΚΗ ΑΝΑ ΡΟΜΗ 1955 : ΙΒΜ πρόγνωση σε τρία επίπεδα 900, 700, 400 hpa βασισµένη στο βαροκλινικό µοντέλο (λαµβάνει υπόψη την θερµοδυναµική δοµή τηςατµόσφαιρας) των Charney, Eliassen. 1958 : Ιδρύθηκε το Νational Meteorological Center (USA) 1963 : βαροκλινικά µοντέλα, 6 επίπεδα, βασισµένα στις βασικές (primitive) εξισώσεις. 1966 : παγκόσµια κάλυψη, τοπογραφία, παραµετροποιήσεις ΙΣΤΟΡΙΚΗ ΑΝΑ ΡΟΜΗ NMC 1976 : µοντέλα περιορισµένης κλίµακας 1990 : µοντέλο µε επάλληλα πλέγµατα 1970 : Ιδρυση του ECMWF (Ευρωπαικό Κέντρο Μεσοπρόθεσµων Προγνώσεων 1979 : πρώτη πρόγνωση καιρού βασισµένη σε µοντέλο grid point τώρα : 10ήµερη πρόγνωση µεφασµατικό µοντέλο, οριζόντια ανάλυση ~50 km, 31 κατακόρυφα επίπεδα 10ήµερη πρόγνωση - 2. 10^13 υπολογισµοί
ΠΡΟΓΝΩΣΗ ΚΑΙΡΟΥ Επίλυση των εξισώσεων που διέπουν την εξέλιξη της ατµόσφαιρας: 2ος νόµος Newton : διατήρησης της ορµής εξίσωση συνέχειας καταστατική εξίσωση τελείων αερίων 1ος νόµος της θερµοδυναµικής διατήρησης της υγρασίας Βασικές εξισώσεις αριθµητικών µοντέλων (προγνωστικές εξισώσεις) u u u u 1 p = u v w + fv + F t y z ρ v v v v 1 p = u v w fu + F y t y z ρ y w w w w 1 p = u v w g t y z ρ z 2ος νόµος Newton ρ u v = ρ + + t y w z u v w + + = 0 y z εξίσωση συνέχειας u,v,w: συνιστώσες ανέµου, f: παράµετρος Coriolis, p: πίεση,f: τριβή Τ: θερµοκρασία,
Βασικές εξισώσεις αριθµητικών µοντέλων (διαγνωστικές εξισώσεις) p = ρrt καταστατική εξίσωση Q = C p dt dt 1 dp ρ dt q q q q = u v w + E P t y z 1ος νόµος της θερµοδυναµικής διατήρησης της υγρασίας q: σχετική υγρασία, Ε= εξατµισοδιαπνοή, P: βροχή εν υπάρχει αναλυτική λύση για τις εξισώσεις που περιγράφουν την εξέλιξη της ατµόσφαιρας (µή γραµµικές, µερικές διαφορικές) Οπότε είτε εύρεση ακριβούς αναλυτικής λύσης απλοποιηµένης µορφής των εξισώσεων Πχ. γεωστροφικός άνεµος V g 1 = ρ f p n ρ: πυκνότητα, f=10-4 s -1, p: πίεση, n : διεύθυνση κάθετη στις ισοβαρείς
ΠΡΟΓΝΩΣΗ ΚΑΙΡΟΥ δηµιουργία ενός απλοποιηµένου µοντέλου για το οποίο µπορούν να επιλυθούν οι εξισώσεις αρχικές προσπάθειες αριθµητικής πρόγνωσης περιγράφοντας την ατµόσφαιρα σαν ένα στρώµαρευστού που περιβάλλει την γή αριθµητική επίλυση των βασικών εξισώσεων επίλυση µερικών διαφορικών εξισώσεων µετηνµέθοδο πεπερασµένων διαφορών σε διακριτά σηµεία (grid points) Στοιχείο πλέγµατος (3-D) - grid point Οι τρεις συνιστώσες του ανέµου υπολογίζονται στις έδρες του κύβου-στοιχείου πλέγµατος και η θερµοκρασία., πίεση, υγρασία στο κέντρο του κύβου.
Επίλυση εξισώσεων-µέθοδος πεπερασµένων διαφορών N + Αντικαθιστούµε µια συνεχή διαφορά Ν/ µε διακριτές διαφορές Ν/. Χρησιµοπoιώντας ανάπτυξη σε σειρές Taylor, µπορούµε ναγράψουµε: = N N + + 1 2 2 N 2 1 6 3 N 3 1 24 4 N 4 2 3 4 ( ) + ( ) + ( ) +... (Α) 2 N 1 N 1 N = N + 2 2 6 Αφαίρεση της (Β) από την (Α) δίνει: 3 N 3 1 24 4 N 4 2 3 4 ( ) ( ) + ( ) +... (Β) N = N N 2 + 2 Κεντρική διαφορά (centered difference) + O( ) Ο( )2: σφάλµα αποκοπής Επίλυση εξισώσεων-µέθοδος πεπερασµένων διαφορών Από την (Α) µόνο έχουµε: N = N + N + O( ) Προς τα εµπρός διαφορά (forward difference) Ο( ): σφάλµα αποκοπής Η προσέγγιση αυτή έχει µεγαλύτερο σφάλµα αποκοπής από τις κεντρικές διαφορές γιατί απαλείφονται όλοι οι όροι τάξεως.
Σφάλµα αποκοπής (truncation error) 300 250 200 150 100 50 0 1 2 3 4 5 6 7 8 9 Υπολογισµός της παραγώγου της συνάρτησης 3 για τιµές του από 1 ως 9. µπλέ γραµµή: υπολογισµός από τον τύπο 3 2, µωβ γραµµή: κεντρική διαφορά, κίτρινη γραµµή: προς τα εµπρός διαφορά Αριθµητική επίλυση εξισώσεων i= 1 2 3 4 3 k= 3 2 1 Μεταφορά θερµοκρασίας: θ/ t = -U θ/ U θ/ αριστερά = U 22 (θ 32 -θ 22 )/ U θ/ δεξιά = U 32 (θ 42 -θ 32 )/ U θ/ κέντρο = 1/2 (αριστερά + δεξιά ) = [U 32 (θ 42 -θ 32 )+ U 22 (θ 32 -θ 22 )] / 2 θ/ t = [θ(t+ t) - θ(t- t)]/2 t leapfrog σχήµα χρονικής ολοκλήρωσης: θ 32 (t+ t)= θ 32 (t- t)- 2 t [U(t) θ(t)/ κέντρο ] θ ik (t+ t) = θ ik (t- t) - t/.{u ik [θ (i+1)k -θ ik ] + U (i+1)k [θ ik -θ (i-1)k ] } t Για την πρόγνωση της θερµοκρασίας σε µία θέση απαιτείται γνώση της θερµοκρασίας σε τρείς θέσεις και δύο χρονικές στιγµές και ο άνεµος σε δύο θέσεις και µία χρονική στιγµή.
Παράδειγµα αριθµητικής επίλυσης εξισώσεων Έστω την t=0, θ 32 =10 C. Tην t=15 min, θ 22 =11 C, θ 32 =10.1 C, θ 42 =9 C, U 22 = U 32 =5 m/s. Προγνώστε αριθµητικά την δυνητική θερµοκρασία θ 32 την χρονική στιγµή t=30 min, λαµβάνοντας υπ όψην ότι =50 km. U θ/ αριστερά = U 22 (θ 32 -θ 22 )/ U θ/ δεξιά = U 32 (θ 42 -θ 32 )/ U θ/ κέντρο = 1/2 (αριστερά + δεξιά ) = [U 32 (θ 42 -θ 32 )+ U 22 (θ 32 -θ 22 )] / 2 θ/ t = [θ(t+ t) - θ(t- t)]/2 t leapfrog σχήµα χρονικής ολοκλήρωσης: θ 32 (t+ t)= θ 32 (t- t)- t / [U 32 (θ 42 -θ 32 )+ U 22 (θ 32 -θ 22 )] t = 10.18 C Aριθµητική ευστάθεια Μερικά από τα πιθανά λάθη στην διαδικασία αριθµητικής πρόγνωσης: στρογγυλοποίηση (round-off error) : ένας υπολογιστής 32-bit επιλύει αριθµούς που διαφέρουν µεταξύ τους κατά 310 8, οποιαδήποτε µικρότερη διαφορά χάνεται. σφάλµα αποκοπής (truncation error) αριθµητική αστάθεια : ηαριθµητική λύση αποκλίνει σύντοµααπότην πραγµατική λύση, ένας λόγος είναι το σφάλµα αποκοπής. Μπορεί επίσης να συµβεί αν οι ταχύτητες είναι µεγάλες, ηανάλυσηπλέγµατος µικρή και το χρονικό βήµα ολοκλήρωσης µεγάλο. δυναµική αστάθεια
Χρονικό βήµα-κριτήριο ευστάθειας Κριτήριο Courant- Friedrichs-Lewy t< /c Αναπαράσταση των διαδικασιών σε πλέγµα
ιαιρώντας την απόσταση πλέγµατος δια 3, 9πλασιάζουµε τασηµεία και το χρόνο ολοκλήρωσης αλλά ο χρόνος ολοκλήρωσης αυξάνεται γιατί πρέπει αντίστοιχα να µειωθέι το χρονικό βήµα. Οριζόντια ανάλυση Η µεγαλύτερη ανάλυση επιτρέπει την λεπτοµερέστερη περιγραφή των φυσιογραφικών χαρακτηριστικών (πχ. κατανοµή ξηράς-θάλασσας) της περιοχής µελέτης
Οριζόντια ανάλυση Η µεγαλύτερη ανάλυση επιτρέπει την λεπτοµερέστερη περιγραφή των φυσιογραφικών χαρακτηριστικών (πχ. τοπογραφίας) της περιοχής µελέτης. 40 N =21 km Fine grid (~6 km) Coarse grid (~20 km) 30 N 20 E 30 E 1300 900. 900. 900. 900. 1300 1300 900. 900. 900. =6 km 1300 900. Aegean Sea 900. 900. Ionian Sea 900. Athens Naos 900. Rhodos Crete Karpathos
Τρισδιάστατη αναπαράσταση πλέγµατος µοντέλου Κατακόρυφες συντεταγµένες Χρήση κατακόρυφων συντεταγµένων σίγµα (σ) pa ptop σ = psurf ptop
Κατακόρυφες συντεταγµένες Χρήση κατακόρυφων συντεταγµένων σίγµα (σ) σ=1. Κοντά στην επιφάνεια της γής, σ=0 σε µία χαµηλή τιµή πίεσης όπου οι κατακόρυφες κινήσεις µπορούν να θεωρηθούν αµελητέες. Πλεονεκτούν έναντι των συντεταγµένων πίεσης ή ύψους γιατί οι επιφάνειες σίγµα δεντέµνουν το έδαφος Φυσικές διεργασίες - Παραµετροποιήσεις Οι φυσικές διεργασίες παραµετροποιούνται γιατί οι υπολογιστές δεν είναι ακόµη αρκετάισχυροίγιαναεπιλύσουντιςδιαδικασίεςαυτέςείτε γιατί συµβαίνουν σε πολύ µικρή κλίµακα (convection) είτε γιατί είναι εξαιρετικά πολύπλοκες γιαναεπιλυθούναριθµητικά. Οι διεργασίες δεν είναι ακόµα κατανοητές αρκετά ώστε να αναπαρασταθούν από µία εξίσωση
Φυσικές διεργασίες
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΓΝΩΣΗ ΚΑΙΡΟΥ Τρία στάδια pre-processing αριθµητική επίλυση εξισώσεων post processing Πρόβληµα αρχικώνσυνθηκών κενό παρατηρήσεων (ωκεανοί, ανώτερη ατµόσφαιρα) επίδραση τοπικών φαινοµένων στις παρατηρήσεις Μη ισορροπηµένα πεδία τουλάχιστον για τις πρώτες 18 ώρες πρόγνωσης Data assimιlation (Τεχνική εισαγωγής παρατηρήσεων στις αρχικέςσυνθήκεςτουµοντέλου)
Γραφική αναπαράσταση των διαδικασιών σε ένα αριθµητικό µοντέλο πρόγνωσης καιρού
DATA ASSIMILATION έλεγχος ποιότητας παρατηρήσεων πρόγνωση (first guess) + παρατηρήσεις = ΑΝΑΛΥΣΗ αντικειµενική παρεµβολή Ζ a = Ζ g + Za: πεδίο ανάλυσης Ζg: πεδίο πρόγνωσης σa: σφάλµα παρατήρησης σg: σφάλµα πρόγνωσης g ( Ζo Ζg ) 2 2 σ g σ 2 + σ o
Γκάµα οριζοντίωνκλιµάκων οι οποίες έχουν ικανή προγνωσιµότητα (µαύρη σχεδίαση) για διάφορες διάρκειες πρόγνωσης. XAOΣ και ΠΡΟΓΝΩΣΙΜΟΤΗΤΑ Lorenz (1963): «ακόµα καιµε τέλειαµοντέλα και τέλειες παρατηρήσεις η χαοτική φύση της ατµόσφαιρας θα επέβαλε ένα άνω χρονικό όριο περίπου δύο εβδοµάδων στην προγνωσιµότητα του καιρού» Για το λόγο αυτό αναπτύχθηκε η τεχνική του ensemble forecasting κατά την οποία πραγµατοποιούνται πολλές προγνώσεις είτε διαταράσσοντας τις αρχικές συνθήκες ενός µοντέλου είτε χρησιµοποιώντας διαφορετικά µοντέλα.
ENSEMBLE PREDICTION Eπαλήθευση προγνώσεων - Verification A= αρχική ανάλυση (βασισµένη σε παρατηρήσεις) V= επαληθευµένη ανάλυση (βασισµένη σε παρατηρήσεις) F= πρόγνωση C= κλιµατικές συνθήκες n= αριθµός σηµείων πλέγµατος Ανωµαλία : διαφορά από την κλιµατολογία F-C προγνωσθήσα ανωµαλία V-C επαληθευµένη ανωµαλία Τάση : µεταβολή µετοχρόνο Σφάλµα : διαφορά από τις παρατηρήσεις F-A προγνωσθήσα τάση V-A επαληθευµένη τάση F-V προγνωστικό σφάλµα Α-V σφάλµα εµµονής (persistence error)
Eπαλήθευση προγνώσεων - Verification Mέσο Σφάλµα (mean error): F V µέσο προγνωστικό σφάλµα RMS (root mean square error): ( F V) 2 rms προγνωστικό σφάλµα Eπαλήθευση προγνώσεων - Verification Συσχέτιση Ανωµαλίας (correlation anomaly) : δείχνει αν η πρόγνωση και οι παρατηρήσεις συµµεταβάλλονται ως προς την κλιµατολογία κατά τον ίδιο τρόπο. Forecast anomaly correlation : [(F C) (F C) ][. (V C) (V C) ] [(F C) (F C) ] 2.[(V C) (V C) ] 2
Ποιοτική επαλήθευση του πεδίου της βροχόπτωσης Παρατήρηση Πρόγνωση Ναι όχι Ναι όχι hits Misses false alarms correct negatives Accuracy (fraction correct) Overall, what fraction of the forecasts were correct? Range: 0 to 1. Perfect score: 1. Bias score (frequency bias) - How did the forecast frequency of "yes" events compare to the observed frequency of "yes" events? Range: 0 to infinity. Perfect score: 1. Measures the ratio of the frequency of forecast events to the frequency of observed events. Indicates whether the forecast system has a tendency to underforecast (BIAS<1) or overforecast (BIAS>1) events. Does not measure how well the forecast corresponds to the observations, only measures relative frequencies
Probability of detection (hit rate) - What fraction of the observed "yes" events were correctly forecast? Range: 0 to 1. Perfect score: 1. Sensitive to hits, but ignores false alarms. Very sensitive to the climatological frequency of the event. Good for rare events.can be artificially improved by issuing more "yes" forecasts to increase the number of hits. False alarm ratio - What fraction of the predicted "yes" events actually did not occur (i.e., were false alarms)? Range: 0 to 1. Perfect score: 0. Sensitive to false alarms, but ignores misses. Very sensitive to the climatological frequency of the event. Should be used in conjunction with the probability of detection (above). Στατιστικές µέθοδοι για την επαλήθευση του πεδίου της βροχόπτωσης Βias : B=F/O F είναι ο αριθµός των σταθµών για τους οποίους το µοντέλο πρόγνωσε βροχή ίση ή µεγαλύτερη από το καθορισµένο κατώφλι Οείναιοαριθµός των σταθµών που κατέγραψαν βροχή τουλάχιστον ίση µε τοκαθορισµένο κατώφλι. Ένδειξη της προγνωστικής ικανότητας του µοντέλου σχετικά µε την χωρική κατανοµή της βροχής.
Στατιστικές µέθοδοι για την επαλήθευση του πεδίου της βροχόπτωσης Bias 2 1,8 1,6 1,4 1,2 1 0,8 KF GR BM >0,1 >1 >2,5 >5 >10 >20 Threshold (mm) Στατιστικές µέθοδοι για την επαλήθευση του πεδίου της βροχόπτωσης Τhreat : T=CF/(F+O-CF) CF είναι ο αριθµός των σταθµών για τους οποίους το µοντέλο πρόγνωσε ορθά την βροχή. Threat 1,2 1 0,8 0,6 0,4 0,2 0 >0,1 >1 >2,5 >5 >10 >20 Threshold (mm) KF GR BM
Στατιστικές µέθοδοι για την επαλήθευση του πεδίου της βροχόπτωσης Quantity Βias : QB = P f P o Pf είναι η πρόγνωση βροχής από το µοντέλο στον κάθε σταθµό Po είναι η αντίστοιχη τιµή παρατήρησης στο σταθµό Quantity Bias 20 15 10 5 0-5 -10-15 -20 0,1-2,5 2,5-5 5-10. 10.-20. >20 Range (mm) QB-KF QB-GR QB-BM Στατιστικές µέθοδοι για την επαλήθευση του πεδίου της βροχόπτωσης Mean Absolute Error : MAE= [Σ P f -P 0 ] / n n είναι ο αριθµός των σταθµών Mean Absolute Error 25 20 15 10 5 0 MAE-KF MAE-GR MAE-BM 0,1-2,5 2,5-5 5-10. 10.-20. >20 Range (mm)
Προγνώσεις καιρού Μπορείτε να βρείτε προγνώσεις καιρού για τον Ελλαδικό χώρο, στις παρακάτω ιστοσελίδες: Εθνικό Αστεροσκοπείο Αθηνών http://www.noa.gr/forecast http://www.forecasts.gr