Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών



Σχετικά έγγραφα
2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

2 ΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

Προβλήματα Κεφαλαίου 2

Γουλιέλμος Μαρκόνι ( ) (Ιταλός Φυσικός)

Φυσική και Πληροφορία

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ

Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon

Προβλήματα Κεφαλαίου 2

Κεφάλαιο 38 Κβαντική Μηχανική

Μικροκανονική- Kανονική κατανομή (Boltzmann)

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

Α Θερμοδυναμικός Νόμος

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

Γενικευμένος Ορισμός Εντροπίας

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Κλασική και στατιστική Θερμοδυναμική

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

κλασσική περιγραφή Κλασσική στατιστική

Περιεχόμενα 1 Εισαγωγή 2 Κλασική Στατιστική Μηχανική 3 Μη Εκτατική Στατιστική Μηχανική 4 Αξιωματική Ταξινόμηση Εντροπικών Μορφών 5 Η Standard Απεικόνι

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Παρατηρώντας κβαντικά φαινόμενα δια γυμνού οφθαλμού

Κβαντικές Καταστάσεις

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Ασκήσεις Κεφαλαίου 2

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

Κλασική και στατιστική Θερμοδυναμική

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

ΦΥΣΙΚΗ. Θερμοδυναμική Ατομική-Πυρηνική

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

Περί της Αβεβαιότητας: Ηράκλειτος

Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.

Κβαντικη Θεωρια και Υπολογιστες

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

Ακρίβεια αποτελεσμάτων σχεδιασμού διεργασιών ΜΑΔ, 2013

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

Γιατί αναδιπλώνονται οι πρωτεΐνες;

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΟΜΗΧΑΝΙΚ Η ΜΕΤΡΗΣΗ. By Teamcprojectphysics

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Συναρτήσεις δέλτα και συναρτήσεις Green

ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ III. ΤΟ ΣΥΓΧΡΟΝΟ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014

Ο ΧΡΟΝΟΣ ΣΤΗ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

Περιεχόμενα. Πρόλογος Κεφάλαιο 1. Θεμελιώδεις Αρχές και Ορισμοί Κεφάλαιο 2. Το Πρώτο Θερμοδυναμικό Αξίωμα... 35

9. Γενικευμένα Στατιστικά Σύνολα

Σύμφωνα με τον ολισμό το Σύμπαν περιγράφεται πλήρως από το ίδιο το Σύμπαν,

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

6. Στατιστικές μέθοδοι εκπαίδευσης

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Η Φυσική που δεν διδάσκεται

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Η Αναπαράσταση της Θέσης (Position Representation)

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Enrico Fermi, Thermodynamics, 1937

Εφηρμοσμένη Θερμοδυναμική

Transcript:

Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές ιδιότητες των συστημάτων και προσπαθεί να εξηγήσει τα όσα παρατηρούνται στο εργαστήριο, με βάση κάποιες πρώτες αρχές. Είναι πειραματικός τομέας της Φυσικής Η προσπάθεια ανάλυσης των θερμοδυναμικών συστημάτων με μικροσκοπικά μοντέλα είναι δυνατή με τις μεθόδους της Στατιστικής Μηχανικής. Τόσο στη Θερμοδυναμική όσο και στη Στατιστική Μηχανική, μας ενδιαφέρουν τα μεγέθη που ορίζουν την κατάσταση ενόςφυσικού συστήματος. Τί σημαίνει όμως φυσική κατάσταση???

Πως περιγράφεται ένα φυσικό σύστημα? Περιγράφεται από μια συνάρτηση η οποία περιέχει όλες τις φυσικές παραμέτρους που το περιγράφουν και τις μεταξύ τους συσχετίσεις. Η συνάρτηση αυτή λέγεται συνάρτηση του Hamilton. Για δεδομένη Hamiltonian, μπορούμε με βάση τους νόμους της Κλασικής/Κβαντικής Μηχανικής να προβλέψουμε τη χρονική εξέλιξη του συστήματος. Η φυσική κατάσταση ενός συστήματος ορίζεται ανά δεδομένη χρονική στιγμή. Είναι δηλαδή μια "φωτογραφία" του συστήματος η οποία "παγώνει" το χρόνο. Τί σημαίνει όμως η έννοια φυσική κατάσταση?

H= qp L L= T V i i Δυναμική εξέλιξη ενός φυσικού συστήματος i d L L = dt q i qi Οι εξισώσεις Lagrange/Hamilton οδηγούν στην εύρεση της εξέλιξης των θέσεων και των ορμών ενός κλασικού δυναμικού συστήματος και τη μεταξύ τους σχέση. Στην Κβαντική Φυσική έχουμε να κάνουμε με τη δυναμική εξέλιξη των κυματοδιανυσμάτων ψ>. Η έννοια τροχιά παύει να υφίσταται, οπότε τα πράγματα καθίστανται εξαιρετικά δύσκολα στο να έχουμε μια διαισθητική εποπτεία του τί είναι η κατάσταση. Η γνωστή σε όλους εξίσωση του Schrondiger περιγράφει την χρονική εξέλιξη ενός κυματοδιανύσματος ψ>, οπότε περιγράφει τη χρονική εξέλιξη της πληροφορίας που αυτό εμπεριέχει. 0 H p j = q j H q j = p j H t = L t

ψ 2 ( xt, ) 2 i = + V xt xt t 2m (, ) ψ (, ) Η εξίσωση Schrödinger περιγράφει τη χρονική εξέλιξη απομονωμένου συστήματος. Θα πρέπει να είναι κάποιος προσεκτικός όταν μοντελοποιεί ένα κβαντικό σύστημα με την παραπάνω εξίσωση. Το περιβάλλον του συστήματος μπορεί να επηρεάζει σε σημαντικό βαθμό τη συμπεριφορά του τελευταίου και να πρέπει να εισαχθεί μέρος της πληροφορίας του στην παραπάνω εξίσωση. Η S-E περιγράφει με υψηλή ακρίβεια το άτομο του υδρογόνου. Τα πολυηλεκτρονιακά όμως συστήματα δεν μπορούν να περιγραφούν από αυτήν. Τα επιπλέον ηλεκτρόνια παίζουν το ρόλο του περιβάλλοντος. Η εξέλιξη των απομονωμένων συστημάτων της εξίσωσης Schrödinger λέγεται unitary.

Θερμοδυναμικοί Νόμοι Ο μηδενικός νόμος μας λέει ότι όταν δύο θερμοδυναμικά συστήματα βρίσκονται σε θερμική ισορροπία ως προς ένα τρίτο, τότε τελούν εν ισορροπία και μεταξύ τους.

ρ Θερμοδυναμικοί Νόμοι Ο πρώτος νόμος είναι μια έκφραση της διατήρησης της ενέργειας. Μέρος της προσφερόμενης θερμότητας αυξάνει την εσωτερική ενέργεια του συστήματος, ενώ το υπόλοιπο μέρος μετατρέπεται σε έργο. Q = U + W add

Θερμοδυναμικοί Νόμοι Ο δεύτερος νόμος λέει ότι σε μια αντιστρέψιμη διεργασία τη μεταβολή της εντροπίας είναι πάντοτε θετική. Η εντροπία του Σύμπαντος αυξάνει. (???) Ο τρίτος νόμος μας λέει ότι στο απόλυτο 0 το φυσικό σύστημα βρίσκεται στη θεμελιώδη του κατάσταση και η εντροπία μηδενίζεται.

Θερμοδυναμικοί Νόμοι Ο τρίτος νόμος μας λέει ότι στο απόλυτο 0 το φυσικό σύστημα βρίσκεται στη θεμελιώδη του κατάσταση και η εντροπία μηδενίζεται. Αυτός ο νόμος έχει κβαντική προέλευση και πολλές φορές θεωρείται ότι είναι επιπρόσθετος στους άλλους 2. Η κλασική θερμοδυναμική μπορεί να φορμαλιστεί και χωρίς αυτόν. Στο απόλυτο 0 υπάρχει ουσιαστικά μια μικροκατάσταση του στην οποία μπορεί να βρεθεί το σύστημα, οπότε ο λογάριθμος μηδενίζεται.

Rudolf Clausius (1822-1888) S = S S B A Α Β dq T Αφού η εντροπία είναι καταστατική ιδιότητα η παραπάνω διαφορά είναι ανεξάρτητη του δρόμου που θα ακολουθήσει κανείς κατά τον υπολογισμό του ολοκληρώματος.

Ludwig Boltzmann (1844-1906) Θεμλιωτής της Στατιστικής Μηχανικής. Όρισε την εντροπία σε μικροσκοπικό επίπεδο, ως το πλήθος των μικροκαταστάσεων ενός φυσικού συστήματος το οποίο αντιστοιχεί σε δεδομένη μακροκατάσταση. S = k ln Ω, B 23 k = 1,381x10 J / K B

Κωνσταντίνος Καραθεοδωρής (1873-1950) Για κάθε κατάσταση P ενός φυσικού συστήματος, υπάρχουν γειτονικές καταστάσεις που δεν είναι προσβάσιμες μέσω αδιαβατικών διεργασιών. Εισήγαγε την έννοια της εντροπίας από μαθηματικές πρώτες αρχές. Απέδειξε ότι οι επιτρεπτές μεταβάσεις για ένα θερμοδυναμικό σύστημα είναι αυτές που υπακούουν στο δεύτερο νόμο της Θερμοδυναμικής. Η μαθηματική διατύπωση και θεμελίωση της έννοιας της εντροπίας αποτελεί για πολλούς την κορυφαία του προσφορά στη Θεωρητική Φυσική.

John Von Neumann (1903-1957) Εισήγαγε τον φορμαλισμό του τελεστή-πίνακα πυκνότητας περιγράφοντας την εντροπία των καθαρών και μικτών καταστάσεων της Κβαντικής Φυσικής. Μέσω της εντροπίας Von Neumann ποσοτικοποιείται η κβαντική σύμπλεξη (entanglement) ενός διμερούς συστήματος. Με το φορμαλισμό του Von Neumann γίνεται η μετάβαση από τη θερμοδυναμική εντροπία στην πληροφοριακή εντροπία. Η σχέση των δύο αυτών εννοιών αποτελεί έριδα για πολλούς θεωρητικούς της Στατιστικής Φυσικής και των Κβαντικής Πληροφορικής. ˆ pi i i ι ρ = Ψ Ψ S = k Tr ˆ ρln ˆ ρ B ( )

Κβαντική και Κλασική Άγνοια Κάθε διάνυσμα του χώρου Hilbert αποτελεί καθαρή κατάσταση, δηλαδή κατάσταση για την οποία έχουμε εξ ορισμού το μέγιστο ποσόν πληροφορίας. Οι καταστάσεις για τις οποίες έχουμε άγνοια για την προετοιμασία τους λέγονται μικτές και δεν μπορούν να αναπαρασταθούν υπό τη μορφή διανυσμάτων. Είναι απλώς πιθανοκρατικά αθροίσματα καθαρών καταστάσεων, στα οποία αποδίδεται η κλασικής φύσεως άγνοιά μας για την προετοιμασία τους. Εκεί ακριβώς γίνεται απαραίτητη η χρήση του τελεστή πυκνότητας. Στην Κβαντομηχανική ένα σύστημα που παρουσιάζει υπέρθεση καταστάσεων παρουσιάζει ενδογενή στοχαστικότητα.

Εξ Εξίσωση Master Τα φυσικά συστήματα είναι ανοικτά. Υπάρχει συνεχής ανταλλαγή ενέργειας και ΠΛΗΡΟΦΟΡΙΑΣ μεταξύ συστήματος και περιβάλλοντος. Η συνεχής αυτή αλληλεπίδραση καθιστά επικίνδυνη μια επιπόλαιη προσπάθεια απομόνωσης ενός συστήματος από το περιβάλλον του. N 2 1 [ ] 1 (, ) ρ = ihρ + hn, m LnρLm ρll m n + LL m nρ nm, = 1 2

Claude Shannon (1916-2001) Θεμελιωτής της επιστήμης της Πληροφορικής αφού ποσοτικοποίησε την πληροφορία που εμπεριέχει ένα μήνυμα. Η πληροφορία μετατράπηκε σε μια απλή συνάρτηση που ικανοποιεί κάποιες φυσικώς εύλογες απαιτήσεις. Το κεντρικό νόημα της εντροπίας Shannon είναι το εξής: Όσο πιο απίθανο είναι ένα γεγονός να συμβεί τόσο μεγαλύτερη εντροπία έχουμε, υπό την έννοια ότι ένα απίθανο αποτέλεσμα σε ένα πείραμα μας δίνει μεγαλύτερο ποσόν πληροφορίας. Η εντροπία Shannon δεν μιλάει για την ποιότητα ή το περιεχόμενο της πληροφορίας, απλά την ποσοτικοποιεί μέσω των πιθανοτήτων. n H X p x log p x = ( ) ( ) ( ) i= 1 i i

Α Extensivity Vs Additivity Βασικό ερώτημα της Στατιστικής Φυσικής είναι το κατά πόσον ένα σύνθετο σύστημα περιγράφεται από προσθετικές ποσότητες και ποιές είναι αυτές. Το ερώτημα της προσθετικότητας είναι το εξής απλό: Είναι το όλον ίσο με το άθροισμα των επιμέρους? Για παράδειγμα η ενέργεια ενός συστήματος Ν μη αλληλεπιδρώντων σωματιδίων είναι ίση με το άθροισμα των επιμέρους ενεργειών. E N = n i = 1 E n i

Extensivity Vs Additivity Ένα δεύτερο ερώτημα είναι κατά πόσον μια ποσότητα παρουσιάζει κλίμακα όταν ο αριθμός των υποσυστημάτων τείνει στο άπειρο. ( ( n ) ) lim Q x / n = const n Η προσθετικότητα/επεκτασιμότητα δε συνεπάγεται την επεκτασιμότητα/προσθετικότητα. Η επιπόλαιη ταύτιση των όρων αυτών οδήγησε και συνεχίζει να οδηγεί σε σφάλματα και σε αδυναμία εξήγησης πολλών φαινομένων.

Κωνσταντίνος Τσάλλης (1943-) Εισήγαγε την λεγόμενη q-εντροπία ή αλλιώς εντροπία-τσάλλης. Αποτελεί γενίκευση της εντροπίας Boltzmann στην περίπτωση των μη προσθετικών συστημάτων. Έχει βρει εφαρμογή σε πληθώρα φυσικών, βιολογικών και οικονομικών συστημάτων. Έχει προταθεί σαν μέτρο ποσοτικοποίησης της κβαντικής σύμπλεξης. 1 S ( p ) = 1 p q 1 i q q i i

Συμπεράσματα Η έννοια της εντροπίας είναι στενά συνδεδεμένη με αυτήν της φυσικής κατάστασης ενός συστήματος. Οι πολλές διαφορετικές προσεγγίσεις και ορισμοί της εντροπίας σε μακροσκοπικό και μικροσκοπικό επίπεδο, αντανακλούν την αδυναμία μας να εκφράσουμε μονοσήμαντα την έννοια «κατάσταση». Πριν αποπειραθούμε λοιπόν να ορίσουμε μια εντροπική συνάρτηση, θα πρέπει να γνωρίζουμε πολύ καλά τη φύση του συστήματος που θέλουμε να μελετήσουμε. Εάν δεν μπορούμε να καθορίσουμε με σαφήνεια τις παραμέτρους εκείνες που απαρτίζουν τον καταστατικό χώρο ενός συστήματος, δεν έχει νόημα να μιλούμε για καταστατικές συναρτήσεις.

Συμπεράσματα Η σύγχυση που παρατηρείται στην έννοια της εντροπίας μοιάζει αρκετά με αυτήν περί της κβαντικής σύμπλεξης, αν και η δεύτερη είναι γνησίως κβαντικό φαινόμενο. Όπως και στην εντροπία, έτσι και στην entanglement ακολουθείται αυτό που λέμε operational task approach, δηλαδή ανάλογα με το τί θέλουμε να κάνουμε ορίζουμε την ποσότητα που μας ενδιαφέρει. Η παραπάνω προσέγγιση μπορεί να έχει αποδώσει πολλούς καρπούς σε τεχνολογικό επίπεδο (ΜΕΚ, στροβιλομηχανές, κβαντικοί υπολογιστές κλπ.), δεν παύει όμως να είναι μια πρόχειρη επίλυση του προβλήματος.

Συμπεράσματα Η αλήθεια βρίσκεται στην λέξη «κατάσταση». Μέσω αυτής της έννοιας η «πληροφορία» μετατρέπεται από μια θολή-ακαθόριστη λέξη με πολλές ερμηνείες, σε ένα καλώς καθορισμένο ΦΥΣΙΚΟ ΜΕΓΕΘΟΣ. ΕΥΧΑΡΙΣΤΩ!