MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Σχετικά έγγραφα
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Delta Inconel 718 δ» ¼

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

p din,j = p tot,j p stat = ρ 2 v2 j,

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

v w = v = pr w v = v cos(v,w) = v w

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

2 SFI

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Ανώτερα Μαθηματικά ΙI

tan(2α) = 2tanα 1 tan 2 α

Quick algorithm f or computing core attribute

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

PACS: Pj, Gg

ER-Tree (Extended R*-Tree)

Supporting Information

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Εφαρμοσμένα Μαθηματικά

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

S i L L I OUT. i IN =i S. i C. i D + V V OUT

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

High order interpolation function for surface contact problem

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

Approximation Expressions for the Temperature Integral

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Reverse Ball-Barthe inequality

arxiv: v1 [math.dg] 3 Sep 2007

Im{z} 3π 4 π 4. Re{z}

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Transcript:

Ö 49 Ö 11 Vol.49 No.11 013 Ò 11 Ö 1416 14 ACTA METALLURICA SINICA Nov. 013 pp.1416 14 ßÍ Ø Ç Nb TiAl Ë ÚÒ Ö Þ 1) «) 1) 1) 1) 1) Í Ä Ñ Ø ËÈ, 100083 ) Ñ Ä, 100083 Đ 900 1000 ß½  à (500 1000 cyc) Ì, Ø À (OM) ½ Ú (SEM) ß Ú (TEM) Ç Â ±Û à ÔÜ Ð ß. Ç, ß½ Ç ³ÈÔ»Ü (Al Ü ) ²Å ¼Ã, 900 Ã È Al Ü Ç ± Í, 1000 cyc Ã È²Å α ³Ð Í; 1000 Ã È Al Ü Ç Á ½, 500 cyc à ÈÉ Â ¾ÐÓ², Û α ³ Í Á. 1000 cyc Ã È Ö ÀÐÓ² Á, Ö±Û ¹Ð Ô α ³ Á; 1000 à È, Ô α ³Ï É {111} Á, α ³Ü ÐÆ ¹½. ÈÏ Nb TiAl, Ã, ß, ³ ÐÃÆ Ê T146. ÕÜ A Õ Ê 041 1961(013)11 1416 07 MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIH Nb TiAl ALLOY AFTER LON TERM THERMAL CYCLIN FAN Lu 1), DIN Xianfei ), ZHAN Laiqi 1), HAO uojian 1), LIN Junpin 1) 1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 ) National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 Correspondent: LIN Junpin, professor, Tel: (010)63319, E-mail: linjunpin@ustb.edu.cn Supported by National Basic Research Program of China (No.011CB605500), National Natural Science Foundation of China (No.51171015), China Postdoctoral Science Foundation (No.01M50166) and Specialized Research Fund for the Doctoral Program of Higher Education (No.0100061004) Manuscript received 013 08 19, in revised form 013 09 15 ABSTRACT Microstructure stability in the fully lamellar alloy were investigated by OM, SEM and TEM after long term thermal cycling (500 and 1000 cyc) at 900 and 1000. The results showed that Al segregation could not be eliminated completely after the heat treatment. After long term thermal cycling at 900, the discontinuous coarsening was inclined to occur in the Al segregation region in the alloy. And almost no spheroidized precipitates of α were observed even after 1000 thermal cycles. After long term thermal cycling at 1000, the massive grains were generated in the Al segregation region. After 500 thermal cycles, the spherodized α precipitates were produced within grains which were found at colony boundaries. After 1000 thermal cycles, however, the large equiaxed grains containing different orientation of plate shaped precipitates * Ò Ù ÅÇ Ì 011CB605500, Ò¾ À 51171015, ÃÈ À 01M50166 ÓÀ ÃÀ Ù Ç 0100061004 ¼µ Ê : 013 08 19, Ê : 013 09 15 Ö :, Ö, 1990 Ó, à DOI: 10.374/SP.J.1037.013.00495

Ö 11 Ò : ÂÏÓÛ Þ¼ Nb TiAl Þ 1417 of the α phase were observed within the lamellar structure or at colony boundaries. After long term thermal cycling at 1000, the plate shaped or particle shaped α, which is coherent with the matrix, precipitates on the {111} plane in the grain interior. KEY WORDS high Nb TiAl alloy, thermal cycling, thermal stability, phase transformation Nb TiAl ÀÅ Õ Đ «Đ Ñ ±ÎÎ Ñ ± Ñ, Æ Ó Đ ÊÝÑ TiAl ÀÅ 60 100, Å º Ò ÔÈß ÃÀ³ÑÑÓ [1 3]. ÆÑ, Nb TiAl ÀÅÑ ±Ó³¹, Ä Ã 700 1000 Í, ˱ Ñ Ñ Ó. ÐÍ, È Ä Õ Ý Ñ Å º ÎÑÓÑ Æ [4,5]. ¾ Ñ TiAl ÀÅ Ô Ñ «Đ Ç Ñ Û [6 8], Æ α + Ñ ¾ Ó ß ² [9,10]. Huang Ô [11] Nb TiAl ÀÅ Ã 700 Í Í,  à ², α ¾Ñ 3 ÆÁ. Å Í Nb TiAl ÀÅÑ È ÁÑ [10 14], ÅÀÅ Ä Ñ «Ù ºÈ. «ÀÅ Í Í ÑÈ Å²¹Ñ, ÆÅÐ ºµÝÑ ±ĐÆÛ Ä ¹. ¹ ÀÅ Ë Ä Ó, Æ Ñ ÙÅÅ Ñ, É Æ Ñ, Æ Ñ Ó Æ ² Î [5,15]. Æ ¹ ÀÅÑ ² ß ²ÜÛÜÔ ĐÝ Õ Ñ Í. ÐÍ, È Nb TiAl ÀÅ Ä ÕÝ Å. Å, ÀÅ ÕÝ Ñ ³«. ¾ Ti 45Al 8.5Nb 0.W 0.B 0.0Y (н, %) ÀÅ 900 1000 Ä Í (500 1000 cyc), Ó¾ Û (SEM) Û (TEM), ²Ü Đ Ä ÀÅ ÑÒµ, ÐÐ. È Nb TiAl ÀÅ ÝÑÓ µ¹ ², Nb TiAl ÀÅÑÅ Ñ. 1 ÐÄÂ Ó À Å Ñ Î Á Ti 45Al 8.5Nb 0.W 0.B 0.0Y (н, %), Ti 45Al 8.5Nb(W, B, Y). ÀÅ Ô ½ ËÌ (PAM), ºÔ»Î È ÐÀÀ Å. ß ÀÅ 1340 (α ) 1 h, Ì 900 ÎÈ 30 min, º, Õ α / ¾ Ñ ¾ (FL). Ä ÍÉ Ù Û Ë² 1 mm 1 mm 5 mm, ÐÑË SiC Õ 100, É Ú 15 min. Ä Í YHL(1.5 1) Ñ Ð Ä Ì, Í Å º. Ì Å Ó 1 h, º 1 min Ä. ß ¾ÀÅÉ 3, 900 1000 0, 500 1000 cyc Ñ Ä Í, 0 cyc(«ä ) Ó. É ÂÓ Ì«Ð, Ñ Ó. ß Ä ÍÅ ÐÓ ºÅ Ï, ÓØ 5 ml HF+10 ml HNO 3 +85 ml H O Ñ, Ó Á (OM) Ä ÍÅ Ð ¾. É, ß²Ü Đ Ä ÍÉ ÑÀÅÉ Ãº, Ä ÎξÑÒ µ, Ã Ó 60 000, Ó ZEISS SURPA55 Å Û Ñ ¼ Á, JEM 010 Û½ Ä 0, 500 1000cyc ÉÉ Î. TEM Ó ÙÛ Ø É» (7 V, 30 ), Û Õ Î ÝÌ Ô Ì, Ñ 1 6 13. Đ ¾Õ (α +) (+) Å edge on ƺ Ñ TEM»Á, ± 30 Å. Ð É.1 Î Ì ÛÓ 1a c Å ¾ ÀÅ Ä ÅÑ OM, BSE TEM. Å, ÀÅ È Ã ¾ Õ (63± 7 nm) Ñ ¾, ¾ Ð. Ti 45Al 8.5Nb(W, B, Y) ÀÅ ¾ È ÉÕ¼Ý (Al Ý ) ³«½Ä, BSE Á Đ, ² ¹ Û Ñ, ¹ 1b Â. EDS SEM, Õ¼Ý Ð Al Õ Nb.. ÔÀÙ ÎÁÛÓ Ý..1 SEM ÆÅ a b Ti 45Al 8.5Nb(W, B, Y) ÀÅ 900, Ä 500 1000 cyc É BSE. Â, Ý 1b Ä ÅÀÅ, Ä É Al Ý Ø, ÀÅ 500 cyc Ä É, µ Al Ý È³ ÀÀ ¾. 1000 cyc Ä É, µ Ý È ² Î (DC)», Å (α +) fine (α +) coarse, Æ ¾ÆºÝÀÀ ¾Æº²Ü. É, ÀÅ 1000 cyc Ä É Ð ³«Å Ñ Â.

T F 1418 m r 49 P{18 l 900 1000 cyc SEM BSE "KX 500 B + Fig. SEM BSE images of alloy after long term thermal cycling at 900 for 500 (a) and 1000 (b) thermal cycles vs6mq-_)a- α ( J, f α (m V J. H 1000 cyc #LYQ, $/%oe", $ l e P Ja I ma A, Æ Al)"s : q-_)a- α ( J, xa " Al) Jm: q- α (.^. ~ 3g 1000 cyc #LYQX} d { Jma Al ) 49 a ~,. q~,b$j, f AF\}aA, l) J s!.m:q- α (, &x.m α :q ql a 70 :t (u~ m J)... TEM Æ ~ 4a C b J H 900, < 500 C 1000 cyc #LYQ (α +) m TEM :[~.,u, 900 : #LYQ Al α + (u< α ( m), Æ α ( O P sæ m N. ( H H O (~ 1c), #LYQ m O s o. LK#LY<B 9 6>mD D Z V, α m + ZM g O m (Y} l. ~ 4c J 1000 cyc #LYQ α / m& DD Z V TEM :[, ~ vz 1 C H H e & DD Z V.,u, & DD Z V m O e q "e"awhh,.yhh m1 BSE TEM B + "KX OM, SEM Fig.1 OM (a), SEM BSE (b) and TEM (c) images of the fully lamellar before thermal cycling ~ 3a g H 1000 #LY 500 C 1000 cyc Q BSE 49 ~,. ~ 3a C b H 1000 #LY 500 C 1000 cyc Q Al y P BSE 49 ~,. X ~,b $J, Al y P Ja A, }s (α +), 1?. 43 "X}, " $ 900 #LYQ6>m &DDZV$/. ~ 3c C d H 1000, #LY 500 C 1000 cyc Q#9 e( V m BSE 49 ~,, ~ 3e C f ) a~. X~,b$J, H 500 cyc #LYQ, R P JB 3 A, Al)

r 11 =n : 8!JWow z0 Nb TiAl F 7 z= "KXPl BSE 38 }+ SEM BSE images of lamellae in the Al segregation region (a, b) and microstructure changes (c g) in alloy after long term thermal cycling at 1000 m3 Fig.3 1419 1000 (a, c) after 500 thermal cycles (b, d) after 1000 thermal cycles (e) magnified α + in Fig.3c (f) magnified α + in Fig.3d (g) large equiaxed grains containing different orientation of plate shaped precipitates of the α phase after 1000 thermal cycles

T F r 49 &x; ) Al:?m& DD ZV m α (vz 1 ) e, & DD Z V Mu<1 H H M&DDm_ \ lm Om;.RmHH α / :?m. H 1000 : #LYQ, TEM 43 (α +) 9 m&? V, y 900 (, α m + e O " o. ~ 5a C b J Ti 45Al 8.5Nb(W, B,Y) H 1000, < 500 C 1000 cyc #LYQ Al ) J ( m TEM : [.,$i, Al)s :q- α ( J, Æ 1000 cyc #LYQ (~ 5b) α ( 500 cyc(~ 5a) se" :a, Æy ` SEM 43 :^. ~ t5 J Jm α :qy amm SAED SX,.9w1Y Æ." [110].,u, l Jm:q- α (yam q' E {111} //{0001} C h110i //h110i +! Æ.. q- α (R (m {111} ` J, {111} ql 70.5, ÆZ M~ 3g 43iq- α ( 140 α α m4 {1l (α +) TEM 9Z} 900 "KXP Fig.4 TEM images of alloy after long term thermal cycling at 900 (a) after 500 thermal cycles (b) after 1000 thermal cycles (c) discontinuous coarsening of α / after 1000 thermal cycles m5 1 k( I'l "KXP{ 9Z}d SAED RW 1000 TEM Fig.5 TEM images of α plates precipitated in grain of alloy and their SAED patterns (a) after 500 thermal cycles (b) after 1000 thermal cycles

Ö 11 Ò : ÂÏÓÛ Þ¼ Nb TiAl Þ 141 Õ 70 ÑÐÐ. еÄà  չ α, µ ¹ α Â, Ù È /α SAED Ë, µ ¹ α Ý Ñ³ ¾. 3 Å Í, ¾ ÀÅ ²Ü ĐÕÝ, Ä ÍÉ Ñ. Ñ : (1) Å α ¾Ñ ¾ÇĐÑ Ó, Đ, Ä Î,» ; () 900 Ä É Al Ý È ¾ ² Î, 1000  ¾ ; (3) 900 Ä É«Å α Ñ Î, 1000 Ð Â Ñ, Æ Ðµ Õ¹ µ ¹Ñ α Â., ² Î Á, Ñ ±Ñ (α ¾ Ñ ¾Ðµ Ñ ) Ñ (² Î Ð α Ñ Â) [10,16 18]. ¹ 1 Â, ÀÅ ¾ È É, ÀÀ ¾Õ, ÀÅ Ñ ¾ÑÑ ÕÛĐÄ Ñ Á, α ¾ Å Ñ Á Û ¾. ÐÍ, Đ Ä, α ¾ÑÑ ³Þ ÆÛĐÄ, Å α Ñ (α ). Æ, ÀÀ ¾Õ, Ñ Ñ ĐÄ, α Ñ» Æ, ÅÙ È ±Ñ Ç ¾È Æ Æ Ñ [5,9] ( 4b). Ü, Í Â, ÀÅ 1000 Ä É Al Ý È Âà ¾Ñ ( 3a b). Ti45Al8Nb» Ϻ  ÀÅ 1000 ĐÄ Ñн, Đ 8%. ÐÍ,» Ä Î Ñ Ó, Ð (α +) ¾Ñ Ø, ÑÑ, Æ Al Ý ÈÔ Â. 900 ÀÅ 1000 cyc Ä É Al Ý È ¾ ² λ ( b). ² ÎÕ ¼ ¼, Å «ÜÉ Ñ ² Ñ «Ñ [16]. Ð α / Ñ ÎÁ ÕÑÑ Ø, Ø ÑÜ ÕÛÝ ĐÄ Ñ Ñ [17,19]. ÛÜÔ Đ Í Í, Ä ß ± Ѳ Î Ð. ÆÅ Ð, ÕÛ α Ú«ÁÑ²Ü Õ ÃÐ Ñ Ñ, Ã Ñ α / Ñ [5]. Æ Æà ÜÔ Đ ± Đ Í «² λ [9,10,13]., 1000 ÀÅ Ä É, «Å ¹ 900 ¾ Ѳ λ. Å» Ä Î Ñ Ó, Ð È Â, Æ ÐµÚ Â Ñ α ( 3), α ѵ ¹, Ñ Õ¹, Ñ Ç Ñ. ÐÐÝ Ñ Ñ Â Å Ñ, 1000 Đ Ä Ñ, α Ñ, РͲ ¾ ( ¾² Î), Å ÑÑ (α +). Æ ÑÅÕÛ 1000 Ti Al Ô Ñ ¼, ÎÁ ÕÑÑØ Ñ [18]. 4 (1) ² Î Á, Å ±Ñ, α ¾Ñ ¾Ðµ Ñ ; É Å Ñ, ² Î Ð α Ñ Â () ÀÅ 900 Ä É, Al Ý È ² Î, Ð α / Ñ ÎÁ Õ ÑÑØ (3) 1000 ÀÅ Ñ Æ Ý ĐÄ Ñ, Ä É, Al Ý È Â ¾. 1000 cyc Ä É, Ð ÂÑ Á е Ñ α Â, Æ {111} /{0001} α 110 α / 110 ƺ¾. ÕÜ [1] Kim Y W. JOM, 1995; 47: 39 [] Wu X. Intermetallics, 006; 14: 1114 [3] Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, Chen L. Intermetallics, 007; 15: 668 [4] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Mülauer J, Oehring M, Paul J D H. Adv Eng Mater, 000; : 699 [5] Zhao W Y, Pei Y L, Zhang D H, Ma Y, ong S K, Xu H B. Intermetallics, 011; 19: 49 [6] Kim Y W. J Mater Sci Technol, 1994; 10: 79 [7] Es Souni M, Bartels A, Wagner R. Mater Sci Eng, 1995; A19 193: 698 [8] Morris M A, Leboeuf M. Mater Sci Eng, 1997: A39 40: 49 [9] Hu D, odfrey A B, Loretto M H. Intermetallics, 1998; 6: 413 [10] Ramanujan R V, Maziasz P J, Liu C T. Acta Mater, 1996; 44: 611 [11] Huang Z W, Voice W, Bowen P. Intermetallics, 000; 8: 417 [1] Cheng T T. Intermetallics, 1999; 7: 995 [13] Huang Z W, Cong T. Intermetallics, 010; 18: 161

14 Ì Ö 49 [14] Beschliesser M, Chatterjee A, Lorich A, Knabl W, Kestler H, Dehm, Clemens H. Mater Sci Eng, 00; A39 331: 14 [15] eng H B, He S Y, Lei T Q. Acta Metall Sin, 1996; 3: 51 (²Æ, ÄÞ, Ö. ÎÀ, 1996; 3: 51) [16] Manna I, Pabi S K, ust W. Int Mater Rev, 001; 46: 53 [17] Qin, Wang J, Hao S. Intermetallics, 1999; 7: 1 [18] Wang X P, Zheng Y R. J Mater Eng, 000; (7): 0 ( ¾, µ. ų, 000; (7): 0) [19] Tang J C, Huang B Y, He Y H, Xie K. Trans Nonferrous Met Soc China, 000; 10: 10 ( : )