Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη



Σχετικά έγγραφα
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ - ΧΑΟΣ

ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ

Το χάος και η σχετικότητα στον Πουανκαρέ

Μια εισαγωγή στην Fractal Γεωμετρία (Μορφοκλασματική Γεωμετρία)

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

μαθηματικά β γυμνασίου

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ειδικά θέματα Πληροφορικής Κινηματογραφίας

Πολυπλοκότητα. Και µη γραµµικότητα στη φύση

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ ΤΟΥ ΜΑΘΗΤΗ ΠΑΠΑΝΙΚΟΛΑΟΥ ΓΙΩΡΓΟΥ

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

τα βιβλία των επιτυχιών

ΔΙΟΙΚΗΣΗ ΤΟΥ ΤΥΠΟΥ «ΑΠΟ ΤΟ ΜΕΣΟ ΠΡΟΣ ΤΗΝ ΚΟΡΥΦΗ ΚΑΙ ΠΡΟΣ ΤΗ ΒΑΣΗ» ΚΕΦΑΛΑΙΟ:

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας

Περί της Ταξινόμησης των Ειδών

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

Χάος και Φράκταλ. ιδάσκων: Α.Μπούντης, Καθηγητής Ασκήσεις ΟΜΑ Α Α 1) Να δειχθεί ότι η οικογένεια των κλειστών καµπυλών x x e = c τείνει 2 1)

Μαθηματικά Α Τάξης Γυμνασίου

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Μαθηματικά A Γυμνασίου

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

log( x 7) log( x 2) log( x 1)

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

Υπεύθυνη καθηγήτρια: Χαρίτου Τριανταφυλιά ΠΕ03

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Συστήματα συντεταγμένων

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Αξιοποίηση του Sketchpad για τη δημιουργία και εξερεύνηση του κόσμου των φράκταλς

Αριθμητική Ανάλυση & Εφαρμογές

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Τέχνη και Τεχνολογία

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σκοπεύουμε να επιδιορθώσουμε έναν παλιό φράχτη σε ένα αγρόκτημα και για την καταγραφή των υλικών μετράμε τις αποστάσεις ανάμεσα στους πασσάλους.

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

Η προέλευση του Sketchpad 1

Η έννοια του Φράκταλ: Από τη χιονονιφάδα του Κοχ μέχρι τη μέτρηση της διάστασης μιας ακτογραμμής

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Σχεδιαστικά Προγράμματα Επίπλου

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Κανονικά πολύγωνα Τουρναβίτης Στέργιος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

Σχεδόν ο καθένας µας έχει θαυµάσει κάϖοιες εικόνες fractals αϖό αυτές ϖου κυκλοφορούν κατά χιλιάδες σε ηµερολόγια, ϖεριοδικά, internet κλϖ.

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Transcript:

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Στις 14 Οκτωβρίου 2010 έφυγε από τη ζωή ο Μπενουά Μάντελμπροτ (Benoît Mandelbrot), ο άνθρωπος που έδωσε το όνομά του σ ένα από τα πιο περίπλοκα μαθηματικά αντικείμενα που επινοήθηκαν ποτέ: το σύνολο Μάντελμπροτ. Αυτό που εντυπωσιάζει στο σύνολο Μάντελμπροτ, πέρα από την πολυπλοκότητά του που αποκαλύπτεται σταδιακά καθώς κάνουμε διαδοχικές μεγεθύνσεις στα διάφορά τμήματά του είναι ο εξαιρετικά απλός μαθηματικός τύπος που υπεισέρχεται στην κατασκευή του. Ο κανόνας δημιουργίας του δεν περιλαμβάνει άλλα μαθηματικά πέρα από τον πολλαπλασιασμό και την πρόσθεση: είναι δηλαδή μια συνάρτηση της μορφής f(z)=z 2 +c. Ωστόσο, η συνεισφορά του Μάντελμπροτ στην επιστήμη δεν περιορίζεται στη μελέτη και γραφική απεικόνιση του ομώνυμου συνόλου μέσω ηλεκτρονικού υπολογιστή. Μετά τις βασικές σπουδές του στην Ecole Polytechnique του Παρισιού, έστρεψε το ερευνητικό του ενδιαφέρον στα φαινόμενα που δε μπορούν να μελετηθούν με τη βοήθεια των παραδοσιακών μαθηματικών: η διακύμανση των τιμών στις χρηματιστηριακές αγορές, η μορφογένεση των φυτών, η διαμόρφωση των ακτογραμμών, η κλιματική συμπεριφορά, η κατανομή των γαλαξιών στο σύμπαν είναι μερικά από αυτά. Κατάλαβε ότι τα κλασικά γεωμετρικά στερεά κύλινδροι, πρίσματα, πυραμίδες, κώνοι δεν επαρκούν για να περιγράψουν τις φυσικές δομές οι οποίες είναι πολύ πιο περίπλοκες. Θεώρησε ακόμα ότι ο παραδοσιακός διαχωρισμός σε μονοδιάστατα (γραμμές), δισδιάστατα (επίπεδα) και τρισδιάστατα (στερεά) σχήματα είναι πολύ φτωχός, αφού εντάσσει στην ίδια κατηγορία έναν αθώο κύκλο και μια «χιονονιφάδα του von Koch», μια γραμμή δηλαδή που ενώ καλύπτει μια πεπερασμένη επιφάνεια, έχει άπειρη περίμετρο. Έτσι ο Μάντελμπροτ δημιούργησε μια νέα γεωμετρία, την οποία ονόμασε γεωμετρία «φράκταλ». Ο όρος περιέχει τη λατινική ρίζα «fract», κλάσμα, ενδεικτική της κλασματικής διάστασης που αποδίδει η γεωμετρία αυτή στα διάφορα σχήματα. Σύμφωνα με τη νέα γεωμετρία, η καμπύλη του von Koch θα έχει διάσταση περίπου 1,261, μεγαλύτερη από τη διάσταση 1 της απλής γραμμής, αλλά μικρότερη από τη διάσταση 2 του επιπέδου. Βασικό χαρακτηριστικό της γεωμετρίας των φράκταλ είναι η αυτοομοιότητα υπό κλίμακα, η ιδιότητα δηλαδή ενός σχήματος να περιέχει μέρη που είναι πανομοιότυπα με το σύνολο. Το αγαπημένο παράδειγμα αυτοομοιότητας του Μάντελμπροτ ήταν το μπρόκολο, κάθε κομματάκι του οποίου, αν μεγεθυνθεί, έχει την ίδια μορφή με ολόκληρο το κουνουπίδι. Παραδείγματα αυτοομοιότητας μπορούμε να εντοπίσουμε σε αρκετά φυτά (η φτέρη είναι ένα άλλο κλασικό

παράδειγμα), στη μορφή των βουνών, στην κατανομή των κρατήρων της Σελήνης, αλλά και στις καμπύλες διακύμανσης των συναλλαγματικών ισοτιμιών ή των τιμών των σιτηρών. Βασικό εργαλείο για τη δημιουργία των φράκταλ είναι η ανάδραση (feedback). Ας φανταστούμε μια μηχανή με μια είσοδο και μια έξοδο. Αρχικά εισάγουμε στη μηχανή ένα αντικείμενο (συνήθως το αποκαλούμε σπόρο). Η μηχανή το επεξεργάζεται και μας αποδίδει στην έξοδο ένα νέο, ομοειδές αντικείμενο. Το προϊόν της επεξεργασίας είναι ο νέος μας σπόρος, τον οποίο επανεισάγουμε στη μηχανή. Αυτή η διαδικασία συνεχούς επανατροφοδότησης της μηχανής με τα προϊόντα της λέγεται ανάδραση. Το πιο απλό παράδειγμα ανάδρασης είναι μια βινεοκάμερα, συνδεδεμένη με μια τηλεόραση την οποία βιντεοσκοπεί. Εδώ ο σπόρος είναι η αρχική εικόνα της οθόνης της τηλεόρασης. Μέσα από τη βιντεοκάμερα η εικόνα περνά και επανατροφοδοτείται στην τηλεόραση που εμφανίζει στην οθόνη της τον εαυτό της. Η διαδικασία αυτή συνεχίζεται με ταχύτατο ρυθμό όση ώρα είναι ανοικτό το κύκλωμα. Αλλάζοντας τη γωνία βιντεοσκόπησης μπορούμε να δημιουργήσουμε στην οθόνη της τηλεόρασης μια σειρά από ετερόκλητες εικόνες. Οι περισσότερες από αυτές είναι χαοτικές, υπάρχουν όμως ορισμένοι συνδυασμοί γωνίας λήψης και απόστασης σκόπευσης που δίνουν απροσδόκητα «δομημένες» εικόνες. Είναι «η τάξη που αναδύεται μέσα απ το χάος». Τόσο το σύνολο Μάντελμπροτ, όσο και η χιονονιφάδα του von Koch που αναφέραμε πιο πάνω, είναι προϊόντα ανάδρασης. Με την ίδια διαδικασία μπορεί να δημιουργηθεί μια τεράστια ποικιλία εικόνων και τρισδιάστατων σχημάτων. Μάλιστα, περί τα τέλη της δεκαετίας του 1980 αποδείχθηκε το λεγόμενο «θεώρημα του κολάζ» που με πολύ απλά λόγια λέει ότι: «κάθε εικόνα μπορεί να προσεγγιστεί σε οποιονδήποτε επιθυμητό βαθμό από ένα πεπερασμένο σύστημα στοιχειωδών εικόνων, που είναι προϊόντα ανάδρασης». Έτσι η ιδιαίτερα ακριβή και χρονοβόρα διαδικασία αποθήκευσης και μετάδοσης εικόνων μπορεί να αντικατασταθεί από μια πολύ πιο γρήγορη και φτηνή κωδικοποίηση που βασίζεται στα φράκταλ. Σήμερα η ανθούσα βιομηχανία συμπίεσης των εικόνων βασίζεται ακριβώς σε αυτή τη θεωρία. Στη δεκαετία του 1960 ο μαθηματικός και μετεωρολόγος Έντουαρντ Λόρεντς (Edward Lorenz) προσπαθούσε να αναπτύξει ένα σύστημα πρόβλεψης του καιρού μέσω ηλεκτρονικού υπολογιστή. Κατά τη διάρκεια των δοκιμών του διαπίστωσε ότι μεταβολή της τάξεως του ενός δεκάκις χιλιοστού στα αρχικά του δεδομένα οδηγούσε, σε βάθος χρόνου, σε μια εντελώς διαφορετική κλιματολογική πρόβλεψη. Συγκεκριμένα στρογγυλοποιώντας έναν αριθμό από 0,506127 σε 0,506 έφτασε να προβλέπει για ύστερα από τρεις μήνες χιονοθύελλα αντί για λιακάδα. Στο σχετικό άρθρο που δημοσίευσε αναρωτήθηκε «άραγε το φτερούγισμα μιας πεταλούδας στη Βραζιλία μπορεί να προκαλέσει ένα τυφώνα στο Τέξας;». Ύστερα από τη

δημοσίευσή του, αυτό το χαρακτηριστικό των χαοτικών φαινομένων, που το επίσημο όνομά του είναι «υπερευαίσθητη εξάρτηση από τις αρχικές συνθήκες», έγινε ευρύτατα γνωστό ως το φαινόμενο της πεταλούδας. Η θεωρία της πολυπλοκότητας αναπτύσσει μεθόδους για να αποκωδικοποιήσει τη δομή των χαοτικών φαινομένων που παρουσιάζουν απρόβλεπτη συμπεριφορά, ιδιαίτερα επιρρεπή σε ανατροπές εξαιτίας και της παραμικρής μεταβολής. Μέσα από τη χαοτική συμπεριφορά των τιμών του χρηματιστηρίου, των κατολισθήσεων, των κλιματικών φαινομένων, ανακαλύπτει καταστάσεις ισορροπίας προς τις οποίες ρέπουν και τα πιο πολύπλοκα φαινόμενα. Αυτές οι καταστάσεις, που έχει επικρατήσει να αποκαλούνται «παράξενοι ελκυστείς», έχουν γεωμετρική δομή φράκταλ και παρουσιάζουν ιδιομορφίες που η κλασική γεωμετρία δε θα ήταν σε θέση να περιγράψει. Σήμερα, η νέα επιστήμη της πολυπλοκότητας τείνει να ενσωματώσει και να υποκαταστήσει τους παραδοσιακούς κλάδους της φυσικής, της χημείας, της βιολογίας, της μετεωρολογίας, της αστρονομίας, της γεωλογίας, ακόμα και των οικονομικών, παρέχοντάς τους ένα κοινό μαθηματικό υπόβαθρο: τη γεωμετρία των φράκταλ. Ο δέκατος ένατος αιώνας κατακερμάτισε την παραδοσιακή «φυσική φιλοσοφία» σε δεκάδες επιμέρους επιστήμες, με εκατοντάδες εξειδικευμένους κλάδους. Άραγε ο εικοστός πρώτος αιώνας θα μας οδηγήσει, μέσα από το χάος, σε μια νέα φυσική φιλοσοφία; Ο καιρός θα δείξει... Βιβλιογραφία 1. James Gleik, Χάος, μια νέα επιστήμη, Εκδόσεις Κάτοπτρο. Το κλασικό εισαγωγικό βιβλίο στη νέα επιστήμη της πολυπλοκότητας. Πλούσιο σε ιστορικά και βιογραφικά στοιχεία, καθώς και σε συναρπαστικές περιγραφές του τρόπου με τον οποίο οι πρωτοπόροι της επιστήμης του Χάους έφτασαν, από διαφορετική πύλη εισόδου ο καθένας, να δημιουργήσουν μια εντελώς νέα θεώρηση του κόσμου. 2. Τάσου Μπούντη, Ο θαυμαστός κόσμος των fractal, Εκδόσεις Leader Books. Το βιβλίο απευθύνεται σε όσους θέλουν να προχωρήσουν ένα βήμα πιο πέρα από τις απλές «δημοσιογραφικές» περιγραφές της θεωρίας της πολυπλοκότητας. Το βιβλίο δεν απαιτεί παρά γνώσεις επιπέδου λυκείου. Κατορθώνει ωστόσο να δώσει μια ολοκληρωμένη εικόνα της νέας επιστήμης και της μαθηματικής υποδομής της της γεωμετρίας των φράκταλ. 3. Αργύρη Παυλιώτη, Παράξενοι ελκυστές, Εκδόσεις Πατάκη. Αστυνομικό μυθιστόρημα που χρησιμοποιεί τα φράκταλ, τόσο στη δομή, όσο και στο περιεχόμενό του. 4. Ian Stewart, Παίζει ο θεός ζάρια; Εκδόσεις Τραυλός και

5. Ian Stewart, Είναι ο θεός γεωμέτρης; Εκδόσεις Τραυλός. Δυο κλασικά βιβλία που εξετάζουν αρκετές όψεις της πολυπλοκότητας μέσα στη φύση. Σχήματα και λεζάντες Μπενουά Μάντελμπροτ (1924 2010) Γεννημένος στην Πολωνία, μεγάλωσε και σπούδασε στη Γαλλία. Πέρασε το μεγαλύτερο μέρος της ζωής του στις ΗΠΑ, στα ερευνητικά εργαστήρια της ΙΒΜ. Είναι ο δημιουργός της θεωρίας των φράκταλ. (αρχείο Benoit Mandelbrot) To σύνολο Μάντελμπροτ, ένα περίπλοκο σχήμα που δημιουργείται με τη βοήθεια ηλεκτρονικού υπολογιστή, βασισμένο στην ανάδραση με τύπο f(z)=z 2 +c (αρχείο mandel 00) Διαδοχικές μεγεθύνσεις στο σύνολο Μάντελμπροτ. Παρατηρήστε στο κέντρο της έκτης μεγέθυνσης ένα σχήμα όμοιο με το συνολικό αρχικό σχήμα. Είναι ένα κλασικό παράδειγμα «αυτοομοιότητας». (αρχεία Mandel_zoom_01, 02, 03, 04, 05, 06).

Η φράκταλ δομή που επιτρέπει την ανάπτυξη γραμμών με ιδιαίτερα μεγάλο μήκος μέσα σε σχετικά περιορισμένο χώρο, είναι παρούσα ακόμα και στο ανθρώπινο σώμα. Στη φωτογραφία το δίκτυο κυκλοφορίας του αίματος μέσα σ ένα ανθρώπινο νεφρό. (αρχείο νεφρό) Τα πέντε πρώτα στάδια δημιουργίας της χιονονιφάδας του von Koch, μιας καμπύλης με άπειρη περίμετρο που περικλείει μια περιοχή με πεπερασμένο εμβαδόν. Ο κανόνας της ανάδρασης που παράγει αυτή την καμπύλη είναι: χωρίζω την κάθε πλευρά του σχήματος σε τρία ίσα μέρη και αντικαθιστώ το μεσαίο με ένα ισόπλευρο τρίγωνο που έχει πλευρά ίση με το ένα τρίτο της πλευράς του επεξεργάζομαι. Τέλος αφαιρώ τη βάση του ισοπλεύρου αυτού τριγώνου». Η κλασματική διάσταση της καμπύλης είναι περίπου 1,261 (log3/log4). (Αρχείο von koch) Romanesco broccoli Το πράσινο μπρόκολο, που αποτελούσε το αγαπημένο παράδειγμα αυτοομοιότητας του Μάντελμπροτ. (αρχείο cauli flower) Είσοδος Συσκευή ανάδρασης Έξοδος Ανάδραση: Τα αντικείμενα εισάγονται, υφίστανται επεξεργασία εξάγονται και στη συνέχεια επανεισάγονται.

Μια συσκευή ανάδρασης: η βιντεοκάμερα βιντεοσκοπεί υπό γωνία την εικόνα που προβάλλει στην οθόνη. Κατά κανόνα το αποτέλεσμα είναι «χαοτικό», υπάρχουν όμως ορισμένες τιμές της γωνίας α που οδηγούν σε σχήματα που διέπονται από παραδειγματική τάξη. (αρχείο ανάδραση και ανάδραση2) Το κοριτσάκι των Άνδεων (αρχείο κοριτσάκι) Αρκτικός Λύκος (αρχείο λύκος) Εικόνες που έχουν δημιουργηθεί με αναδράσεις βασισμένες στο θεώρημα του κολάζ. Φωτογραφία των Ιμαλαΐων από δορυφόρο. Η αυτοομοιότητα και η φράκταλ δομή είναι φανερή (αρχείο Ιμαλάϊα)

Υπάρχει δομή στο χάος της κατανομής των γαλαξιών στο σύμπαν; Σύμφωνα με τη θεωρία της πολυπλοκότητας υπάρχει και μπορεί να μελετηθεί μέσω της γεωμετρίας των φράκταλ. (αρχείο galaxy). Ο παράξενος ελκυστής τους Λόρεντς, μια τροχιά με πολύπλοκη φράκταλ δομή προς την οποία συγκλίνουν διάφορα χαοτικά φιανόμενα. (αρχείο Lorenz).