On transformations groups of N linear connections on the dual bundle of k tangent bundle

Σχετικά έγγραφα
Generalized Normal Type-2. Triangular Fuzzy Number

The one-dimensional periodic Schrödinger equation

The Neutrix Product of the Distributions r. x λ

2-REGULARITY AND 2-NORMALITY CONDITIONS FOR SYSTEMS WITH IMPULSIVE CONTROLS

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

On Quasi - f -Power Increasing Sequences

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Note: Please use the actual date you accessed this material in your citation.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Parts Manual. Trio Mobile Surgery Platform. Model 1033

On homeomorphisms and C 1 maps

Déformation et quantification par groupoïde des variétés toriques

Reflection Models. Reflection Models

Some Theorems on Multiple. A-Function Transform

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Example 1: THE ELECTRIC DIPOLE

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

Laplace s Equation in Spherical Polar Coördinates

! " #$% & '()()*+.,/0.

HONDA. Έτος κατασκευής

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Approximate System Reliability Evaluation

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach

RMTP Journal of Software. Vol.13, No /2002/13(08) , )

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Το άτομο του Υδρογόνου

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

Japanese Fuzzy String Matching in Cooking Recipes

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Latent variable models Variational approximations.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V4

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '

Supplementary material for: Efficient moment calculations for variance components in large unbalanced crossed random effects models

! ҽԗज़ϧљ!!ΐμΐԃ த ໒ ำ!! ǵ թ໒!! ΒǵЬ ठ໒!! Οǵ ٣!! Ѥǵ ᇡ٣!! ϖǵᖏਔ!! Ϥǵණ!!!!! 1 ~ 1 ~

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES

An Inventory of Continuous Distributions

Tutorial Note - Week 09 - Solution

". / / / !/!// /!!"/ /! / 1 "&

Matrices and Determinants

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

LAPLACE TRANSFORM TABLE

Solutions - Chapter 4

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Homework 8 Model Solution Section

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

Fourier Transform. Fourier Transform

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

5. Phương trình vi phân

ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V4

tel , version 1-7 Feb 2013

Lifting Entry (continued)

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

Lecture 12 Modulation and Sampling

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

LECTURE 4 : ARMA PROCESSES

Multi-dimensional Central Limit Theorem

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Multi-dimensional Central Limit Theorem

Transcript:

Sud Unv Babeş-Boya Mah 572012 o 1 121 133 On anfoaon goup of nea connecon on he dua bunde of k angen bunde Monca Pucau and Mea Tânoveanu bac In he peen pape we udy he anfoaon fo he coeffcen of an nea connecon on dua bunde of k angen bunde T k M by a anfoaon of a nonnea connecon on T k M We pove ha he e T of hee anfoaon ogehe wh he copoon of appng n a goup Bu we gve oe goup of anfoaon of T whch keep nvaan a pa of coponen of he oca coeffcen of an nea connecon Maheac Subec afcaon 2010: 53B05 Keywod: ua bunde of k angen bunde nonnea connecon -nea connecon anfoaon goup ubgoup 1 Inoducon The noon of Haon pace wa noduced by cad R Mon n [7] [8] The Haon pace appea a dua va Legende anfoaon of he Lagange pace The dffeena geoey of he dua bunde of k ocuao bunde wa noduced and uded by cad R Mon [13] The poance of Lagange and Haon geoee con n he fac ha he vaaona pobe fo poan Lagangan o Haonan have nueou appcaon n vaou fed a: Maheac Mecanc Theoeca Phyc Theoy of ynaca Sye Opa ono Boogy Econoy ec In he peen econ we keep he genea eng fo cad R Mon [13] and ubequeny we eca ony oe needed noon Fo oe dea ee [13] Le M be a ea n denona anfod and e T k M π k M k 2 k be he dua bunde of k ocuao bunde o k coangen bunde whee he oa pace : T k M T k 1 M T M 11

122 Monca Pucau and Mea Tânoveanu Le x y y k 1 p 1 n be he oca coodnae of a pon u x y y k 1 p T k M n a oca cha on T k M The change of coodnae on he anfod T k M : x x x 1 x n x de x 0 ỹ x x y 12 k 1 ỹ k 1 ỹk 2 x y k 1 ỹk 2 y k 1 y k 2 p x x p whee he foowng eaon hod: ỹ α x ỹα1 ỹk 1 y y α 0 k 2; y 0 x k 1 α 13 T k M a ea dffeena anfod of denon k 1 n Wh epec o 11 he naua ba of he veco pace T u T k M a he pon u T k M : { } x u y u y k 1 u p 14 u anfoed a foow: u x x x u x ỹ x u ỹk 1 ỹ x u ỹ u ỹk 1 u y y ỹ y ỹ k 1 u ỹk 1 u y k 1 y k 1 ỹ k 1 u p x u x p ỹ k 1 u p x p u 15 he condon 13 beng afed The nu econ 0 : M T k M of he poecon π k defned by 0 x M x 0 0 T k M We denoe T k M T k M \ {0} Le u conde he angen bunde of he dffeenabe anfod T k M T T k M dπ k T k M whee dπ k he canonca poecon and he veca dbuon { V : u T k } M V u T u T k M ocay geneaed by he veco fed: y y k 1 p a evey pon u T k M The foowng F T k M nea appng: defned by: J x y J y k 1 J J : χ T k M χ T k M y y k 1 J y 2 y k 2 0 J 0 16 p

On anfoaon goup of nea connecon 123 a evey pon u T k M a angen ucue on T k M We denoe wh a nonnea connecon on he anfod T k M wh he coeffcen: x y y k 1 p k 1 x y y k 1 p x y y k 1 p 1 2 n The angen pace of T k M n he pon u T k M gven by he dec u of veco pace: whee: T u T k M 0u 1u k 2u V k 1u W ku u T k M 17 oca adaped ba o he dec decopoon 17 gven by: { } x y y 1 2 n 18 k 1 p x x y y y y 2 y k 1 y k 1 p p k 1 y k 1 p k 2 y k 1 19 Unde a change of oca coodnae on T k M he veco fed of he adaped ba anfo by he ue: x x x whee: x x y x ỹ x y k 1 x ỹ x k 1 p x p 110 The dua ba of he adaped ba 18 gven by: {x y y k 1 p } 111 dx x dy y x dy k 1 y k 1 y k 2 y x k 2 k 1 dp p x Wh epec o 12 he coveco fed 111 ae anfoed by he ue: 112 x x x x ỹ x x y ỹ k 1 x x y k 1 p x x p 113

124 Monca Pucau and Mea Tânoveanu Le be an nea connecon on T k M wh he oca coeffcen n he adaped ba 18 : Γ H h h h α 1 k 1 114 α n nea connecon unquey epeened n he adaped ba n he foowng fo: x x x H p H p x y α y α p p p α x α x x x x p p y α y α H α 1 k 1 y α y β α y β p α β 1 k 1 p y α α 1 k 1 y α 115 2 The e of he anfoaon of nea connecon Le be anohe nonnea connecon on T k M wh he oca coeffcen x y y k 1 p x y y k 1 p x y y k 1 p k 1 1 2 n Then hee ex he unquey deened eno fed τ 1 1 T k M α 1 k 1 α and τ2 0 T k M uch ha: { α α 1 2 k 1 α α 1 2 n 21 onveey f α and α α 1 2 k 1 epecvey and ae gven hen α α 1 2 k 1 epecvey gven by 21 ae he coeffcen of a nonnea connecon Theoe 21 Le and be wo nonnea connecon on T k M k 2 k wh oca coeffcen: x y y k 1 p x y y k 1 p 1 2 n epecvey k 1 k 1 x y y k 1 p x y y k 1 p x y y k 1 p x y y k 1 p

On anfoaon goup of nea connecon 125 If an nea connecon on T k M wh oca coeffcen Γ H h h h α 1 k 1 α hen he anfoaon: gven by 21 of nonnea connecon pe fo he coeffcen Γ H h h h α 1 k 1 α of he nea connecon he eaon 22 ha he anfoaon: Γ Γ gven by: H H [ 2 k 2 k 1 3 k 3 k 3 2 2 3 k 2 k 2 k 1 k 2 k 3 k 1 k 1 k 1 k 3 k 1 [ 2 3 k 1 k 1 k 3 k 1 k 3 k 2 k 3 k 2 k 1 k 1 h 0 k 2 k 1 h 0 h 1 2 n [ k 1 k 1 ] whee denoe he h covaan devave wh epec o Γ k 2 k 1 22

126 Monca Pucau and Mea Tânoveanu Poof I foow f of a ha he anfoaon 21 peeve he coeffcen h h k 1 Ung he eaon 19 115 and 21 we oban: x x y y k 1 k 1 y y y 2 y k 1 y k 1 p p Ung 115 23 and 19 we ge: x y k 1 H y k 1 k 2 y k 1 H y k 1 p 23 x y k 1 x y 2 y 2 k 1 y k 1 y k 1 p H k 2 k 1 y k 1 y k 1 2 2 k 1 k 1 y k 1 y 2 2 y 3 y k 1 2 2 y 3 k 3 y k 1 y 4 k 4 y k 1 y k 1 y k 1 y k 1 y k 1 y 3 y 4 k 4 y k 1 k 3 k 1 H 2 2 y k 1 k 1 k 1 2 y k 1 2 3 y k 1 y k 1 y k 1 2 y 3 y 4 y k 1 y k 1 2 y k 1 y k 1 k 2 k 1 k 3 k 1 k 4 k 1

On anfoaon goup of nea connecon 127 y k 1 2 2 3 y k 1 2 y 4 So we have obaned 21 1 y y y k 1 y k 1 2 y k 1 y k 1 y 2 2 3 k 3 k 1 k 4 k 1 y k 1 y 2 2 y 3 k 2 y k 1 y 3 y k 1 2 y 4 y k 1 2 So we have obaned 22 2 y k 2 y k 2 y k 1 k 2 y k 1 k 2 k 2 k 1 y k 1 y k 1 y k 1 y k 1 k 3 k 1 y k 1 k 4 k 1 y k 1 k 2 y k 1 k 1 y k 1 y k 1 y k 1 p y k 1 y k 1 ; y k 1 p So we have obaned 22 k 1 p y k 2 p y k 1 p y k 2 y k 2 y k 2 y k 2 y k 1 ; y k 1 y k 2 y k 1 y k 1 p y k 2 p y k 1 y k 1 So we have: 24

128 Monca Pucau and Mea Tânoveanu naogou f we cacuae p 25 y y k 2 k 1 n wo anne we oban: k 1 k 1 26 We have: k 1 y k 1 27 k 1 α k α x k H k α α H k α 1 2 k 1 28 Ung 28 27 26 25 24 22 k 1 22 2 n he eaon obaned anaogou h fo x y we oban: 0 In he ae anne we ge h 0 Theoe 22 Le and be wo nonnea connecon on T k M k 2 k wh oca coeffcen x y y k 1 p x y y k 1 p 1 2 n epecvey If k 1 k 1 Γ x y y k 1 p x y y k 1 p x y y k 1 p x y y k 1 p H h h h α and Γ H h h h α α 1 k 1 ae he oca coeffcen of wo epecvey -nea connecon epecvey on he dffeenabe anfod T k M k 2 k hen hee ex ony one ye of eno fed B h h h h k 1 k 1

On anfoaon goup of nea connecon 129 uch ha: α 1 k 1 α α α H H [ 2 k 3 k 3 2 2 3 k 2 wh: k 2 k 2 k 1 k 2 k 3 k 1 k 1 k 3 k 1 [ 2 3 k 1 k 3 k 1 [ k 3 k 2 k 2 k 2 k 2 k 1 k 2 k 1 k 1 k 1 { h 0 k 1 3 k 1 k 1 B k 1 k 3 h 0 h 1 2 n k 1 k 1 ] 29 210 whee denoe he h covaan devave wh epec o Γ Poof The f equay 29 deene unquey he eno fed: α 1 k 1 The econd equay 29 deene unquey he eno fed α Snce h α 1 k 1 and h ae d eno fed he hd equaon α 29 deene unquey he eno fed B h Say he fouh and he a equaon 29 deene he eno fed h epecvey We have edaey:

130 Monca Pucau and Mea Tânoveanu Theoe 23 If Γ H h h h α 1 k 1 ae he oca coeffcen of an nea connecon on T k M and α B h h h h k 1 k 1 a ye of eno fed on T k M hen Γ H h h h α α 1 k 1 gven by 29 210 ae he oca coeffcen of an nea connecon on T k M k 2 k Foowng he defnon gven by M Mauoo [4 5] n he cae of Fne pace we have: efnon 21 The ye of eno fed: B h h h h k 2 k k 1 k 1 caed he dffeence eno fed of Γ o Γ The appng: Γ Γ gven by 29 210 caed a anfoaon of nea connecon o nea connecon on T k M and noed by: B h h h h k 1 k 1 Theoe 24 The e T of he anfoaon of nea connecon o nea connecon on T k M k 2 k ogehe wh he copoon of appng n a goup Poof Le and Ā B h h h h k 1 k 1 Ā k 1 Ā B h h k 1 h h be wo anfoaon fo T gven by 29 210 Fo 29 we have: Ā α 1 k 1 α α α We oban fo exape: h k 2 h k 2 α h Ā h k 1 k 2 : Γ Γ : Γ Γ h h k 2 Ā h k 1 So k 2 h han he fo 29 I foow ha he copoon of wo anfoaon fo T n a anfoaon fo T ha T ogehe wh he copoon of appng n a goup

On anfoaon goup of nea connecon 131 Reak 21 If we conde 0 α 1 k 1 and 0 n 210 we α oban he e T of anfoaon of nea connecon coepondng o he ae nonnea connecon : T 0 0 B h h h h T k 1 k We have: Theoe 25 The e T of he anfoaon of nea connecon o nea connecon on T k M k 2 k ogehe wh he copoon of appng a goup Th goup ac effecvey and anvey on he e of nea connecon Poof Le 0 0 B h h h h : Γ Γ be a anfoaon fo T gven by 211 : k 1 k α 1 k 1 α α H h H h B h h h h α 1 k 1 α α α h h h h 1 2 n 211 The copoon of wo anfoaon fo T a anfoaon fo T gven by: 0 0 B h h k h h k 1 0 0 B h B h h h k 0 0 B h h h h k 1 k h k 1 k 1 h h h The nvee of a anfoaon fo T he foowng anfoaon fo T : 0 0 0 B h h h h : Γ Γ k 1 The anfoaon 211 peeve a nea connecon f: B h h h h 0 h 1 2 n k 1 Theefoe T ac effecvey on he e of nea connecon Fo he Theoe 22 eu ha T ac anvey on h e

132 Monca Pucau and Mea Tânoveanu Le u conde: T H h 0 0 h h T k 1 k1 T 0 0 B h h 0 h h T 2 k 1 k T k 1 0 0 B h h h h 0 T k 2 k T 0 0 B h h h 0 T k 1 T k 1 k 0 0 B h 0 0 T k k k 2 k Popoon 21 The e:t H T T T T ae bean ubgoup of T k 1 k 1 Popoon 22 The goup T peeve he nonnea connecon T H peeve he nonnea connecon and he coponen H h of he oca coeffcen Γ ; T peeve he nonnea connecon and he coponen h of he oca coeffcen Γ T coponen k 1 peeve he nonnea connecon and he h of he oca coeffcen Γ T peeve he nonnea con- k 1 necon and he coponen h of he oca coeffcen Γ and T k 1 peeve he nonnea connecon and he coponen h h h of k 1 he oca coeffcen Γ Refeence [1] anau Gh Tânoveanu M ew pec n he ffeena Geoey of he econd ode oangen Bunde Unv de Ve dn Tşoaa 902005 1-65 [2] anau Gh The nvaan expeon of Haon geoey Teno S Japona 471988 23-32 [3] Ianuş Ş On dffeena geoey of he dua of a veco bunde The Poc of he Ffh aona Se of Fne and Lagange Space Unv Başov 1988 173-180

On anfoaon goup of nea connecon 133 [4] Mauoo M The Theoy of Fne onnecon Pub of he Sudy Goup of Geoey 5 ep Mah Okayaa Unv 1970 XV 220 pp [5] Mauoo M Foundaon of Fne Geoey and Speca Fne Space Kaeha Pe Ou 1986 [6] Mon R Haon Geoey Senau de Mecancă Unv Tşoaa 31987 [7] Mon R Su a géoée de epace Haon R cad Sc Pa Se II 3061988 no 4 195-198 [8] Mon R Haon Geoey naee Ş Unv Iaş S-I Ma 351989 35-85 [9] Mon R Ianuş S naae M The Geoey of he dua of a Veco Bunde Pub In Mah 46601989 145-162 [10] Mon R On he Geoeca Theoy of Hghe-Ode Haon Space Sep n ffeena Geoey Poceedng of he ooquu on ffeena Geoey 25-30 Juy 2000 ebecen Hungay 231-236 [11] Mon R Haon pace of ode k gae han o equa o 1 In Jouna of Theoeca Phy 3992000 2327-2336 [12] Mon R Huc Shada H Sabău VS The geoey of Lagange Space Kuwe cadec Pubhe FTPH 118 2001 [13] Mon R The Geoey of Hghe-Ode Haon Space ppcaon o Haonan Mechanc Kuwe cad Pub FTPH 2003 [14] Saunde J The Geoey of Je Bunde abde Unv Pe 1989 [15] Udşe Şandu O ua onnea onnecon Poc of 22 nd onfeence ffeena Geoey and Topoogy Poyechnc Inue of Buchae Roana 1991 [16] Yano K Ihhaa S Tangen and oangen Bunde ffeena Geoey M ekke Inc ew-yok 1973 Monca Pucau epaen of Maheac and Infoac Tanvana Unvey of Başov Roâna Mea Tânoveanu epaen of Maheac and Infoac Tanvana Unvey of Başov Roâna