Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal

Σχετικά έγγραφα
Modeling and Simulation of Drying Cylinders in Paper Processes

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Influence of Flow Rate on Nitrate Removal in Flow Process

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Development of a basic motion analysis system using a sensor KINECT

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

Conductivity Logging for Thermal Spring Well

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΒΙΟΑΠΟΘΕΙΩΣΗ ΔΙΒΕΝΖΟΘΕΙΟΦΑΙΝΙΟΥ ΚΑΙ ΠΕΤΡΕΛΑΙΟΥ ΑΠΟ ΝΕΟ ΑΠΟΜΟΝΩΜΕΝΟ ΣΤΕΛΕΧΟΣ KLEBSIELLA SP. LAB

ER-Tree (Extended R*-Tree)

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΑΣΤΙΚΟΠΟΙΗΣΗΣ ΣΤΑ ΥΠΟΓΕΙΑ ΝΕΡΑ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ ΠΕΡΑΙΑΣ, ΗΜΟΥ ΘΕΡΜΑΪΚΟΥ

the total number of electrons passing through the lamp.

Approximation of distance between locations on earth given by latitude and longitude

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Γεωπονικό Πανεπιςτήμιο Αθηνών Τμήμα Αξιοποίηςησ Φυςικών Πόρων και Γεωργικήσ Μηχανικήσ

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

M p f(p, q) = (p + q) O(1)

[1] P Q. Fig. 3.1

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

EE101: Resonance in RLC circuits

Quick algorithm f or computing core attribute

High order interpolation function for surface contact problem

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Electrolyzed-Reduced Water as Artificial Hot Spring Water

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

EE512: Error Control Coding

ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΜΕ ΧΡΗΣΗ ΤΟΥ ASPEN HYSYS: ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΕΡΟΠΟΡΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Aluminum Electrolytic Capacitors

The Improvement of Cake Filtration Rate using CO 2

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΒΙΟΛΟΓΙΚΗ ΑΝΑΓΩΓΗ ΕΞΑΣΘΕΝΟΥΣ ΧΡΩΜΙΟΥ ΜΙΧΑΗΛ Κ. ΜΙΧΑΗΛΙΔΗ

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Second Order RLC Filters

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Design Method of Ball Mill by Discrete Element Method

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

SMD Transient Voltage Suppressors

Instruction Execution Times

Aluminum Electrolytic Capacitors (Large Can Type)

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Math 6 SL Probability Distributions Practice Test Mark Scheme

Buried Markov Model Pairwise

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

Forced Pendulum Numerical approach

Surface Mount Multilayer Chip Capacitors for Commodity Solutions


Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Air Drying Process of Granules and Characteristics of Their Structure

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Study of urban housing development projects: The general planning of Alexandria City

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

Stabilization of stock price prediction by cross entropy optimization

Capacitors - Capacitance, Charge and Potential Difference

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

Το άτομο του Υδρογόνου

Simplex Crossover for Real-coded Genetic Algolithms

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Applying Markov Decision Processes to Role-playing Game

A research on the influence of dummy activity on float in an AOA network and its amendments

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:


Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Homework 8 Model Solution Section

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Transcript:

Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 73-80 i m i n s o l n n y j m n i Çly *, Çmm 790-784 e q 31 * pn / l 446-701 npe } 1 (2006 10o 9p r, 2006 2007 1o 4p }ˆ) Optimal Trajectory Finding and re-optimization of BR for Nitrogen Removal Young-Whang Kim, ChangKyoo Yoo*,, and In-Beum Lee Dept. of Chemical Engineering, POTECH, an 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea *Dept. of Environmental cience and Engineering/Center for Environmental tudies, College of Environmental and Applied Chemistry, Kyung Hee University, 1 eocheon-dong, Giheung-gu, Yongin, Gyeonggi, 446-701, Korea (Received 9 October 2006; accepted 4 January 2007) k l r } rp l e p (sequencing batch reactor, BR)l v r r o m r (activated sludge model, AM No.1, AM1) r (iterative dynamic programming, IDP)p pn l BRp } tp s r nr s p ˆ p rp m. l e p p r o l v m e p v } p p r rp pn l p n performance index rk m. e l vl rl r r t(weight)p tp f e l v r el m. BRl IDP pn r nr r ns p r r~ e r~ l v nl el m p p k pl r nre sp nr p o v r el r~ np 20Í v tp pl. k rp p er rp l l p q p nl IDP pn l e qr ppp m. h Abstract This article aims to optimize the nitrogen removal of a sequencing batch reactor (BR) through the use of the activated sludge model and iterative dynamic programming (IDP). Using a minimum batch time and a maximum nitrogen removal for minimum energy consumption, a performance index is developed on the basis of minimum area criteria for BR optimization. Choosing area as the performance index makes the optimization problem simpler and a proper weighting in the performance index makes it possible to solve minimum time and energy problem of BR simultaneously. The optimized results show that the optimal set-point of dissolved oxygen affects both the total batch time and total energy cost. For two different influent loadings, IDP-based BR optimizations suggest each supervisory control of batch scheduling and set-point trajectory of dissolved oxygen (DO) concentration, and can save 20% of the total energy cost, while meeting the treatment requirements of COD and nitrogen. Moreover, it shows that the re-optimization of IDP within a batch can solve the modelling error problem due to the influent loading changes, or the process faults. Key words: Activated sludge model (AM), Dissolved Oxygen (DO) Control, Iterative Dynamic Programming (IDP), Model-based Optimization, Nitrogen Removal, equencing Batch ReactorG(BR), Wastewater Treatment Process 1. p o, v, p p mk m l } p mk e erp. p v p p rp r tp l p To whom correspondence should be addressed. E-mail: ckyoo@khu.ac.kr (sequencing batch reactor, BR)p. BRp o p v m pp rp el r p rl t p k m. BRp 1 p sl psm rvp p l p kp r, v, d v rp ps l } ep. pp ep p lv o p rp opp o l ps p n p BRp l l nr p. 1t op, p, r, } 73

74 m Ëo} Ëpp d v 5 p lv. p BR ed Šp fill-and-draw ep l d v rp l v 1980 l 2 } o p n l m. p p rp p k mp q rl o p q p r rp np v p p [1]. l p } ql p 2 } o l BR rp, e nr p. r e rp BRp n, p k, e, k p, ee rp l n, p n p p p l kr slp qt p p p l 1~2 r p p oe p. p l BR rp ee r l e l o nrqp l ps rp v p [1-3]. l p p l p p seˆ np r eˆ o } edšl rl r nrp n p rr tn v p. BRp rl o v r p rk lr m. ~ w ep n s, ph p m p pn rl r ep [4-6], w ep d v (Activated ludge Models)p pn rl r r ep [7-14]. Offlinel qt n r k rl p rn p l v rl r p m p pn ~ rp p k r p. q v r } rl q q k v p AM1, AM2, AM2dm p d v (activated sludge model family, AMs)p [8, 11]. AM p IWA(international water association)l 1980 re p } p l m rp qp nrp o r p re m. AM p } r l pl pl r p p rp p ep ˆp l l nr l p re t, q e rp v k } rl l l r. p AM p pn r } rl v m p r l r nr s p } n l m. v er q p } ql r l l k AMp p } q r l n l m AMp p p l er } qp nr r l vr rn p v k p. p BR rl p np rl l o p o v t n lp p l m p r m l v p k r m. r } qp r p n p m l p sn } q r l l l p n BRp rl r p r tp n. v v BR rp n p l rl r (batch control policy)p } e (minimum batch time) l l lr m. q v } kl BRp r rp } l v v k p. l o o45 o1 2007 2k v } p r nrp d v (activated sludge model, [8-14]) r (iterative dynamic programming, [19-22])l BR rp r r(optimal batch trajectory) p } rp l m. BRp l ns p r nr r e p }, r m e l v p el performance index r k, BRp t l op r p p p lp n qr (re-optimization)l l m. v r o BRp r rl e pn BRp l rl p m t n q performance index v l v r p n performance index rk m. pm r p p p n r rp } kp re m. 2. i m i s o m n Fig. 1p BRp l pl op, p, kp r, v, d v ˆ. BRp p p l p r p pn l rp } ep. BRp p nr l op, r nr s p e l r pp p v. BRl o v rp } o r rl r p }p n p. rp BR l rl r p p rp r pl p r m s e l p v. r pp m rl BRp } p, } n, r r p v. k nr e p w } t, r tp s v p nr e p } s p s v nr np v. m l, lv Fig. 1. Basic operation of a sequencing batch reactor [2].

o l v v [1, 2]. l r } rl v r l rp l v m. p rp l p v r v p, ˆv p v. BRp n v pp (aerobic phase), (anoxic phase)p v p n. v l l p mk k k kv mp eˆ. pl kv m p v mp eˆ. BR p l l ˆ r m v p, l ˆv pp pl. l v r l rp pp p. ~ q mk p ˆ qp p. q mk p k km ns pm dm kv mp eˆ. w s mk p qp s mk p v m o t ˆ p pn l pm dm v d. r r pn } qp r nr s p re o d v rl kk n p. v v p d v ep lp, IWAl 1982 p q v Task groupp d v rl r ep r l d v No. 1, 2, 2d, 3 m [18]. d v p o, v, p r p l r p r } rl v m p r l r nr s (optimal batch trajectory)p } n l m. l AM1p ˆp r p pn } qp nr r l np. BRl r p o tn nr m edš p rp l v m. p rp e p p r l r = op - o + - p el p p p rep p p ˆ p [18]. d ------ i dt q ----- in ( iin, i ) = + r i V l V, q in op, i ˆ m v p v, i,in op, rp p p. v r l rp AM1p 13 t Table 1 p ˆ m v r o 6 5 pp ˆ l l l e p l r v r o r r } m qr 75 (1) v m. rp l k AM1l r v p n m pr ˆl mr p re p p p ˆ p [18, 22]. d ------ i = r dt i l l BRp v m ˆ r l l 6 p rep ˆ l. l p o, k k, v m, ns, q mk, s mk p pp ˆ, v, ˆv pp. p Table 1 p k p l p p. 3. n (Iterative Dynamic Programming) 3-1. n r (IDP)p BR rp ˆ e (2)m p rep edšp r p p [19]. IDP s r p rrp qr p (mismatching grid point problem), p qrp p o r(high dimensionality), e p e p p r p e rl r rl r p } on p. r p l rl r q }p p qrp p [20-22]. p rp rp n p p r edšp p. dx ----- = fxut (,, ) dt x(0) tlr x ˆ, u α i u i β i (i = 1, 2,, m) rl ˆ. p edšl performance index(pi) s e l d tlv. PI[ x( 0), t f ] = Ψ( xt ( f )) + φ( xut,, ) dt f 0 l Ψ s ˆ p p, φ( )p rl p ˆ p ˆ l v [23]. (2) (3) (4) Table 1. Kinetics for carbon and nitrogen removal[18] Components Process Kinetics COD Dissolved Ammonium Nitrate Heterotroph Autotroph oxygen biomass biomass 1 Y Aerobic heterotrophic growth ------ H 1 -------------- i XB 1 µˆ H ---------------- O --------------------- X + + H 1 1 Anoxic heterotrophic growth ------ i XB ----------------- 1 µˆ 2.86 ---------------- H + Y Aerobic autotrophic growth A 4.57 --------------------- i 1 1 XB ------ ------ 1 µˆ NH H ----------------------- O -------------------- X + + H Y A K K OH O O --------------------- X+ NO ----------------------- ηg X K K OH + O K NO + H NO K NH NH K OA O Decay of heterotrophs 1 f P i XB f P i XB -1 b HX H Decay of heterotrophs 1 f P i XB f P i XB -1 b AX A Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

76 m Ëo} Ëpp Fig. 2. Basic scheme of iterative dynamic programming (IDP). 3-2. n m g r r p pn r rl r 0 t t f p l performance index ( )eˆ rl r u(t) } p [22]. Fig. 2l r l rp p ˆ l. Fig. 2p o r p k vp p p ~. 1) [0, t f ] P l e Lp. L=t f /P. 2) n rlp (M)m qr (N) r. rl u(0), r, pq γ p r. 3) rl r p r rep t=0l t f v l xp qrp eˆ. 4) v Pl eq l t f -Ll t f v p qrl l vp n rl l rep performance index eˆ rl p rq. 5) pr p P-1l v t f -2Ll t f -L v p qrl l v n rl p pn rep. v p r q n qrp } e t f -Ll t f v pr, v P l qrl rq rl p pn performance index eˆ rl p } rq eˆ. 6) p rp P-2, P-3,, 1 v e. 1 v mp performance index eˆ rl p rq eˆ. 7) p p p tl p r v eˆ. r j ( + 1) γr = j ( ) l j p. 8) 6 q sp rl r p rl r p n e 3 k 3-7 [19, 22]. 4. s o l BRm n oh BRp v r l trp m p pn v r m l v el p r~ e p tp o r nr kp m. } r p er q rnl np r o tn l ns r l, r v }, l v l nr e p tp o r p pn l BRp r nr s p }k k. o45 o1 2007 2k (5) Fig. 3. Relationships between used energy and batch completion time [23]. Fig. 4. Area of the ammonium and the oxygen concentration under constant aeration rate [23]. 4-1. BRm i ni m r rl p l q k v p p rp e r bang-bang rl p [21]. er } rl ns p r p r l nr e p nr e p tp pp p. p p l v r j p r l p. e p n nr n t l v n nl np, l vl p np v l v np er rl l p m p t p l r kk. BRp l p p o l n l vm m e p Fig. 3l ˆ l. l ns p r r e p tn p e, v } p ˆ l. l p n l vm m e p p vp k pl. e l v kp performance indexl

l e p l r v r o r r } m qr 77 lk p k p [23]. Fig. 4 pr kp mp n AM l p l p e l ns m k k p ˆ p. l p pr eˆ k kp l l t r(a NH )p o p v nr e rm p ppp k p. ns l l t r(a O )p n p l. p p vrrp n l v k l p. p rp p performance index l r nr s p }p p. l r ns } p rp r ns } o A O eˆ p lp p. k A O ƒ v p tpe k l n l v k v. A O qkv ns n p tl l pn l v k [23]. 4-2. k Performance Index og BRl v r l n l v np tp nr e p Performance index rk m. p o krl v r p d v p l e l k k( NH )p rl p r(a NH )p nr e o p vl p k p. n rl q r ns l v r eˆ p n m [23]. e l r ns l r (A O )p p tp. v, rp p t pe k l v p n. p p p ep e p. Q= at+ be Q, R= ce C + dc O l Q, Rp PIp s p o weight ep, T time cost, E Q effluent quality, E C l v, C O p, a, b, c, d Q, R e l weightp. op r(a O )p l v l vrr p k k r r(a NH )p nr e, o p vl p k l e r s eˆ p l tp l n performance index rk m [23]. J = N k = 0 ( Q NH ( k)l+ R U Do ( k)l) l Q e, o p vl tp Rp l v o tp Lp e p. nr e p t p o Q R p f r l r, l v r Q Rp p f r nr r p r p. 5. 5-1. i m m kn o l p l e p fill-and-draw ep 12.5 L (6) (7) Table 2. Initial conditions and systems of BR optimization Operational conditions Values Reactor volume 12.5 l Total batch reaction time 12 h Aerobic reaction time 8 h Anoxic reaction time 4 h Initial conditions COD concentration 150 mg/l Ammonium concentration 40 mg N/l Nitrate concentration 0 Dissolved oxygen concentration 3 mg/l Heterotrophic microorganism concentration 400 mg/l Autotrophic microorganism concentration 40 mg/l Fig. 5. Typical concentration profiles associated with the cyclic operation of the BR at steady state. p v (8e ) (4e )p t rp nr. op ep m p 150 mg/lp r + n (COD)p v 40 mg/lp ammonium(nh 4 -N)p o p [20]. Fixed time control(ftc) nr s nr r p 12e p e p v BRp nr ˆm ˆ Table 2l ˆ l. n p l, k AM 1 p l n m. Fig. 5 r ˆ nr mp n p l BRp l e l o, k k, ns, v pmp r rp lt. 5-2. Performance indexi i s m il k r p pn BRp e, l ns p r r p r nr s p }k k. r nr s p ˆ rl r performance indexl l v p lp l l vl n IDP m. p n BRp r rl r e rl. v, R=0p nl r m. e p s l P = 16, u (0) = 1.5, r (0) =2 qr 3p r m rk s p 0.5 u Do 3(mg/l) r m. r r (initial control policy)p u (0) = 1.5, r =2 r m 20 pr (0) m. Q 0.5, Rp 0.2 r m. Fig. 6 p r n s p 3 mg/l pr ov p k p. 5-3. BRi n n y kp l ˆp BR r l ns Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

78 m Ëo} Ëpp Fig. 6. When the performance index doesn t include the energy term. Fig. 8. Optimal control result of BR using IDP (scenario 2: Q:R = 0.2:0.5); (a) optimal trajectory of DO at aerobic phase, (b) nutrient concentration profiles [23]. Fig. 7. Optimal control result of BR using IDP (scenario 1: Q:R = 0.5:0.2); (a) optimal trajectory of DO at aerobic phase, (b) nutrient concentration profiles [23]. p r sp v r m l v l m p p k pl. pl k l l A NO p p r ns rl r l IDP e m. e rm ns l t(r)p Q mp 2 v e m k. l v n v r np l (1) Q:R = 0.5:0.2 (2) Q:R = 0.2:0.5 2 v np e m p l r m. rk s p kl m v 0.5 u Do 3(mg/l) r m [23]. k l l p Q nr n o vp np Rp tp, l v nl np. Initial control policy u (0) = 1.5, r =2p (0) o45 o1 2007 2k ˆ m 20 pr m. P 24 r l e p p mp r~rp 5 r p e p e p. Fig. 7p e m 1l r p pn BRp n s p r r o, v p r rp ˆ. p m e (t 1 )p 5.6(hr)p A O = 0.6728, J = 2.4446p m. r ˆ p A O = 0.725, J = 2.7692, p m e p 5.6(hr)p. v r nr s p n sp nr s l l v np 7.2Í r tp pl. r~ np sl l 11.7Í m. e m 2 l v p n s n J = 1.0717, A O = 0.4258 ˆ. r~ np 61.3Í m e p m e (t 1 )p 7.2(h) sl k 1e 20 v mpp k p [23]. Fig. 8p e m 2l r p pn BRp ns p r r r o, v p r rp ˆ. 5-4. o m l o k m n (re-optimization) } qp p op p sp r p p p er p n qt. er } ql BR rp r p p p er r ˆ lp r p l p m p r m m p r k eˆ. p l r r l m p l er nrq o r nr p. q r } rl qt pl p p r } o BRp t l r p p p lp n r p pn l nr t l e r nr s p t rp }p pvl BR qr (re-optimization)l l m.

l v r p r } l lr pp d v t v r m p v p q (µ H ) r p p nr s p r er n BR qr l l l m. v, p p op p p e r q p p n v k qr m. 2 p l m e m 3p l µ H p 1p r l p er p 0.75p np, e m 4 µ H p er p 0.5p np. v n p v 1e w r (in-situ respirometry) r µ H p p pv m r m. l rk s p 0.5 u Do 3(mg/l) r m. v s kr Fig. 9. The optimal dissolved oxygen and trajectories of scenario 3. l e p l r v r o r r } m qr 79 v Initial control policy u (0) = 1.5, r =2p ˆ m (0) 20 pr m. Q 0.5, Rp 0.2 r m. P 16 r l e p p mp r~ r e p 2 r n l. e m 3l qr Fig. 9m p p e p 8e p Cost p 1.5192 m. Fig. 9m 10l r e p l qr r nr s r e p l } o v p p. Fig. 9m 10p qr v p q p µ H l l sp r nr s p mr v r mr v r o l r ns 3mg/l v v lk p e v lk p k pl. e m 4 P = 28, r p e m 3 p m. Fig. 10 e m 4l lt p e p 12e p Cost p 2.7791p. e m 3 µ H p l r ns ov lk p k pl. rp e rp e q r e r k p k pl. 6. q v BR rll p t nr e p tp o l p lml. pl l IDP pn lbr l r rp } r p p q p p er m lp l q-r p l l m. l v nl ep l v np rl l m p k. l ns rl n mp r v } m l v e p m. r(a O )p l v, r ns l vrrp k k r r(a NH )p e, effluent qualityl p k l r performance index n m. v e ml r nr s p }p BRp ns p r v r k l v l m p p k pl r op t v rp r p nr s p re ppp m. k r p p er rp l l p q p nl IDP pn l e qr ppp m. l re p r } rp r o on n ppp k pl. p AM p r k p e rp dv k p e p n rp p. l tn e p r r p p l p. q edš l el r m r r p el l l l p. Fig. 10. The optimal dissolved oxygen and trajectories of scenario 4. l BK21 2 ll p vo k ld. Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

80 m Ëo} Ëpp y 1. Wilderer, P. A., Irvine, R. L. and Goronszy, M. C., equencing Batch Reactor Technology, IWA publishing(2001). 2. Mace and Mata-Alvarez, Utilization of BR Technology for Wastewater Treatment: An Overview, I&EC. 41, 5539-5553(2002). 3. Yoo, C. K., Lee, D.. and Vanrolleghem, P. A., Application of Multiway ICA for on-line Monitoring of a equencing Batch Reactor, Water Res. 38(7), 1715-1732(2004). 4. Chang, C. H. and Hao, O. J., equencing Batch Reactor ystems for Nutrient Removal: ORP and ph Profiles, J. Chem. Tech. Biotechnol., 67(1), 27-38(1996). 5. Cohen, A., Hegg, D., Michele, M. D., ong, Q. and Kasabov, N., An Intelligent Controller for Automated Operation of equencing Batch Reactors, Wat. ci. Tech. 47(12), 57-63(2003). 6. Azwar, M. A., Hussain and Ramachandran, K. B., The tudy of Neural Network-based Controller for Controlling Dissolved Oxygen Concentration in a equencing Batch Reactor, Bioprocess Biosyst Eng., 28(4), 251-265(2006). 7. Artan, N., Wilderer, P., Orhon, D., Tasli, R. and Morgenroth, E., Model Evaluation and Optimisation of Nutrient Removal Potential for equencing Batch Reactors, Water A., 28(4), 423-432(2002). 8. Demuynck, C., Vanrolleghem, P., Mingneau, C., Liessens, J. and Verstraete, W., NDBEPR Process Optimisation in BRs: Reduction of External Carbon ource and Oxygen upply, Wat. ci. Tech., 30(4), 169-179(1994). 9. Mikosz, J., Plaza, E. and Kurbiel, J., Use of Computer imulation for Cycle Length Adjustment in equencing Batch Reactor, Wat. ci. Tech., 43(3), 61-66(2001). 10. Anderson, J.., Kim, H. N., McAvoy, T. J. and Hao, O. J., Control of an Alternating Aerobic-anoxic Activated ludge ystem Part 1: Development of a Linearization-based Modeling Approach, Cont. Eng. Prac., 8(3), 217-278(2000). 11. Kim, H. N., McAvoy, T. J., Anderson, J.. and Hao, O. J., Control of an Alternating Aerobic-anoxic Activated ludge ystem Part 2: Optimization Using a Linearized Model, Cont. Eng. Prac., 8(3), 279-289(2000). 12. in, G., Insel., G., Lee, D.. and Vanrolleghem, P. A., Optimal But Robust N and P Removal in BRs: A Model-based ystematic tudy of Operation cenarios, Water ci. Technol., 50(10), 97-105(2004). 13. Buitron, G., choeb, M. E., Moreno-Andrade, I. and Moreno, J. A., Evaluation of two Control trategies for a equencing Batch Reactor Degrading High Concentration Peaks of 4-chloRophenol, Water Res., 39(6), 1015-1024(2005). 14. Moreno, J. A., Betancur, M. J. and Moreno-Andrade, I., Eventdriven Time-optimal Control for a Class of Discontinuous Bioreactors, Biotech. Bioeng., 94(4), 803-814(2006). 15. Olsson, G., Andrews, J. F., The Dissolved Oxygen Profile a Valuable Tool for Control of the Activated ludge Process, Water Res., 12(11), 986-1004(1987). 16. Corominas, L., in, G., Puig,., Traore, A., Balaguer, M., Colprim, J. and Vanrolleghem, P. A., Model-based Evaluation of an on-line Control trategy for BRs Based on OUR and ORP Measurements, Water ci. Technol., 53(4-5), 161-169(2006). 17. Coelho, M. A. Z., Russo, C. and Araujo, O. Q. F., Optimization of a equencing Batch Reactor for Biological Nitrogen Removal, Water Res., 34(10), 2809-2817(2000). 18. Olsson, G. and Newell, B., Wastewater Treatment ystems: Modeling, Diagnosis and Control, IWA publishing, UK(1999). 19. Luus, R., Optimal Control of Batch Reactors by Iterative Dynamic Programming, J. Proc. Cont., 4(4), 218-226(1994). 20. Luus, R. and Okongwu, O. N., Towards Practical Optimal Control of Batch Reactors, Chem. Eng. J., 8(1), 1-9(1999). 21. Luus, R., Iterative Dynamic Programming, Chapman & Hall/ CRC, UA(2000). 22. Kirk, D. E., Optimal Control Theory, Prentice-Hall Inc., New Jersey UA(1970). 23. Kim, Y. H., Yoo, C. K. and Lee, I., Determining the Optimal Trajectory for Nitrogen Removal in a equencing Batch Reactor, ubmitted to Wat. Res.,(2006). o45 o1 2007 2k