Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.
|
|
- Νικηφόρος Ηλιόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Αντιδράσεις Πρώτης Τάξης Έστω μία μη αντιστρεπτή αντίδραση μοριακότητας (στοιχειώδης) στην οποία καταναλώνεται το συστατικό Α. Τότε, για τον ρυθμό της ισχύει: R= d dt Για να ολοκληρώσουμε για χρόνους από έως t, χωρίζουμε τις μεταβλητές (η συγκέντρωση στο ένα μέλος και ο χρόνος στο άλλο) και παίρνουμε: t t C dt το οποίο, αν θεωρήσουμε ότι η αρχική συγκέντρωση για t = είναι C, δίνει: k = t ln οπότε = e k t Αυτό σημαίνει ότι αν μετρήσουμε τη συγκέντρωση του Α κάποια χρονική στιγμή τ και βρούμε ότι ισχύει =x όπου x το ποσοστό ή κλάσμα σε σχέση με την αρχική συγκέντρωση C o, τότε θα ισχύει ότι k = ln x Αυτή είναι η μέθοδος υποδιπλασιασμού ή υπονιπλασιασμού επειδή στην πρακτική της εφαρμογή μετράμε σε ποια χρονική στιγμή η σχέση της τρέχουσας συγκέντρωσης προς την αρχική έγινε x =- /2 ή -/N. Αν η αντίδραση είναι αμφίδρομη τότε Α k k B R=R R = d dt k C B Λόγω της στοιχειομετρίας της αντίδρασης θα ισχύει =d = B (δηλαδή η κατανάλωση του Α είναι ίση με την αντίστοιχη παραγωγή του Β ή η μεταβολή του Α είναι ίση και αντίθετη από αυτή του Β) και γενικότερα C = = C B που σημαίνει ότι αν με άνω δείκτη παριστάνονται οι αρχικές συγκεντρώσεις των Α και Β, τότε σε δεδομένη χρονική στιγμή t θα έχουμε συγκεντρώσεις C C και C B C και τότε είναι εύκολο να λύσουμε τη διαφορική εξίσωση ως προς ΔC και να βρούμε την εξάρτηση των συγκεντρώσεων από το χρόνο. Πράγματι, d = d C C = d C dt dt dt και επομένως, με αντικατάσταση στην παραπάνω εξίσωση του ρυθμού: d C dt C C k C B C = k k C k k C B Αν θέσουμε k και = k C k C B τότε η παραπάνω απλοποιείται σε d C = C που με αρχική συνθήκη ΔC = και τελική ΔC = ΔC(t) λύνεται εύκολα για dt να δώσει d C d C = dt ή C C = dt ή ln C t = t ή C t = e t
2 Ενδιαφέρον είναι το ότι μπορούμε να γράψουμε τη σταθερά Γ και ως K = k k = K C C B K όπου η σταθερά ισορροπίας της αντίδρασης. Αυτή μπορεί να υπολογιστεί πολύ εύκολα από τις συγκεντρώσεις ισορροπίας των αντιδρώντων. Πράγματι, εκτός από τα θερμοδυναμικά κριτήρια που έχουμε ήδη εξετάσει, μπορούμε να θυμηθούμε ότι στην ισορροπία ο συνολικός ρυθμός της αντίδρασης μηδενίζεται οπότε θα ισχύει k k C B = από όπου αμέσως προκύπτει ότι K = k = C B k Από τα παραπάνω συνάγεται ότι το γράφημα του λογάριθμου κατάλληλης συνάρτησης της συγκέντρωσης ή μεταβολής αυτής για αντιδράσεις πρώτης τάξης δίνει ευθεία με κλίση σταθερή, ανεξάρτητη από την αρχική συγκέντρωση. Αυτό επιτρέπει από τα πειραματικά δεδομένα να συναχθεί αν η μελετώμενη αντίδραση είναι πρώτης τάξης. Αντιδράσεις Δεύτερης Τάξης Έστω η μη αντιστρεπτή αντίδραση μοριακότητας 2 B προϊόντα Ο ρυθμός της δίνεται από τη σχέση d dt 2 C B Από τη στοιχειομετρία της αντίδρασης συνάγεται ότι η συγκέντρωση των Α και Β μειώνεται κατά το ίδιο ποσό ΔC οπότε θα ισχύει d C dt 2 C C C B C Αυτή λύνεται εύκολα αν το αντίστροφο γινόμενο των μεταβαλλόμενων συγκεντρώσεων εκφραστεί ως κατάλληλη διαφορά των αντίστροφων συγκεντρώσεων: d C C C B C 2 dt ή C C d C B C B C d C C C 2dt που ολοκληρώνεται ως εξής: C C C d C B C B C B C C d C C C C dt 2 και τελικά, δίνει: ln C B C C C C B C = C C B t Η παραπάνω σχέση είναι και πάλι μια ευθεία αλλά αυτή τη φορά, με κλίση εξαρτώμενη από τη
3 διαφορά των αρχικών συγκεντρώσεων. Επί πλέον, η ύπαρξη των συγκεντρώσεων στο δεξί μέλος έχει μία ευχάριστη συνέπεια: αν γράψουμε τις συγκεντρώσεις ως το πηλίκο των mol δια τον όγκο V του μίγματος που μπορεί να αντιπροσωπεύει και τη χωρητικότητα του αντιδραστήρα που σχεδιάζουμε, τότε ο όγκος δεν απλοποιείται. Τότε, αν διαιρέσουμε με τη διαφορά των mol που απομένει στο δεξί μέλος, παίρνουμε και πάλι μια ευθεία που όμως η κλίση της είναι αντιστρόφως ανάλογη του όγκου: n n ln n B n n B n n B n = V t Αυτό το γράφημα επιτρέπει τον προσδιορισμό του όγκου του αντιδραστήρα. Αν η συγκέντρωση του Β είναι σε πολύ μεγάλη περίσσεια σε σχέση με το Α, τότε το παραπάνω αποτέλεσμα είναι προσεγγιστικά ίσο με ln C C = C B t= ' t (κινητική ψευδοπρώτης τάξης) Αν οι αρχικές συγκεντρώσεις των Α και Β είναι ίσες, ή αν έχουμε αντίδραση του τύπου 2 προϊόντα η κινητική υπακούει στη σχέση: d 2 dt 2 Αυτή λύνεται εύκολα χωρίς να προσφύγουμε στην έκφρασή της μέσω της μεταβολής ΔC την οποία μπορούμε να εισάγουμε απευθείας στην τελική έκφραση. d 2 dt 2 δίνει C C d C t 2 2 dt και C C = C C C C = C C C C t 2 Και πάλι, ο όγκος δεν απλοποιείται ενώ επίσης αν μετρήσουμε τη συγκέντρωση του Α κάποια χρονική στιγμή τ και βρούμε ότι ισχύει =x τότε θα ισχύει ότι = x x Αυτή είναι η μέθοδος υποδιπλασιασμού ή υπονιπλασιασμού επειδή μετράμε πότε η σχέση της τρέχουσας συγκέντρωσης προς την αρχική έγινε x =-/2 ή -/N. Αν η αντίδραση είναι αμφίδρομη Α Β k 2 C D και το αρχικό σύστημα είναι ισομοριακό μίγμα αντιδρώντων Α και Β τότε η κινητική περιγράφεται από τη σχέση R=R 2 R 2 = dt 2 C C 2 k 2 C 2 όπου C η συγκέντρωση των προϊόντων με την πάροδο του χρόνου. Εκφράζοντας τη διαφορά τετραγώνων στο δεύτερο σκέλος ως γινόμενο παίρνουμε dt = C C k 2 C C C k 2 C που γράφεται και στη μορφή
4 dt = r C r 2 C όπου 2 k 2 και r = k 2, r 2 = k 2 Τότε, r C r 2 C = dt από όπου, εκφράζοντας το αντίστροφο γινόμενο ως κατάλληλη διαφορά των παραγόντων του, βρίσκουμε ότι C r C r 2 C = r 2 r C r C C r 2 C = t dt η οποία με ολοκλήρωση δίνει ln r C r 2 r C r 2 = r r t=...= 2 2 k 2 t Αν γνωρίζουμε τη σταθερά ισορροπίας K = k 2 εξάρτηση να βρούμε τις σταθερές ρυθμού και k -2. τότε μπορούμε από την παραπάνω χρονική Αντιδράσεις νυοστής τάξης Αν θεωρήσουμε μια στοιχειώδη μη αντιστρεπτή αντίδραση μοριακότητας n κατά την έναρξη της οποίας το σύστημά μας αποτελείται από ισομοριακό μίγμα των n αντιδρώντων, τότε η κινητική είναι της μορφής dt n C n που εύκολα βρίσκουμε ότι οδηγεί στη σχέση C n C n C C = n k nt n όπου C η αρχική συγκέντρωση κάθε αντιδρώντος. Με τρόπο ανάλογο όπως και για τις αντιδράσεις πρώτης και δεύτερης τάξης, μπορούμε να ορίσουμε χρόνους υποδιπλασιασμού, υποτριπλασιασμού κλπ που μπορούν να χρησιμεύσουν στην πειραματική μελέτη της κινητικής. Αντιδράσεις μηδενικής τάξης Παρατηρούνται σε ετερογενή συστήματα και διαλύματα. Ο ρυθμός μεταβολής της συγκέντρωσης είναι σταθερός, ανεξάρτητος των συγκεντρώσεων. Παράλληλες Αντιδράσεις Για το σύστημα πρώτης τάξης k B k ' C εύκολα βρίσκεται ότι, εφόσον η συνολική μεταβολή του Α είναι το άθροισμα των μεταβολών λόγω των δύο αντιδράσεων, η κινητική οδηγεί στην ίδια σχέση με αυτή μιας μόνης μη αντιστρεπτής αντίδρασης πρώτης τάξης, με μόνη διαφορά ότι αντί για τη σταθερά k εμφανίζεται το άθροισμα k + k -. Παρόμοια, για το σύστημα δεύτερης τάξης
5 B C ' B D η λύση είναι ανάλογη με αυτή μιας μόνης μη αντιστρεπτής αντίδρασης δεύτερης τάξης, με μόνη διαφορά ότι αντί για τη σταθερά εμφανίζεται το άθροισμα + k -2. Και στις δύο παραπάνω περιπτώσεις, ο λόγος της μεταβολής της συγκέντρωσης κάθε προϊόντος προς αυτή του άλλου είναι προφανώς ίσος προς το λόγο των αντίστοιχων σταθερών ρυθμού, πράγμα που επιτρέπει, μαζί με τη λύση της εξίσωσης της κινητικής, να βρούμε τις σταθερές, εφόσον έχουμε δεδομένα για τη σύσταση του μίγματος σε διάφορες χρονικές στιγμές. Επίσης, γίνεται φανερό ότι η σύσταση του τελικού μίγματος καθορίζεται κινητικά και όχι θερμοδυναμικά (επικρατεί η ταχύτερη αντίδραση ενώ η σχετική θερμοδυναμική ευστάθεια των προϊόντων δεν παίζει ρόλο). Διαδοχικές Αντιδράσεις Έστω το πρωτοτάξιο σύστημα Α k B k ' C όπου το Α έχει αρχική συγκέντρωση και τα B και C μηδενική αρχική συγκέντρωση. Η κινητική υπακούει στο εξής σύστημα διαφορικών εξισώσεων: d = k dt, B dt k, C dt Η πρώτη λύνεται εύκολα για να δώσει =C e k t Εισάγοντας αυτή στη δεύτερη εξίσωση έχουμε: B dt C e k t k Λύνουμε πρώτα την αντίστοιχη ομογενή: B = k dt, η οποία και δίνει C Β =C Β e k ' t Θεωρούμε την προεκθετική σταθερά ως συνάρτηση του χρόνου και επανεισάγουμε την παραπάνω λύση στην πλήρη εξίσωση για να πάρουμε τελικά: B dt e k ' t e k t η οποία τελικά δίνει C Β = k C k ' k e k ' k t C Β από όπου, για αρχική συνθήκη η συγκέντρωση να είναι μηδενική, παίρνουμε C Β = k C k ' k Α ομογενούς βρίσκουμε τελικά, και επανεισάγοντας στη λύση της C Β = k C k ' k e k t e k ' t. Τέλος, εισάγοντας την παραπάνω λύση στην τρίτη διαφορική εξίσωση, βρίσκουμε, σε συνδυασμό με την απαίτηση αρχικής συνθήκης για μηδενική συγκέντρωση, ότι
6 [ C C = k k ' k ' e kt k e k ' t ] Οι παραπάνω λύσεις συνεπάγονται ότι η συγκέντρωση του Α τείνει εκθετικά στο μηδέν, του Β παρουσιάζει μέγιστο (με παραγώγιση ως προς χρόνο βρίσκουμε ότι αυτό προκύπτει όταν t = lnk όπου K k k ' ' /k ) και μετά φθίνει εκθετικά, ενώ του C αυξάνει σιγμοειδώς και τείνει ασυμπτωτικά στο όριο της αρχικής συγκέντρωσης του Α ενώ το σημείο καμπής είναι εκεί όπου μεγιστοποιείται η συγκέντρωση του Β. Αν η σταθερά της πρώτης αντίδρασης είναι πολύ μεγαλύτερη από αυτή της δεύτερης, τότε το Α καταναλώνεται με πολύ γρήγορο ρυθμό και συσσωρεύεται Β το οποίο μετασχηματίζεται αργά σε C. Τότε λέμε ότι η δέυτερη αντίδραση (το δεύτερο βήμα) καθορίζει την ταχύτητα (πραγματικά, το χρόνο). Αν η δεύτερη σταθερά είναι πολύ μεγαλύτερη, τότε το Β είναι ένα ενδιάμεσο προϊόν που καταναλώνεται πολύ γρήγορα και δεν προλαβαίνει να συσσωρευτεί. Το πρώτο βήμα, τότε, είναι το καθοριστικό. Πειραματική μελέτη κινητικής αντιδράσεων Μέτρηση συγκεντρώσεων σε διάφορους χρόνους με χημικές ή φυσικές μεθόδους και προσαρμογή δεδομένων σε μοντέλα σαν τα προηγούμενα για να βρεθεί η τάξη και η σταθερά ρυθμού αντίδρασης. Μέθοδοι προσδιορισμού τάξης: α) Διαφορική. Βασίζεται στο γράφημα της ευθείας που προκύπτει από τη λογαρίθμηση της εξίσωσης του ρυθμού: log R=log k n n log C i, υπάρχει σε δύο παραλλαγές. Στην πρώτη, βρίσκεται η ταχύτητα σε διάφορους χρόνους ως κλίση της καμπύλης C(t) και στη δεύτερη καταγράφεται η αρχική ταχύτητα της αντίδρασης για διαφορετικές συγκεντρώσεις. Η δεύτερη πλεονεκτεί ως προς το ότι δεν έχουν εμφανιστεί ενδιάμεσα προϊόντα που να καταλύουν θετικά ή αρνητικά την αντίδραση, αλλά απαιτεί περισσότερα πειράματα. Η τάξη που βρίσκεται αναφέρεται ως χρονική (ή ως προς το χρόνο) ή ως προς τη συγκέντρωση, ανάλογα με την παραλλαγή της μεθόδου που χρησιμοποιήθηκε. β) Ολοκληρωτική. Βασίζεται στη σύγκριση της καμπύλης C(t) με αντίστοιχες από τα διάφορα μοντέλα, συνήθως ξεκινώντας από χαμηλότερη τάξη και πηγαίνοντας προς τις ανώτερες. Δίνει χρονική τάξη. Συνηθέστερη αλλά με περισσότερο κίνδυνο εσφαλμένων αποτελεσμάτων όταν η χρονική τάξη διαφέρει από αυτή ως προς τη συγκέντρωση. γ) Χρόνων υποδιπλασιασμού. Λογαριθμίζοντας τη σχέση του χρόνου υποδιπλασιασμού για αντίδραση νυοστής τάξης βρίσκουμε μία γραμμική σχέση μεταξύ λογαρίθμων του χρόνου και της αρχικής συγκέντρωσης. Χρειάζονται τουλάχιστον δύο πειράματα με δύο διαφορετικές αρχικές συγκεντρώσεις.
Ομογενή Χημικά Συστήματα
Ομογενή Χημικά Συστήματα 1. Πειραματικός Προσδιορισμός Τάξης Αντιδράσεων 2. Συνεχείς Αντιδραστήρες (Ι) Πειραματική Μελέτη Ρυθμού Αντίδρασης Μέθοδοι Λήψης και Ερμηνείας Δεδομένων (ΙΙ) Τύποι Συνεχών Αντιδραστήρων:
Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης
Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις
Ταχύτητα χημικών αντιδράσεων
Ταχύτητα χημικών αντιδράσεων Η στιγμιαία ταχύτητα μιας αντίδρασης είναι η κλίση της εφαπτομένης στη γραφική παράσταση της συγκέντρωσης ως προς το χρόνο. Για αρνητικές κλίσεις, το πρόσημο αλλάζει, έτσι
Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ
Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ Ασκηση 4.1 Η κινητική εξίσωση της αντίδρασης: βρέθηκε οτι είναι Αντιδράσεις πρώτης τάξης 2A = Προϊόντα r = k[a] Να υπολογίσετε
Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β
Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης
Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων.
25/9/27 Εισαγωγή Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων. Οι ρυθμοί δεν μπορούν να μετρηθούν απευθείας => συγκεντρώσεις των αντιδρώντων και των προϊόντων
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 10 η : Χημική κινητική. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 10 η : Χημική κινητική Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Ταχύτητες Αντίδρασης 2 Ως ταχύτητα αντίδρασης ορίζεται είτε η αύξηση
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ. Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία.
ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ Το τρίχωμα της τίγρης εμφανίζει ποικιλία χρωμάτων επειδή οι αντιδράσεις που γίνονται στα κύτταρα δεν καταλήγουν σε χημική ισορροπία. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Μονόδρομες
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 11 η : Χημική ισορροπία. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 11 η : Χημική ισορροπία Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Η Κατάσταση Ισορροπίας 2 Πολλές αντιδράσεις δεν πραγματοποιούνται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Ταχύτητα αντίδρασης και παράγοντες που την επηρεάζουν Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες Χρήσης Το παρόν
Ασκήσεις από το βιβλίο του Σδούκου:
Ασκήσεις από το βιβλίο του Σδούκου: 3-1. Σχεδιασμός Ασυνεχούς Αντιδραστήρα. Εδώ ζητείται ο όγκος αντιδραστήρα για να επιτευχθεί ζητούμενη ημερήσια παραγωγή. Ουσιαστικά, πρέπει να βρούμε, με τη βοήθεια
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Κάθε χημική αντίδραση παριστάνεται με μία χημική εξίσωση. Κάθε χημική εξίσωση δίνει ορισμένες πληροφορίες για την χημική αντίδραση που παριστάνει.
Ενέργεια 1 Χημική Κινητική ( Ταχύτητα Χημικής Αντίδρασης ) Κάθε χημική αντίδραση παριστάνεται με μία χημική εξίσωση. Κάθε χημική εξίσωση δίνει ορισμένες πληροφορίες για την χημική αντίδραση που παριστάνει.
IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ
IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Εισαγωγή. 3.1 Γενικά για τη χημική κινητική και τη χημική αντίδραση - Ταχύτητα αντίδρασης
3 ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 3 ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Εισαγωγή Στην μέχρι τώρα γνωριμία μας με τη χημεία υπάρχει μια «σημαντική απουσία»: ο χρόνος... Είναι λοιπόν «καιρός» να μπει και ο χρόνος ως παράμετρος στη μελέτη ενός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
XHMIKH KINHTIKH & ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Γλυκόζη + 6 Ο 2 6CO 2 + 6H 2 O ΔG o =-3310 kj/mol
XHMIKH KINHTIKH XHMIKH KINHTIKH & ΘΕΡΜΟΔΥΝΑΜΙΚΗ Θερμοδυναμική: Εξετάζει και καθορίζει το κατά πόσο μια αντίδραση ευνοείται ενεργειακά (ΔG
ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ
ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων
dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1
I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
panagiotisathanasopoulos.gr
Παναγιώτης Αθανασόπουλος. Κεφάλαιο 3ο Χημική Κινητική Παναγιώτης Αθανασόπουλος Χημικός, 35 Διδάκτωρ Πανεπιστημίου Πατρών Χηµικός ιδάκτωρ Παν. Πατρών 36 Γενικα για τη χημικη κινητικη και τη χημικη Παναγιώτης
Χημικές Διεργασίες: Χημική Ισορροπία Χημική Κινητική. Μέρος ΙI
: Χημική Ισορροπία Χημική Κινητική Μέρος ΙI Τα μυστήρια των μηχανισμών!... - Τι είναι μηχανισμός; Σενάριο με διαδοχικά επεισόδια, τα βήματα του μηχανισμού. - Τι συμβαίνει σε κάθε βήμα; Μία ή περισσότερες
ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ
ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΚΙΝΗΤΙΚΗΣ aa+bb+cc+... pp +qq +rr +... Η αντίδραση μπορεί να αντιπροσωπεύει μία συνολική αντίδραση στην οποία περίπτωση, όπως είδαμε, οι στοιχειομετρικοί
Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)
Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ
1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
3Η 2 (g) + Ν 2 (g) 2ΝH 3 (g)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 25 10 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A1. H ταχύτητα
ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:
ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΚΑΙ ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ
ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΚΑΙ ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ Τυπική Βιοδιεργασία Μαθηματικό μοντέλο Μαθηματικό μοντέλο ή προσομοίωμα ενός συστήματος ονομάζουμε ένα σύνολο σχέσεων μεταξύ των μεταβλητών του συστήματος που ενδιαφέρουν.
ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ
Εισαγωγή Διαδικασία σχεδιασμού αντιδραστήρα: Καθορισμός του τύπου του αντιδραστήρα και των συνθηκών λειτουργίας. Εκτίμηση των χαρακτηριστικών για την ομαλή λειτουργία του αντιδραστήρα. μέγεθος σύσταση
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
C(Q) FC. } τα επίπεδα παραγωγής με ελάχιστο μέσο μεταβλητό κόστος p
EI.. ΜΕΣΟ ΚΟΣΤΟΣ.Μέσο κόστος(α).ελάχιστο μέσο κόστος 3.Μέσο προιόν(a).μέγιστο μέσο προιόν 5.Κερδοφορία. Μέσο κόστος Θεωρούμε το κόστος παραγωγής ενός προιόντος ως συνάρτηση της ποσότητας παραγωγής, και
3/10/2016 ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Εξισώσεις συγκέντρωσης-χρόνου για μονόδρομες αντιδράσεις. ΧΡΟΝΟΣ ΗΜΙ-ΖΩΗΣ ( t 1/2 )
3/0/06 ΧΡΟΝΟΣ ΗΜΙ-ΖΩΗΣ ( t / ) Ως χρόνος ημιζωής, t /, ορίζεται ο χρόνος που απαιτείται ώστε το μισό της αρχικής συγκέντρωσης του Α να έχει αντιδράσει, δηλ. t / αντιστοιχεί στον χρόνο όπου A (t / )= Ao
(1) v = k[a] a [B] b [C] c, (2) - RT
Χηµική Κινητική Αντικείµενο της Χηµικής Κινητικής είναι η µελέτη της ταχύτητας µιας αντιδράσεως, ο καθορισµός των παραγόντων που την επηρεάζουν και η εύρεση ποσοτικής έκφρασης για τον κάθε παράγοντα, δηλ.
Χημικές Διεργασίες: Χημική Ισορροπία Χημική Κινητική. Μέρος Ι
: Χημική Ισορροπία Χημική Κινητική Μέρος Ι Υπενθύμιση... Απόδοση του Αντιδραστήρα: Έξοδος = f ( Είσοδος, Κινητική, Τρόπος αλληλεπίδρασης ) * Εξοδος: ρυθμός και σύσταση εξερχομένων προϊόντων * Είσοδος:
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Χημεία Γ Λυκείου Κεφάλαιο: 1 ο -4 ο και 7 ο Ονοματεπώνυμο Μαθητή: Ημερομηνία: 30-10-2017 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και
ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟY ΠΑΤΡΩΝ ΕΝΖΥΜΟΛΟΓΙΑ. Ενότητα ε. Κινητική των Ενζύμων ΑΛΕΞΙΟΣ ΒΛΑΜΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΒΙΟΧΗΜΕΙΑΣ
ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟY ΠΑΤΡΩΝ ΕΝΖΥΜΟΛΟΓΙΑ Ενότητα ε Κινητική των Ενζύμων ΑΛΕΞΙΟΣ ΒΛΑΜΗΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΒΙΟΧΗΜΕΙΑΣ Μέρος Α Γενικές παρατηρήσεις για την κινητική ενζυμικών αντιδράσεων Ορισμοί Για
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ
IV. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισμός ελαστικότητας 3.Σχετικά διαφορικά 4.Ελαστικότητα αντίστροφης 5.Ομογενείς συναρτήσεις 6.Λογισμός ρυθμών και διαφορικών 7.Λογαριθμική κλίμακα.
panagiotisathanasopoulos.gr
Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το
Ισορροπία (γενικά) Ισορροπίες σε διαλύματα. Εισαγωγική Χημεία
Ισορροπία (γενικά) Ισορροπίες σε διαλύματα Εισαγωγική Χημεία 2013-14 1 Χημική Ισορροπία Εισαγωγική Χημεία 2013-14 2 Ισορροπία: Βαθμός συμπλήρωσης αντίδρασης Ν 2 (g) + 3H 2(g) 2NH 3 (g) Όταν αναφερόμαστε
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =
Σύνοψη ΜΗΧΑΝΙΚΗΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Χημική αντίδραση : a 1. + α 2 Α (-a 1 ) A 1. +(-a 2
ΠΑ- Σύνοψη ΜΗΧΑΝΙΚΗΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Χημική αντίδραση : a A + α Α +... ------------>...+a A ή σε μορφή γραμμικής εξίσωσης a A +...+(-a ) A +(-a ) A +... 0 a Στοιχειομετρικοί συντελεστές ως προς Α (
II. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
Διάλεξη 4 - Σημειώσεις
Διάλεξη 4 - Σημειώσεις Απροσδιόριστες μορφές και ο κανόνας l'hôpital Έστω ότι ζητούμε το όριο () της συνάρτησης () = () () η οποία δίνεται ως το πηλίκο δύο συναρτήσεων (), (). Τότε, () () () = () = ()
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Στοιχειώδεις αντιδράσεις, μηχανισμός και εύρεση του νόμου ταχύτητας Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες
Αμφίδρομες αντιδράσεις
Χημική ισορροπία Αμφίδρομες αντιδράσεις Αμφίδρομες αντιδράσεις Ταχύτητα αντιδράσεων και συγκεντρώσεις Αμφίδρομες αντιδράσεις CO +3H 2 CH 4 + H 2 O. συγκέντρωση Αμφίδρομες αντιδράσεις- κατάσταση Χ.Ι. συγκέντρωση
ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.
Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),
Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις
Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Διδάσκοντες:Ν. Καλογεράκης Π. Παναγιωτοπούλου Γραφείο: K.9 Email: ppanagiotopoulou@isc.tuc.gr Μέρες/Ώρες διδασκαλίας: Δευτέρα (.-3.)-Τρίτη (.-3.) ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο
Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία
Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη
Σταθερά χημικής ισορροπίας K c
Σταθερά χημικής ισορροπίας K c Η σταθερά χημικής ισορροπίας K c μας βοηθάει να βρούμε προς ποια κατεύθυνση κινείται μια αντίδραση και να προσδιορίσουμε τις ποσότητες των αντιδρώντων και των προϊόντων μιας
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος--) .. Μια χρήσιμη ανασκόπηση... Δυνάμεις Πραγματικών Αριθμών Ο συνοπτικός τρόπος για να εκφράσουμε το γινόμενο : 2*2*2*2 4 είναι να το γράψουμε:
Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας
5 ο Μάθηµα: Χηµική κινητική - Ταχύτητα αντίδρασης 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 95 5 o Χηµική κινητική Ταχύτητα αντίδρασης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Χηµική κινητική: Χηµική κινητική
ΠΕΡΙΠΛΟΚΕΣ ΣΤΗΝ ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ
ΠΕΡΙΠΛΟΚΕΣ ΣΤΗΝ ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΑΝΤΙΣΤΡΕΠΤΟΤΗΤΑ E +S ES E +P από τα ισοζύγια μάζας και χρησιμοποιώντας την υπόθεση ψευδομόνιμης κατάστασης για το ενδιάμεσο σύμπλοκο v ds dt dp dt v ms s
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 13: Χημική κινητική
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 13: Χημική κινητική Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Άσκηση 7η. Χημική Ισορροπία. Εργαστήριο Χημείας Τμήμα ΔΕΑΠΤ Πανεπιστήμιο Πατρών
Άσκηση 7η Χημική Ισορροπία Εργαστήριο Χημείας Τμήμα ΔΕΑΠΤ Πανεπιστήμιο Πατρών Η έννοια της Χημικής Ισορροπίας Υπάρχουν χηµικές αντιδράσεις που εξελίσσονται προς µία µόνο μόνο κατεύθυνση, όπως π.χ. η σύνθεση
Σφαιρικές συντεταγμένες (r, θ, φ).
T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ
A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ
A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισµός ελαστικότητας 3.Ελαστικότητα αντίστροφης 4. ιαφορικά 5.Οµογενείς συναρτήσεις 6.Λογισµός ρυθµών και διαφορικών 7.Λογαριθµική κλίµακα. 8.Σχετικός
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΤΩΝ ΡΥΘΜΩΝ ΤΩΝ ΧΗΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ
ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΤΩΝ ΡΥΘΜΩΝ ΤΩΝ ΧΗΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ Οποιοδήποτε είδος αντιδραστήρα με γνωστό τρόπο ανάμειξης, μπορεί να χρησιμοποιηθεί για τη διερεύνηση της κινητικής καταλυτικών αντιδράσεων.
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους
Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 03-4 Τοπικός διαγωνισμός στη Φυσική 07--03 Σχολείο: Ονόματα των μαθητών της ομάδας: ) ) 3) Ιδανικά αέρια: o νόμος του Boyle Κεντρική ιδέα της άσκησης Στην άσκηση αυτή
Χημική κινητική β) Ταχύτητα της αντίδρασης
Χημική κινητική β) Ταχύτητα της αντίδρασης Ως ταχύτητα αντίδρασης ορίζεται η μεταβολή της συγκέντρωσης ενός από τα αντιδρώντα ή τα προϊόντα στη μονάδα του χρόνου: Δc c2 - c1 υ =---- =--------- t2 - t1
ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ
ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f
ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση
I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}
I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες
Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί
ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα
ph αραιωμένου ρυθμιστικού διαλύματος.
αραιωμένου ρυθμιστικού διαλύματος. Ρυθμιστικό διάλυμα HA NA με συγκεντρώσεις και αντίστοιχα, αρχικού όγκου V, αραιώνεται με προσθήκη νερού. Να βρεθεί η σχέση που συνδέει το του διαλύματος με τον όγκο V
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.
Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου
αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x
A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός
ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak
1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C
( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.
Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln
Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες
Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα
B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ
B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ
ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των
Ποσοτική και Ποιoτική Ανάλυση
Ποσοτική και Ποιoτική Ανάλυση ιδάσκων: Σπύρος Περγαντής Γραφείο: Α206 Τηλ. 2810 545084 E-mail: spergantis@chemistry.uoc.gr Κεφ. 14 Χημική Ισορροπία Μια υναμική Ισορροπία Χημική ισορροπία είναι η κατάσταση
Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.
4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη
ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6.1
ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6. Σώμα μάζας gr έχει προσδεθεί στην άκρη ενός ελατηρίου και ταλαντώνεται επάνω σε οριζόντιο δάπεδο χωρίς τριβή. Εάν η σταθερά του ελατηρίου είναι 5N / και το πλάτος
Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες
Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:
ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του
Η NH 3 παρασκευάζεται με καταλύτη σίδηρο με τη μέθοδο Haber σύμφωνα με την αμφίδρομη αντίδραση:
Η NH παρασκευάζεται με καταλύτη σίδηρο με τη μέθοδο Hber σύμφωνα με την αμφίδρομη αντίδραση: N ^gh H ^gh NH ^gh H < 0 D Ισομοριακό μίγμα N και H διαβιβάζεται σε δοχείο κατασκευασμένο από κράμα σιδήρου
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 23 10 2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Σταυρούλα Γκιτάκου, Στέφανος Γεροντόπουλος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A1. Από τις επόμενες