ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

Σχετικά έγγραφα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

: :

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

Β ΓΥΜΝΑΣΙΟΥ. + και. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

x , οπότε : Α = = 2.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

Θέματα μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

Θαλής Α' Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου. Α= 2 1 : και :

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Α= = Επομένως έχουμε:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

Μαθηματικές Συναντήσεις

Ευκλείδης Β' Γυμνασίου Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.

ΘΕΜΑ 1 ο Ποιος από τους παρακάτω αριθμούς έχει ακριβώς 33 εκατοντάδες και 24 μονάδες; (Κυκλώνω το σωστό)

B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

: :

α. 9 β. 12 γ. 18 δ. 21 Ονοματεπώνυμο:. Βαθμός ημοτικό Σχολείο... Τάξη/Τμήμα

Μαθηματικά προσανατολισμού Β Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY

Ορισμένες σελίδες του βιβλίου

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017

1 2. Το Ε. Βαθμός. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Λύση. Απάντηση: ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο. Να βάλεις. στη σειρά. ΘΕΜΑ 5 ο. Στ ΤΑΞΗ -1- MATHEMATICAL SOCIETY

ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens - HELLAS Tel 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr ΕΠΙΤΡΟΠΗ ΙΑΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΗΣ" ΣΑΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007 ΕΝΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Οι λύσεις είναι ενδεικτικές και όχι μοναδικές Οποιαδήποτε μαθηματικώς σωστή λύση είναι αποδεκτή ανεξάρτητα από τα χρησιμοποιούμενα εργαλεία, πχ η Αναλυτική εωμετρία και ο Απειροστικός Λογισμός μπορούν να χρησιμοποιηθούν από μαθητές οποιασδήποτε τάξης ΥΜΝΑΣΙΟΥ 4 με ν ν + 4 = {,,,6,7,4,,4} ν + Επειδή ο ν + είναι περιττός έπεται ότι: ν + = ή ν + = ή ν + = 7 ή ν + = ν = 0 ή ν = ή ν = ή ν = 0 Αν θέσουμε ΑΟ = ω, τότε από την υπόθεση του προβλήματος έχουμε: 4ω+ 90 + ω = 80 5ω = 90 ω = 8 Ο Ε Α Από τις υποθέσεις έχουμε α + β α β α + β α β α + β α β α + β α β + = + = γ + δ γ δ γ δ γ + δ γ + δ γ + δ γ δ γ δ β β = β( γ δ γ δ) = 0 γ + δ γ δ βδ = 0 βδ = 0 β = 0 ή δ = 0 4 Έχουμε ότι

Ν= xyzxyz = 00000x + 0000y + 000z + 00x + 0y + z = 0000x+ 000y+ 00z ( x y z) = 00 00 + 0 + = 7 xyz Άρα οι αριθμοί 7, και διαιρούν τον αριθμό Ν Έχουμε ΥΜΝΑΣΙΟΥ ( ) 90 4 90 90 Α= 5 7 = 0 4 8 49 = 5876 0 Άρα ο Α λήγει σε 90 μηδενικά και το τελευταίο μη μηδενικό ψηφίο του είναι το 6 Έχουμε x y 6 4x = = 4x= y και xz = 8 y = και xz = 8 4 z Επειδή οι αριθμοί x, z είναι φυσικοί έχουμε xz = 8 ( x, z) = (,8) ή (,9) ή (, 6) ή ( 6,) ή ( 9, ) ή ( 8,), 4x οπότε, από την ισότητα y = προκύπτει ότι : xyz,, =, 4,6 ή 6,8, ή 9,, ή 8, 4, ( ) ( ) ( ) ( ) ( ) Έχουμε 6 Α = ΑΜ + ΑΜ = 6 ΜΚ + 6 ΜΚ 4 ( ) ( ) ( ) ΜΚ + ΜΛ = () A K Λ K M Λ Από τα ορθογώνια τρίγωνα ΚΚ Μ και ΛΛ Μ γεωμετρικά ή τριγωνομετρικά έχουμε KK = MK, ΛΛ = ΜΛ και ΜΚ = ΜΚ, ΜΛ = ΜΛ 9 Οπότε ΚΛ = ΜΚ + ΜΛ = ( ΜΚ + ΜΛ ) =

ΚΚ + ΛΛ = + Λ = = 7 ΚΚΛΛ = ΚΚ + ΛΛ ΚΛ = 8 και ( MK M ) Άρα είναι ( ) ( ) 4 Αν υποθέσουμε ότι όλοι οι μαθητές έχουν διαφορετικό αριθμό τετραδίων, τότε ο ελάχιστος αριθμός τετραδίων που μπορούν να έχουν όλοι μαζί είναι + + + 5 = 0 > 5 Άρα δεν είναι δυνατόν να έχουν όλοι οι μαθητές διαφορετικό αριθμό τετραδίων, οπότε δύο τουλάχιστον θα έχουν τον ίδιο αριθμό τετραδίων Α ΛΥΚΕΙΟΥ (i) Λαμβάνοντας υπόψη τις ανισότητες α < β < γ < δ < ε εύκολα βρίσκουμε ότι Κ= γ, οπότε β <Κ< δ (ii) Έχουμε x y = ( α + β)( γ + δ) ( α + γ)( β + δ) = αγ + βδ αβ γδ = α( γ β) + δ ( β γ) = ( γ β)( α δ) < 0 Άρα είναι x y < 0 δηλαδή x < y Ομοίως λαμβάνουμε y z = ( δ γ)( α β) < 0 Επειδή είναι Μ = Μ, το τρίγωνο Μ είναι ισοσκελές με Μ = Μ () Επιπλέον, τα τρίγωνα ΜΑ και ΜΑΕ είναι ίσα γιατί έχουν: ΑΜ κοινή πλευρά, Α = ΑΕ, ΜΑ = ΜΑΕ Άρα θα έχουν και ΑΜ = ΑΜΕ () Λόγω των () και () τα τρίγωνα ΜΑ και ΜΑ είναι ίσα, οπότε θα έχουν και Α =Α, δηλαδή το τρίγωνο Α είναι ισοσκελές Μ Α Ε Επειδή είναι xy>, 0 έχουμε 4 x + y 64 x < 64 και y < 64 x< 4 και y< 8 x < 4x και y < 8y, από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε 4 x + y < 4x + 8y < 8 x + y 8 64 = 5 ( ) 4 Αν υποθέσουμε ότι παίρνουμε x κέρματα του ενός ευρώ, y χαρτονομίσματα των 0 ευρώ και z χαρτονομίσματα των 00 ευρώ, τότε θα έχουμε τις ισότητες x+ 0y+ 00z = 50000 και x+ y+ z = 000, () από τις οποίες με αφαίρεση κατά μέλη λαμβάνουμε:

( ) 9y+ 99z = 49000 9 y+ z = 49000 9 49000, που είναι άτοπο, γιατί το άθροισμα των ψηφίων του 49000 είναι ο αριθμός που δεν διαιρείται με το 9 ΛΥΚΕΙΟΥ Από την υπόθεση έχουμε ότι: Ρ x = x x x x x x () ( ) ( )( )( ) Η παράσταση Κ γράφεται: Κ x, x, x = x + x x + x x + x ( ) ( )( )( )( )( )( ) = ( x)( x)( x)( + x)( + x)( + x) =Ρ() ( x )( x )( x ) () ( ) ( )( ) ( ) = Ρ Ρ = + κ + λ κ + λ = + κ λ Κ Α Ε Ο Α ος Τρόπος Έχουμε: = Α = R R = 4R = R = O Επειδή επιπλέον Ο ˆ = 90 ο, αρκεί να αποδείξουμε ότι Ο ΑΚ ή ισοδύναμα αρκεί να αποδείξουμε ότι: O ˆ = ΑΚ ˆ Πράγματι αν Ε είναι το αντιδιαμετρικό σημείο του Α ως προς τον κύκλο Ο, τότε: OB E Ε ΟΕ ΟΕ εγγεγραμμένο τετράπλευρο Ε ˆ = ΟΑ ˆ Ο ˆ = ΑΚ ˆ Ο=ΑΚ ˆ ˆ ος Τρόπος

Έστω Ε το αντιδιαμετρικό σημείο του Α ως προς τον κύκλο κέντρου Ο Από το εγγεγραμμένο τετράπλευρο ΑΕ έπεται ότι ΚΑ = ΑΕ = 45, οπότε και το τρίγωνο ΑΚ είναι ορθογώνιο ισοσκελές Άρα είναι Α ΚΑ = Κ = () Επιπλέον, αν είναι ΑΑ, και ΟΑ= R, τότε με χρήση του τύπου της απόστασης σημείου κύκλου από εφαπτομένη του, λαμβάνουμε Α Α R ΑΑ Α = = = = () R Α Από τη () έπεται ότι =, οπότε από την () έπεται ότι = Κ = ΚΑ και Κ = Κ + = ΚΑ Από την ανισότητα αριθμητικού γεωμετρικού μέσου έχουμε α φορές β φορές 4 4 α + β α + α + + α + β + β + β = = α + β α + β από την οποία έπεται το ζητούμενο α β α β ( α ) ( β ) ( α β ) α+ β α+ β, 4 Έστω ότι είναι Μ= κ και Μ = λ, οπότε θα είναι κ + λ = α Τότε θα έχουμε x β κ = α και y γ βκ γλ = x = και y = Α λ α α α Άρα η παράσταση S γίνεται Λ β κ γ λ S = x + y = + () α α Κ βκ + γ ( α κ) S = α β + γ γ = + = κ κ γ f ( κ) α α Μ Άρα η παράσταση S είναι τριώνυμο ως προς κ με συντελεστή του κ τον γ β + γ αγ > 0, οπότε η παράσταση έχει ελάχιστο για κ = α = α ( β + γ ) β + γ α αβ Τότε είναι λ = α κ =, οπότε το σημείο Μ στο οπο0ίο λαμβάνεται το β + γ Μ γ ελάχιστο της παράστασης S χωρίζει την πλευρά σε λόγο = Μ β Η τιμή του ελάχιστου είναι

αγ = f β + γ + + γ = β γ αγ γ αγ β γ α β + γ α β + γ β + γ ος τρόπος Μέσω της σχέσης () θα μπορούσαμε να προχωρήσουμε ως εξής: α α β κ γ λ α α β γ S + = + + ( κ + λ) = α S β γ α α β β β + γ οπότε έχουμε: βγ Smin = β +γ Η ισότητα ισχύει όταν σε λόγο γ β ΛΥΚΕΙΟΥ βκ γλ α κ γ = α ή = α α λ β β γ, δηλαδή όταν το σημείο Μ χωρίζει τη x y 50 =, 50 = x y x y 50 ( y) 50 ( y) y x y x y y ( ) ( y ) A = = = 50 = 50 50 x y x y ( ) ( y ) 50 50 50 50 50 y x y = 50 = 50 = 50 = = = x+ y x y 50 = = 5 = 5 ος τρόπος 50 log50 x y 6 log50a = = log50 50 = log50 50 = log50 5 = log50 5 ( y) 50 log50 Άρα Α=5 Από την υπόθεση έχουμε ότι: Ρ x = x x x x x x () ( ) ( )( )( ) Η παράσταση Κ γράφεται: Κ x, x, x = i x i x i x i x i x i x ( ) ( )( )( )( )( )( ) = ( i x )( i x )( i x )( i x )( i x )( i x ) () ( ) ( i κi λ)( i κi λ) λ ( κ ) =Ρ Ρ = + + + = +

Η συνάρτηση h( x) Άρα ( ) ( ) ( ) x + = είναι γνησίως αύξουσα, άρα αντιστρέφεται και x, x h ( x) = x, x < h x = h x με x Αφού f γνησίως αύξουσα, τα κοινά σημεία των G, G h h θα βρίσκονται στη πρώτη διχοτόμο y=x x + x + y= h( x) y= x = Έχουμε: y= x y= x y= x + x x + = 0 x,, x, y x αφού x = y= x y= x Άρα ( ) x, ος τρόπος x + x + () y= h( x) y h y ( x = ) y = = y= h ( x) x = h( y) y + x = x y= ( y x ) () x yx y 0 4 x = y αφού η 4 έχει ( ) x = y ή ( ) = y + 4 < 0, y κλπ + + + = ( ) ( ) 4 Θεωρούμε τον περιγεγραμένο κύκλο C ( ) C (,R) K,R του AB και τον συμμετρικό του Λ ως προς τη Τότε το Λ θα είναι μέσο του μικρού τόξου Έστω Α το αντιδιαμετρικό του Α στον C και Α το αντιδιαμετρικό του Κ στον C Το τρίγωνο Α είναι ισόπλευρο οπότε IΑ = IB + I Επίσης BI ˆ=Κ= ˆ 0 ο Επομένως IA + IB + I=ΙΑ+ΙΑ Αλλά IA ΚΑ = R (R η ακτίνα του περιγεγραμμένου κύκλου) και IA = AΛ R < A Λ R = KA = R Άρα IA + IB + I R = =, αφού = R = =

A A K Ι Λ Α ος τρόπος Έστω ΙΑ=x, IB=y, I=ω Â o Τότε 0 x = = ρ ο ( ) ( ) BI ˆ= 0 y +ω + yω= 4 y +ω yω= 4 y +ω = 4 + yω y+ω= 4+ yω= 4+λ με λ=yω Εξάλλου ( IB ) = ρ =ρ λ λ ( IB ) = yω =, οπότε ρ= 4 4 λ Αρκεί λοιπόν + 4+λ, ή λ + 4+λ 4 8 8 Όμως R = R = και R 8 4 >ρ > 4 > λ >λ > >λ Οπότε αρκεί 4 ( 4 ) που ισχύει αφού = 88 + λ λ, ή 4( 4 ) ( 4 ) A + λ λ, ή λ 8λ+ 0 0 x ρ y I 0 ω