ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

Σχετικά έγγραφα
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

Θερμότητα - διαφάνειες , Σειρά 1

Ο πρώτος νόμος. Είδη συστημάτων. Ανταλλαγή ύλης και ενέργειας με το περιβάλλον

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης

11 η Διάλεξη Κινητική θεωρία των αερίων, Κίνηση Brown, Διάχυση. Φίλιππος Φαρμάκης Επ. Καθηγητής. Εισαγωγικά

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ


ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, μηχανικού έργου και ιδιοτήτων των διαφόρων θερμοδυναμικών

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

2.1 Μεταβολή ενέργειας κατά τις χημικές μεταβολές Ενδόθερμες - εξώθερμες αντιδράσεις Θερμότητα αντίδρασης - ενθαλπία

Ανάλυση Τροφίμων. Ενότητα 4: Θερμοχημεία Χημική Ενέργεια Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ. Τμήμα Τεχνολογίας Τροφίμων. Ακαδημαϊκό Έτος

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015

Α Θερμοδυναμικός Νόμος

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

12 η Διάλεξη Θερμοδυναμική

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

Φυσική Κατεύθυνσης Β Λυκείου.

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΟΙ ΤΥΠΟΙ

ΦΥΣΙΚΗ. Θερμοδυναμική Ατομική-Πυρηνική

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

Παππάς Χρήστος. Επίκουρος καθηγητής

2ο Σύνολο Ασκήσεων. Λύσεις 6C + 7H 2 C 6 H H διαφορά στο θερμικό περιεχόμενο των προϊόντων και των αντιδρώντων καλείται

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

Διαγώνισμα B Λυκείου Σάββατο 09 Μαρτίου 2019

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

Θεωρία και Μεθοδολογία

Προσανατολισμού Θερμοδυναμική

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται.

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή

2. Ασκήσεις Θερµοδυναµικής

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Θερμοδυναμική

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

ΦΥΣΙΚΗ Ο.Π Β ΛΥΚΕΙΟΥ 15 / 04 / 2018

Κεφάλαιο 20. Θερμότητα

Θερμόχήμεία Κεφάλαιό 2 ό

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

ΦΥΣΙΚΗ Ο.Π B ΛΥΚΕΙΟΥ 15 / 04 / ΘΕΜΑ Α Α1. α, Α2. β, Α3. δ, Α4. α, Α5. γ.

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α

2.7 Χημική αντίδραση

Transcript:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του συστήματος. * η ελεύθερη πτώση στερεού σώματος δίνει κιν και δυν ενέργεια που ΔΕΝ είναι εσωτερική ενέργεια κινητική + + + + δυναμική

Η εσωτερική κινητική ενέργεια εκφράζει την μέση κινητική ενέργεια των μορίων και σχετίζεται με την αίσθηση της θερμοκρασίας. Εάν αγγίζοντας με το χέρι σας ένα ξένο σώμα (δηλαδή, τα άτομα της επιφάνειας του χεριού σας έρχονται κοντά στα άτομα της επιφάνειας του σώματος) μεταφέρεται περισσότερη εσωτερική κινητική ενέργεια από το ξένο σώμα προς το χέρι σας, τότε αισθάνεστε το σώμα «θερμό». Αντίθετα, αν περισσότερη εσωτερική κινητική ενέργεια μεταφέρεται από το χέρι σας προς το ξένο σώμα, αισθάνεστε το σώμα «ψυχρό».

Η εσωτερική δυναμική ενέργεια σχετίζεται με την ενεργεια των δεσμων και αλληλεπιδρασεων αναμεσα στα μορια. Οταν π.χ το νερό βράζει, σπαζουν οι δεσμοι υδρογονου αναμεσα στα μορια και ετσι μεταβάλλεται το μέρος της εσωτερικης ενεργειας που αποτελει την δυναμική ενέργεια αναμεσα στα μορια νερου. Αντιθετα η θερμοκρασια του νερου παραμενει ιση με 100 0 C, αρα δεν μεταβάλλεται η μεση κινητικη ενεργεια των μοριων του συστηματος κατά τη διαρκεια του βρασμου. Δεσμός υδρογόνου

ΙΔΑΝΙΚΟ ΑΕΡΙΟ Ως Ιδανικό ορίζουμε το αέριο όπου δεν υπάρχουν δυνάμεις μεταξύ των μορίων του, παρά μόνο ελαστικές κρούσεις (δηλ διατηρούν την κινητική ενέργεια). Πολλά αέρια σε κανονικές συνθήκες συμπεριφέρονται ως ιδανικά. Το ιδανικό αέριο έχει μόνο κινητική ενέργεια. Η κινητική ενέργεια των μορίων του ξέρουμε ότι σχετίζεται με την απόλυτη θερμοκρασία. Άρα η ενέργεια του ιδανικού αερίου εξαρτάται ΜΟΝΟ από την θερμοκρασία.

Καταστατική εξίσωση ιδανικού αερίου p.v = n.r.t = (Ν/Ν Α ).R.T = N.(R/Ν Α ).T = N.k.T Όπου: n = αριθμός moles αερίου, Ν = αριθμός μορίων αερίου, R = σταθερά αερίων, Ν Α = αριθμός Avogadro, k = σταθερά Boltzmann R = 8.314 J/mol.K, k = 1.38064852(79) 10 23 J/K, Ν Α = 6,022 10 23 /mol R = N A.k, σχέση σταθερών αερίου και Boltzmann άμεσες συνέπειες Ο όγκος V είναι ανάλογος του αριθμού των γραμμομορίων n. Εάν διπλασιάσουμε τον αριθμό των γραμμομορίων, διατηρώντας πίεση και θερμοκρασία σταθερές, ο όγκος διπλασιάζεται. Ο όγκος μεταβάλλεται αντιστρόφως ανάλογα με την πίεση. Εάν διπλασιάσουμε την πίεση, διατηρώντας θερμοκρασία και αριθμό γραμμομορίων n σταθερά, το αέριο συμπιέζεται στο μισό του αρχικού του όγκου. (Νόμος Boyle: pv = σταθερό όταν n και Τ σταθερές). Η πίεση είναι ανάλογη της απόλυτης θερμοκρασίας. Εάν διπλασιάσουμε την απόλυτη θερμοκρασία, διατηρώντας όγκο και ποσότητα υλικού σταθερά, η πίεση διπλασιάζεται (Νόμος Charles: pv = (σταθερά)τ, όπου n και V σταθερές).

ΚΙΝΗΤΙΚΟ-ΜΟΡΙΑΚΟ ΜΟΝΤΕΛΟ ΓΙΑ ΙΔΑΝΙΚΟ ΑΕΡΙΟ Κατανομή Maxwell για τις ταχύτητες μορίων υδρογόνου: Η συνεχής καμπύλη είναι για Τ = 300 Κ και η διακεκομμένη για Τ = 77 Κ Πιθανότητα ένα μόριο Να έχει ταχύτητα v * Καθώς η θερμοκρασία του αερίου αυξάνεται, η κατανομή ταχυτήτων μετατοπίζεται προς τις μεγαλύτερες τιμές και επομένως περισσότερα μόρια αερίου κινούνται ταχύτερα. Οι καμπύλες αυτές κανονικοποιούνται ώστε το εμβαδόν της επιφάνειας που ορίζεται κάτω από αυτές να παραμένει σταθερό ( =1 = βεβαιότητα). Μεγαλύτερη θερμοκρασία ευρύτερη κατανομή ταχυτήτων. Αυτό εξηγεί και την ελάττωση του ύψους της κορυφής μεγίστου της καμπύλης κατά την αύξηση της θερμοκρασίας

v 2 3kT m RT M ΚΙΝΗΤΙΚΟ-ΜΟΡΙΑΚΟ ΜΟΝΤΕΛΟ ΓΙΑ ΙΔΑΝΙΚΟ ΑΕΡΙΟ Μέση κινητική ενέργεια μονοατομικού μορίου: v rms 3 Μονοατομικό αέριο 3 βαθμοί ελευθερίας (μετατόπιση) ενέργεια μορίου = 1/2 kt ανά βαθμό ελευθερίας ---------------------------------------------------------------------------------------------------- ενέργεια γραμμομορίου = 1/2 RT ανά βαθμό ελευθερίας m: μάζα ενός μορίου M: μάζα 1 mole Κιν ενέργεια 1 mole: M N A m N A 1 1 mv 2 M v 2 2 2 3 2 RT

Μέση κινητική ενέργεια Μονοατομικό μόριο (3 βαθμοί ελευθερίας μόνο μεταφορική κίνηση) 1 mv 2 2 3 2 kt 2 3kT 3RT v rms v m M Γενική περίπτωση (N f βαθμοί ελευθερίας) 1 2. mv2 = N f. 1 2 kt 1 2. Μv2 = N f. 1 2 RT

Διατομικά μόρια: Πρόσθετη κινητική ενέργεια λόγω: - περιστροφής γύρω από άξονες που περνούν από το κέντρο μάζας τους - (σημειακές μάζες 2 άξονες περιστροφής) - ταλάντωσης κατά μήκος του δεσμού τους (πρόσθετη κινητική και δυναμική ενέργεια)

Ιδανικό αέριο και Θερμοχωρητικότητα ΔQ = m.c.δτ c = ειδική θερμότητα = ενέργεια για να αυξηθεί η Τ 1g κατά 1K ΔQ = n.c.δt C = γραμμομοριακή θερμοχωρητικότητα =ενέργεια για να αυξηθεί η Τ 1mole κατά 1K Υπενθύμιση: C = n.c, n = αριθμός moles Όταν ένα μονοατομικό αέριο απορροφά θερμότητα υπό σταθερό όγκο, όλη αυτή η ενέργεια προκαλεί αύξηση της μεταφορικής μοριακής κινητικής ενέργειας λόγω της τυχαίας κίνησης. (Για να μετατραπεί σε έργο η προσφερόμενη ενέργεια, πρέπει να έχουμε αλλαγή στον όγκο του αερίου) Αν Μ είναι η μάζα 1 mole, 1 2. M. v2 = 3 2. R. T Για να αυξηθεί η Τ 1 mole κατά 1Κ χρειάζεται ενέργεια 3 2. R

Γραμμομοριακή Θερμοχωρητικότητα Ιδανικού αερίου Υπό σταθερό όγκο C V = N f.r/2 Όπου N f οι βαθμοί ελευθερίας Για να επιτευχθεί όμως η ίδια αύξηση της θερμοκρασίας σε ένα διατομικό ή πολυατομικό αέριο, απαιτείται επιπρόσθετη ενέργεια για την αυξημένη κίνηση περιστροφής και ταλάντωσης. Άρα τα πολυατομικά αέρια έχουν μεγαλύτερες γραμμομοριακές θερμοχωρητικότητες από τα μονοατομικά αέρια. Γραμμικό διατομικό μόριο: 3 βαθμοί ελευθερίας μετακίνησης, 2 περιστροφής, 1 ταλάντωσης, σύνολο 6.

Σημασία της ειδικής θερμότητας και θερμοχωρητικότητας Στους ζωντανούς οργανισμούς, για την διατήρηση σταθερής θερμοκρασίας (ρόλος του νερού) Στα τρόφιμα, για την σωστή τους θερμική επεξεργασία

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει (ή να μειώσει) την εσωτερική του ενέργεια U και αντίστοιχα τη θερμοκρασία του με δύο τρόπους: i) με εισροή (ή εκροή) θερμότητας προς (ή από) το σύστημα, ii) με έργο που προσφέρεται προς (ή από) το σύστημα Η συμπίεση του αέρα (έργο) οδηγεί σε αύξηση της U, ετσι ο αέρας στα λάστιχα θερμαίνεται

1o ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ (Διατήρηση της ενέργειας σε θερμοδυναμικές μεταβολές) Όταν προσφέρεται σε ένα σύστημα θερμότητα Q, μέρος της προστιθέμενης ενέργειας παραμένει στο σύστημα αυξάνοντας την εσωτερική ενέργεια κατά ένα ποσό ΔU ενώ το υπόλοιπο εγκαταλείπει το σύστημα ξανά καθώς το σύστημα παράγει έργο προς το περιβάλλον του. W, Q μπορούν να είναι θετικά ή αρνητικά και επομένως η ΔU θα είναι θετική για μερικές μεταβολές και αρνητική για άλλες. Η ΔU είναι ανεξάρτητη από τη διαδρομή. (Εξαρτάται μόνο από την αρχική και τελική κατάσταση του συστήματος) ΔU 1 Η εσωτερική ενέργεια ενός απομονωμένου σύστηματος (Q = W = 0) είναι σταθερή: U 2 U 1 = ΔU = 0

1o ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ U 2 U 1 = ΔU = Q W Όταν προσφέρουμε θερμότητα Q σε ένα σύστημα και δεν παράγεται έργο η εσωτερική ενέργεια αυξάνεται κατά Q, δηλ. ΔU = Q. Όταν ένα σύστημα παράγει έργο W προς το περιβάλλον του κατά την εκτόνωση και δεν προσφέρεται θερμότητα κατά τη διάρκεια της μεταβολής, ενέργεια εγκαταλείπει το σύστημα και η εσωτερική ενέργεια μειώνεται. Δηλ. όταν W θετικό, η ΔU αρνητική και αντίστροφα, επομένως ΔU = - W (αδιαβατική εκτόνωση). U: καταστατικό μέγεθος, ενώ Q, W όχι. Με την σχέση του 1ου νόμου, μπορούμε να περιγράψουμε θερμοδυναμικές μεταβολές μόνο με την γνώση της αρχικής και της τελικής κατάστασης.

1ος Θερμοδυναμικός Νόμος ΔU = Q W Ουσιαστικά είναι η αρχή διατήρησης της ενέργειας: Η μεταβολή της εσωτερικής ενέργειας οφείλεται σε απορρόφηση (ή απόδοση) θερμότητας και σε παραγωγή έργου (από ή προς το σύστημα). Το σημείο - οφείλεται στους διαφορετικούς ορισμούς των προσήμων για την θερμότητα και το έργο. Q > 0 προσφορά θερμότητας στο σύστημα Q < 0 απόδοση θερμότητας προς το περιβάλλον W > 0 παραγωγή έργου από το σύστημα προς το περιβάλλον W < 0 παραγωγή έργου από το περιβάλλον προς το σύστημα Χάρη στον 1ο νόμο, μπορούμε να εκφράσουμε το άθροισμα μεταφοράς θερμότητας και έργου με την μεταβολή ενός καταστατικού μεγέθους, του ΔU, δηλ μόνο συναρτήσει της αρχικής και τελικής κατάστασης.

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ (κλειστό σύστημα) Αδιαβατική μεταβολή : Χωρίς διάδοση θερμότητας προς ή από το σύστημα: Q = 0 U 2 U 1 = ΔU = W Ισόθερμες Ισόχωρη μεταβολή Πραγματοποιείται υπό σταθερό όγκο, dv = 0, επομένως W = 0 και U 2 U 1 = ΔU = Q Ισoβαρής μεταβολή Πραγματοποιείται υπό σταθερή πίεση, p = σταθ. ΔU, Q, W 0. έργο: W = p (V 2 V 1 ) Ισόθερμη μεταβολή Πραγματοποιείται υπό σταθερή θερμοκρασία, Τ = σταθ. ΔU, Q, W 0. Ιδανικά αέρια: η εσωτερική ενέργεια εξαρτάται μόνο από τη θερμοκρασία, όχι από την πίεση ή τον όγκο του (μόνο ελαστικές κρούσεις, όχι άλλες αλληλεπιδράσεις, άρα μόνο κινητική ενέργεια, που εξαρτάται από την θερμοκρασία). Επομένως ΔU = 0 και Q = W για ισόθερμη μεταβολή.

ΕΝΘΑΛΠΙΑ (Η) Εισάγουμε ένα καινούργιο καταστατικό μέγεθος, την ενθαλπία, Η, που χρησιμοποιείται για το χαρακτηρισμό των ενεργειών των χημικών δεσμών και της θερμότητας που εκλύεται ή απορροφάται κατά τις χημικές αντιδράσεις. Η ενθαλπία ορίζεται ως: Η = U + PV (1) Από τον ορισμό της ενθαλπίας (εξ. 1) βρίσκουμε ότι: dh = du + PdV + VdP Από το 1ο θερμοδυναμικό αξίωμα και για ισοβαρή μεταβολή (dp = 0) έχουμε du = Q PdV και επομένως: dh = Q PdV + PdV = Q Άρα για θερμοδυναμικές μεταβολές συστήματος υπό σταθερή πίεση, η μεταβολή της ενθαλπίας ισούται με την (αντιστρεπτή) ροή θερμότητας μεταξύ του συστήματος και του περιβάλλοντός του, ή αλλιώς: ΔΗ = Q (για ισοβαρείς μεταβολές) (2)

Η ενθαλπία για το χαρακτηρισμό χημικών αντιδράσεων Α + Β Γ + Δ Τα αντιδρώντα (Α και Β) και τα προϊόντα (Γ και Δ) χαρακτηρίζονται από αντίστοιχες τιμές της ενθαλπίας Η Α, Η Β, Η Γ και Η Δ Η ολική μεταβολή της ενθαλπίας θα είναι: ΔΗ = Η Γ + Η Δ - Η Α - Η Β Η τιμή ΔH είναι σημαντική πληροφορία για την ενεργειακή μελέτη της αντίδρασης. ΔH > 0, η αντίδραση καλείται ενδόθερμη και λαμβάνει χώρα με το σύστημα να απορροφά θερμότητα (πχ Φωτοσύνθεση).. ΔH < 0, η αντίδραση καλείται εξώθερμη και εκλύεται θερμότητα από το σύστημα προς το περιβάλλον του (πχ Οξύ + Βάση) Οι εξώθερμες αντιδράσεις έχουν την τάση να γίνονται αυθόρμητα, γιατί οδηγούν σε ενεργειακά σταθερότερα προϊόντα. Αντίθετα, χρειάζεται να δώσουμε ενέργεια για να πραγματοποιηθούν οι ενδόθερμες αντιδράσεις.

Η ενθαλπία για το χαρακτηρισμό χημικών αντιδράσεων Οι μετρήσεις της ενθαλπίας των χημικών δεσμών χαρακτηρίζουν ποσοτικά την ισχύ τους αφού αντιστοιχούν στην ενέργεια που απαιτείται για το σπάσιμο τους. Μπορούμε να προσδιορίσουμε τη συνολική ενέργεια των δεσμών σε οποιοδήποτε μόριο προσθέτοντας τις επιμέρους ενέργειες των δεσμών. Προσέγγιση με πολύ καλά αποτελέσματα (υπάρχουν εξαιρέσεις που εμφανίζουν σημαντική απόκλιση, π.χ. ο δακτύλιος βενζολίου ο οποίος εμφανίζει χαμηλότερη συνολική ενέργεια από αυτή που προκύπτει από το άθροισμα των ενεργειών των επιμέρους δεσμών (3 απλοί C-C, 3 διπλοί C=C και 6 C-H δεσμοί) εξαιτίας της ενέργειας συντονισμού ενός κβαντομηχανικού φαινομένου που σταθεροποιεί περισσότερο το δακτύλιο συγκριτικά με ένα αντίστοιχο γραμμικό μόριο.

ΑΣΚΗΣΗ Προσδιορίστε τη μεταβολή της ενθαλπίας κατά τη σύνθεση γλυκόζης (C 6 H 12 O 6 ) από διοξείδιο του άνθρακα και νερό. Αυτό είναι το πιο σημαντικό βήμα της φωτοσύνθεσης στα φυτά. Η χημική αντίδραση είναι: Μέσες Ενέργειες διάσπασης χημικών δεσμών Για τη λύση των 12 C=O δεσμών του CO 2 απαιτούνται 12 x 178 = 2136 kcal/mol Ομοίως, για τους 12 Ο-Η δεσμούς των νερών απαιτούνται 12 x 111 = 1332 kcal/mol Επομένως, για τη λύση όλων των δεσμών των αντιδρώντων απαιτούνται: 3468 kcal/mol ΔΗ αντιδρόντων = 3468 kcal/mol

Για το σχηματισμό γλυκόζης (υπολογίζουμε όλους τους δεσμούς που φαίνονται στο σχήμα) απελευθερώνονται οι ακόλουθες ενέργειες: 5 x 83 = 415 kcal/mol για του -C δεσμούς κατά μήκος του γραμμικού σκελετου του μορίου 7 x 99 = kcal/mol για τους -H δεσμούς 5 x 111 = 555 /mol για τους -H δεσμούς 5 x 86 = 430 kcal/mol για τους -O δεσμούς 1 x 178 = 178 kcal/mol για τον =O δεσμό 6 x 119 = 714 kcal/mol για τους Ο-Ο δεσμούς των Ο 2 μορίων και έτσι η συνολική ενέργεια που απελευθερώνεται από το σχηματισμό των προϊόντων είναι 2985 kcal/mol. Επομένως, ΔΗ προιόντων = -2985 kcal/mol ΔΗ = ΔΗ α + ΔΗ π = (3468-2985) kcal/mol = 483 kcal/mol...που πρέπει να δοθούν στο σύστημα (από τον Ήλιο)

Η συνολική θερμότητα σχηματισμού δίνεται από το άθροισμα των αλγεβρικών τιμών των ΔΗ για τα αντιδρώντα (ΔΗ α <0, απαιτείται ενέργεια για τη λύση των δεσμών) και τα προϊόντα (ΔΗ π > 0, απαιτείται ενέργεια για τη λύση των δεσμών). Σύμφωνα με αυτόν τον υπολογισμό, η αντίδραση είναι ενδόθερμη (καταναλώνει θερμότητα) και χρειάζεται να πάρει ενέργεια για να πραγματοποιηθεί. Αντίθετα, η αντίστροφη αντίδραση δηλ. η καύση της γλυκόζης προς σχηματισμό διοξεδίου του άνθρακα και νερού είναι εξώθερμη αντίδραση, ελευθερώνει θερμότητα και μπορεί να συμβεί αυθόρμητα. Η πειραματική τιμή της ενέργειας που απαιτείται για το σχηματισμό γλυκόζης είναι 673 kcal/mol. Οι προσεγγίσεις που κάναμε για τους υπολογισμούς μας (γραμμικό μόριο) οδήγησαν σε υποεκτίμηση του αποτελέσματος κατά 30%.