SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIA- TURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

p din,j = p tot,j p stat = ρ 2 v2 j,

v w = v = pr w v = v cos(v,w) = v w

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2 SFI

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Delta Inconel 718 δ» ¼

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

S i L L I OUT. i IN =i S. i C. i D + V V OUT

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

tan(2α) = 2tanα 1 tan 2 α

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Blowup of regular solutions for radial relativistic Euler equations with damping

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

arxiv: v1 [math.dg] 3 Sep 2007

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Προσομοίωση Δημιουργία τυχαίων αριθμών

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Ανώτερα Μαθηματικά ΙI

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

PACS: Pj, Gg

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Transcript:

Ö 45 Ö 4 Vol.45 No.4 29 4 Ö 422 427 ACTA METALLURGICA SINICA Apr. 29 pp.422 427 ½ È Ê² Ï Õ Ð Ô Ó ÖÒÑ ( ÐÀ, Û 5164) Éر ¾ (d=2 575 µm) Î (l=75 525 µm) ³ É» Ë Ð Ð. Á «, ÉØÐ «d/l ÉØ Ð Ð Ý ½ ¼Ù ; d/l Ç ÉØÕ Ð Î Ü Ð, ½ ± Orowan µ ÔÐ ¾ Á, l Þ Ç d ÓÁÎ Ð Ï. ÁÑ «, Ð ÑÛÄ Ñ,»ÉØË ÉØ Ù (d 2 l) Ð Å Æ, ß Ad 2 l +B, ÉØÐ ÉØ ÙÐ Ì Ç, ÌÖ ÉØ Ð Ù Ï. ¾ Ü«, ÉØ, Ï, Ë, ƹ¼ TG113 ËÍ Â A Ë 412 1961(29)4 422 6 SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIA- TURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING YIN Limeng, YANG Yan, LIU Liangqi, ZHANG Xinping School of Materials Science and Engineering, South China University of Technology, Guangzhou 5164 Correspondent: ZHANG Xinping, professor; Tel: (2)22236396, E-mail: mexzhang@scut.edu.cn Supported by New Century Excellent Talents in University (NCET 4 824) Manuscript received 28 4 25, in revised form 28 11 14 ABSTRACT Mechanical behaviors of miniature solder joint interconnections with different scale matches, diameter (d) in the range of 2 575 µm and length (l) of 75 525 µm, were investigated by using quasi static micro tensile testing. The results show that the joint geometry scaling factor (d/l) plays an important role in influencing the mechanical constraint level and tensile strength of the solder joints. However, with increasing d/l, the tensile strength of the joints does not always increase and not always exhibit a similar trend to that predicted by Orowan approximation equation, but there is an inverse size effect on the solder joint strength. For both lead free and lead containing solders, the correlation between the tensile strength and volume of the solder joints largely follows inverse proportion function equation, i.e., Ad 2 l + B, where tensile strength of the solder joints increases obviously with the decrease of the solder joint volume and there is a so called solder joint volume effect, that is, the smaller the solder joint volume, the higher the solder joint strength. KEY WORDS electronic packaging, miniature solder joint interconnection, size effect, tensile strength, constraint effect Ý ³² Ó Ï «É, Ý É Đ ¹Đ ÈÅ Ï Đ, Ð ÊÙÑ Þ ÅÍÑ Æ ÓÓ ÄÒ ÙÏÁ Ù [1 3]. º Ý Á ÙÊ Ê ÄĐÐÏ Á ƳƵ Õ Ñ ĐÊÙÑØ ÏÙ Ò Ò (bulk solder material) Ͳ¹; Ø» ÊÙ ÅÂÏÑØ * ÑÙ ÛŹ Đ NCET 4 824 ȹ : 28 4 25, Ú È¹ : 28 11 14 Ï«:,, 1976, Ø ÏÙ Ñ µ. ÒÖ µ ÍÃ, ¼ ½². ½ Â, ÒÙ ß ĐϻŠ( ) 2 º [4]. ½ [5],» Íà µ, Ý ¾ Ö ÊÙÑ Ú 1 12 m 3 ( Ð Ï Đ 11 µm ÑÊÙ) Ð, à ÒÕ Ñ µå µ ÊÙÐ ²ÁÁ. Sn Ag Cu ÒÏ ÊÙÑ Ñ Ñ Ù Í²¹ [6]. Ò½ [7 11] Ë ÊƳƵÃÖ Ò Ú ÏÐ ÐÅ Ó Sn Pb Ï Sn Ag Cu Ò

Ö 4 Ò : ÛÅ È Ö Î ³ 423 Cu, Ni Ó²¹ ÒÑ ÆµÞ¼ ÐÑ µ. É, Sn Ag Cu Ò ³Í Ñ, µ, ²¹ÐŠѵ Å ² ¹ [12]. À À Ý Ñ Æ, À Ò ( Πż Sn Pb ÒÑßÙÀ Sn Ag Cu Æ Ò) Þ¼ ÊÙ Ø Ñ Í. º ¼Ü à ŠÒÏÀ Ò ÊÙÑÒ Ø Ï»ØÙ Ø Ð, º ÑÐÅ ÑÊ Ù,  ¼ Ñ Ç. Ë ½Ñ, º ÑÆ ÊÙÑ 3 µm ¾ (ÊÙ Đ 44 µm) [13], Å Ñ ÑÊÙ 2 µm, à 1 µm Ê. º Æ ÊÙÐÅ, Sn Ag Cu À ÒÏ Sn Pb ÒÊÙ ( 2 µm) ÞÊÙ Đ ( 75 µm) Ð Ñ Ø ÏÙ Ø, º ÒÞÅ ÞÊÙ ÏÙ Ó». 1 À À º 1.1 Á Ñ Ö Ò : Sn (ÇĐ 99.5%) Pb (99.5%) Ag (99.95%) ÏÀ Cu Æ (99.95%). Sn 37Pb(Ó Å, %, ʹ) Ï Sn 3.Ag.5Cu Ò ÑÒ Ã 15 W È Ë ÚÖ Ø. ÒË ÃÖ º LiCl Ï KCl ËÊ ³ Ò. Ë ĐÄÒà 4 ¾, Ú˹ 3 Ê Ò. Netzsch STA49 Ä Â Sn 37Pb ÒÑË Đ 184 188, Sn 3.Ag.5Cu Ò ÑË Đ 218 221. 1.2 É µã Ñ º Ñ»± / Ò/»± Ô Æ ÊÙÐÅ [14]. º ÑÀ»± 225, 3, 425, 5 Ï µm. Ê, È «2 ½ Ê»ÆÑ µ, À ÆÞ Ì»Æ Ï Ê Ò ( ) Ä, º ß 1.5 kw Ñ Ä Ï ß Ñ Đ V Ó ¼Ñ Ü ÃÆ ÁÙÊ ÊÒ Æ ÊÙ. º ¹ Sn 37Pb ÒÑ Đ, ź ± 5% ZnCl 2 Ñ ¹ À Ò Sn 3.Ag.5Cu ÊÐÑ Đ. Ê ĐÄÒà ÒË Đ 2 3 Ñ, ÒË ² 2»ÆÅÇ 1 2 s Ï ß. ÊËÑÆ ÊÙų¹È µ Ñ 2, 275, 4, 475 Ï 575 µm, ÊÙ Đ 75, 125, 15, 175, 225, 325, 425 Ï 525 µm. 1 ÊÙ Ï Đ 2 Ï 225 µm ÑÆ ÊÙÑ Åݽ (SEM) β. Ü ÑÜ, Ñ ÊÙ «Õ ( ÊÙ Öŵ ), Ö ½ º Ñ ÊÙ [13] ;,» Ý Æ¼Öв Ç 1 º / Ñ/º ÉØÐ SEM ͱ Fig.1 SEM image of Cu line/solder/cu line structured solder joint (diameter: 2 µm, length: 225 µm) ¾ ²«ÝÛ ÒÅÑÄ ÌÆŲ¹, м Đ Ð Ä Æ¼ ÑÄ, ¼ÖÊÙ µ, Å ¾ ² Þ ² Р̵. Öß ÝÆ Ê٠̵ Ñ Ç. º Æ ÊÙÐŽÎʹÙ: (1) Æ ÊÙ É 2 º³ Å Á (IMC), ÑÊÙ; (2) ų Ò Ò; (3) Á ñ» Æ Ï»ÆÅÑ ÊÅÇ ( ÊÙ Đ), ÒÊÙ Ñ Ñ ; (4) ÃÌ Ñ Ð, ÊÙ ÐÅ Ø À. 2 À»Ì Ì Ñ Ã ¹ĐÑ Â DMA(Q, TA Instruments) Ø, ¾ Ñ À Ì ¹ Đ.1 N, Ñ Đ 35, ÀÆÕ ÀÌÄÒ, ß 1 N/min. 2 Sn 3.Ag.5Cu Ï Sn 37Pb ÒÒ Ñ²¹ ÊÙѵ Ì ĐÑ Â. 2.1 ÎÅ Å µ³ 3a 2 µm, ÊÙ Đ Ð Sn 37Pb ÒÊÙÐÅÑÌ µ µ, 3b Sn 3.Ag.5Cu Ï Sn 37Pb ÒÊÙÐÅÑÌ Õ Đ ÊÙ Đ Ñ Â. 3b ÖҼ ÊÙ 2 µm Ð, Å Orowan Õ ÑÊÙÌ Õ Đ, ¼Ö Sn 37Pb Ï Sn 3.Ag.5Cu ÒÑ Ì Õ Đ 35.4 Ï 45 MPa [15,16]. Orowan Õ [5,17,18] ÎÊ : ( σ F Joint = σ UTS Solder 1 + d ) 6l (1) ÕÖ, σ F Joint ¾Ñ Õ Đ, σ UTS Solder Ò ÑÛ Ì Đ, d ÊÙ, l ÊÙ Đ.»Õ (1) Á, ÊÙ Đ d/l È Ð, ÊÙ Đ σ F Joint È. Ë 2 Ï 3 Á Â, ½ÑÊÙ, ² ÅÞ Æ ÊÙ ĐÐ, ÊÙ Õ Đ Í, Å Õµ Ʋ Æ, Þ Orowan ÕÑ Â Ð. ÊÙ ĐÆ Ð¼ Ñß

424 ± ß Ö 45 12 9 3 4 2 Joint diameter, m 2 275 4 475 75 125 175 225 325 425 525 Joint diameter, m 2 275 12515 175 225 325 425 Ç 2 ± ÏÉØÐ Ë ³ Fig.2 Distributions of the average tensile strengths of Sn 3.Ag.5Cu and Sn 37Pb solder joints with different sizes Ü ¾ Ò µ ÝĐÑ, Ò Õ È ; ÊÙÑ Õµ, ¾Ñ ÌÙÈ. 2 Ï 3 ÖÑ ÑÊÙÌ Đ ĐÕ Â ÒÑ Đ, ÍÃ, Ñ ÖÊ ÙÑÑ Ì Đ ÍÔ. É, à ÊÙ Đ² Ñ ÇÊ, ΠÄÒÊÙ Ñ Á ( É IMC Đ), ÆÁ ÊÙÑ Đ ÒÑ Đ. 2.2 ÎÅ Å µ³ 4a Sn 37Pb ÒÊÙ Đ ß 225 µm, Å ÐÐÅÑÌ µ µ, 4b Sn 3.Ag.5Cu Ï Sn 37Pb ÒÊÙÐÅ ÑÌ Đ ÊÙ Ñ Â Þ» Orowan Õ Ñ Â.» 2 4 Á, ÊÙ Đ² ÅÆ ¼ Ð, ÊÙÑÌ Õ ĐÞ, Õµ ² È, Orowan Õ ÑÚ Æ. Ë Orowan ÕÑ ÆÓÏÁ, Ü Ò Ñ Đ ; ÊÙ Đ² Å Æ Ð, ÊÙÖÔ Đ Ò Ñ µ Ô, Ò ÑĐ Ô, ÅÊÙÑ Đ Ô, Orowan ÕÑ Â. Ü, ÑÑ Å, ÊÙ Đ ßÅ Æ Ð, ¼ Õ ĐÍÐ. Þ Ñ Â, Ü Stress, MPa 4 2 125 175 225 Stress, MPa 4 2 Joint diameter, m 275 45 475..1.2.3.4.5 Strain, % 12 9 Sn-3.Ag-.5Cu (Exp.) Sn-37Pb (Exp.) Sn-3.Ag-.5Cu (Orowan Eq.) Sn-37Pb (Orowan Eq.)..1.2.3.4.5.6 Strain, % 1 9 Sn-3.Ag-.5Cu(Exp.) Sn-37Pb (Exp.) Sn-3.Ag-.5Cu(Orowan Eq.) Sn-37Pb(Orowan Eq.) 7 5 3 1 2 3 4 Ç 3 ± ÉØÐ ÝË ÉØ ÐÅ Fig.3 Stress strain curves of Sn 37Pb solder joints and tensile strength vs solder length for 2 µm diameter joints 4 2 4 Diameter, m Ç 4 ± ¾ÉØÐ ÝË ÉØ ¾ ÐÅ Fig.4 Stress strain curves of Sn 37Pb solder joints and tensile strength vs joint diameter for joints with 225 µm solder length

Ö 4 Ò : ÛÅ È Ö Î ³ 425 ˲¹ ĐÊÙ Ì ÀÌÑ µ µ ÏÍ Ó Ø Ï. Ë, ½Ñ ų ( Ø ¹ÊÙÑųŠ5 2 º) Ñ Å Ø Ï¼ «Ï, ÊÙÐÅ ²¹ (l ßÅ d Ð) Ð Õ ÂÏ Ñ²¹. Sn 37Pb ÒÊÙ, Đ d/l < 1.2 Ð, ÐÅÑ Õµ µ ÂÏÃÊÙÖµ; d/l=1.2 Ð, Õà ÂÏÑ²ß 5%; Å d/l > 1.2 Ð, ÕÆ µ ÑÖ 45 Đ ( ½Ó Õ ÂÏà ½ Ñ ÇÊ«). ¼ Â, Sn 3.Ag.5Cu ÒÊÙ, d/l >2.1 2.7 Ð, µ ÊÙ Ï Õ, ÊÙ ÕÂÏ Ã ÑÖ d/l, Á ¾ÖÊ Á ÑÅ ½. ¼Ê, ÊÙ Đ 225 µm ÑÐÅ ØÖ À Ñ, «ÐÅ À µã Ù À; Ã, Ö ÀÑÐÅ Ì ÑÐÅà Åݽ (JEOL, JSM 52) Ê Ø Â, ÂÎ 5. Á Â, ²¹ ÑÊÙ Ï À²¹Ñ ÕÆÕ. (2 µm) ÊÙÖ ÀÐÅÖ, ÊÙ Òµ, «ÏÆ Õ ÍÃ, Î 5a ; ÎÓÐÅ ÀÌ, Õ µ ÂÏÃÊÙÖÅ Ñ, Å, Î 5b. Å (575 µm) ÊÙÐÅÖ À, ÊÙ Ò µ, à ÃÂÏ Õ, Î 5c ; ÎÓÑÐÅ À Õ, ¼ Õ ÑÂÏà һ± Ö 45 ĐÑ ÒÖ, Å ÕÆ Õ Í²¹ ÊÙÐÅ, Î 5d Ï e. É, ²¹ ÊÙÑ Đ Þ ÕÆÕ Ò ÊÙ ( Ò) Ï»± ( ) ÃÌ ÀÌ ÊÑ µ²¹½. ÃÌ ÕÑÀÓ,»»± ÒÑ ÙÆ Ï Poisson ²¹ (»Ñ ÙÆ Å Poisson, ÒÆ Æ),»± Ã Ù Õ Ð, ÊÙÖ Òµ º«Þ Ù Õ, Ð ÊÙ ½Ñ (Ý) µ «, Ã Ò Ñ ÃÂÏ µ σ r, Î 6. µñ ÊÙ Đ d/l, d/l Æ µ [19], ½ [17]  µñ Á ÒÌ ĐÑ 1/2, σ rmax = σ UTS 2. É,» ÊÙÐÅÃ Ì ÀÐ Ù Õ ÃÊÙÖÅ Ñ Òµ ÂÏ, Õà ÁÅÑ ÕÌ ÐÅ, ¼Ö Ñ Òµ ÐÅÖÑ ÁÅ. ½ Bridgman [2] Â, Ê٠ѵ ÝĐÛ Á»ÊÕ : σ m σ eff = 1 3 + ln(1 + d min 2R ) (2) ¼Ö, σ m ÜÊÙÖѵ µ, σ eff ÜÊÙÖÑÓ µ, d min ÜÊÙÖ Ú ÃÑ, R ÜÊÙĐ Õ ÑÆ ( 6b). ÊÙ Đ l ² Å d Æ Ð, Ê٠ѵ ÝĐ µ Ô, µ µ Ô, d 2 < d 1 Ð, µ σ r2 < σ r1, Î 6c. Ã Ò (À Ü Å Pb) Ï» Ñ Êà Å, ýÓ, ËÊ ÒÖÑ Sn Ï Cu à «Æµ Cu 6 Sn 5, IMC ÜÕ Ýѳ Å Á ;» Cu ÑÊ ß Æ, Á à IMC ËÊ ÒÖÑ Sn ÆµÕ ÒÑ IMC Ò¼ È ; µøðå, à Cu 6 Sn 5 Ï Cu ÅÒÁ ÂϾÌÑ Cu 3 Sn [7]. Ë, ÊÙ Đ l ² Ð, ²¹ ÊÙÑ Ò Ú (V = πd2 l πd2 4 ) ½ Cu Ú (S = 4 ) ² Ç 5 ± ¾ Sn 37Pb ÑÉØ Õ Î Ë ÐÔ Fig.5 Morphologies of Sn 37Pb solder joints with length of 225µm and different diameters after yield and rupture longitudinal cross section of the joint with 2µm diameter after yield morphology of the joint with 2 µm diameter after rupture (c) longitudinal cross section of the joint with 575 µm diameter after yield, circles showing the crack initiation positions (d) and (e) morphologies of the joints with 575 µm diameter after rupture

426 ± ß Ö 45 Ç 6 ÉØË Ô Ð Fig.6 Solder joint model, triaxial stress state and interface stresses in solder joints after deformation geometry of solder joint triaxial stress state in a plastically deformed solder joint (c) interface stresses in plastically deformed solder joint ¹, Ü Ú Ú (2S) Ñ l/2, ÉÁ Ç ²¹ Ñ IMC Ð., ÃÊÙ Đ ¹Ð,» ÊÙÑ Đ d/l, ĐÔ, ÃÌ ÀÃÖ ÊÙ µ, ÅÊÙÖµ µ Ô Ë Õ, ÚÓÑ Ã ØÒ±«ÕÃ, Å Õ ÂÏÃÊÙÖµ ( 5b). ÑÊÙ, d/l Ð ¾Ö Ñ µ Ð µ, Å IMC ÊÙ, ÍÃÑÊ Á (ÎÂÐÏ Ó) ÊÙ¾, ÉÃÌ ÀÃÖ, ÑÀÌ ÐÕ ËÂÏÃ Ò IMC (Î 7 ), ÅÕ Õ ÊÉ Õ. Ñ Â, d/l Ã¼Ö Ð, Õ Ñ ÂÏà Ñ, ÉÐ Ò Ö Đ Ñ ÊÙ ĐÑ Orowan Õ ²ÁÝ. 2.3 µ ³ Ä ± Ë Ñ ÂÁ Â, ÊÙ Đ d/l Ñ Orowan Õ² Å ½ ÇÊÑÊÙÌ Đ; º¼ÜÊÙ Đ ßÐ È Ö Đ ¹ÅÊÙ ²¹Ñ Ç, Ñ Â Orowan Õ Â². Ã Ñ ½²¹ Ê ÙÑÌ Õ ĐÅ Ø Â ÏÀ «Ï, ÊÙ Ì Đ ÊÙ Ú Å ½Î 8 Ñ Ú. 8a Sn 3.Ag.5Cu À ÒÊÙ Đ ÑÑ Å Ø Ã, Õ ÑÆ ÇÅ Æ Ç 7 ¾ (575 µm)sn 37Pb ÉØÕÔ ÁΠÑ/ IMC Fig.7 Crack initiation and growth along the solder/imc interface of the joint with diameter of 575 µm SEM image of longitudinal cross section SEM image of the fractured joint interface ¹Å, 8b Sn 37Pb ÒÊÙ ĐÑÑ Å Ø Ã, ¼Æ ÇÅ Æ 14V + 54 (4a) Õ (3a) Á 8V + 59 6d 2 l + 59 (3a) (3b) Õ (4a) Á 11d 2 l + 54 (4b) Á Â, ÊÙ Ú Æ¼Ì Õ Đ. Á Ý d Ï l ÑÛ Ç Õ Í.

Ö 4 Ò : ÛÅ È Ö Î ³ 427 12 1..2.4.6.8.1.12 V, mm 3 7 5..1.2.3.4.5.6 V, mm Ç 3 8 ± ÑÐÉØË» ÙÐÅ Fig.8 Relationships of tensile strength and solder joint volume of Sn 3.Ag.5Cu and Sn 37Pb Î, d ßÅ l Ð ( l, ºÐ Å»Æ ), ¼ Đ Ò ĐÅ µ, Ñ Â ½ ÐÙ, Ñ ß, 2 µm» Ñ Đ Ã MPa, Ü Ò Đ 1 ; Å l (l ) Ð, ºÐÅ» Ò, σ F Joint ß ( Sn 3.Ag.5Cu À Ò 59 MPa, Å Sn 37Pb Ò 54 MPa). É, l ß, d Æ Ð (ÀÜ ÝÛ Ç, d Ö Ð, Ê ¾À Õ ), ¾ Đ σ F Joint ; Å d Ð ( 2 赯 ÑÑ µ Ñ Ê), Ë ¾ е,» ÉÛ ÇÊ Êà ÑÏ, ² ½Á Þ. º º Õ (3) Ï (4) Á ß ÕÅ ÊÙ Ì Đ ÊÙ Ú ÅÑ Æ. 3 (1) Đ ÒÊÙ» ½ Ñ, ¼Ì Õ Đ Í ÒÞ Orowan Õ Ñ Đ, ÑÊÙ ĐÃÔ. (2) ÊÙ Đ (d/l) È Ð ¾Ö ϵ ÝĐ, ²ÆÜÒ ¾, ÔÂÏ Orowan Õ ÆÑ Đ µ. (3) ÊÙ ² ÅÞ Æ ÊÙ ĐÐ, ÊÙ Đ d/l È, ÊÙ Õ Đ Í, Þ Orowan ÕÑ Ú Ð, ÊÙÑ Õµ ÂÏÃÊÙÖÅ Ñ, Å. (4) ÊÙ Đ² Å È Ð, ÊÙ Đ d/l, ¼Ì ĐÆÅ Ô, ÊÙ Đ Þ Orowan ÕÑ Ú Æ; ÊÙ ÕÆÕ Ê Ù Đ Þ ÒØν, d/l ÐÊÙ Â Ï Õ. (5) À À Sn Ag Cu ÒÒÜ Sn 37Pb Ò, ÊÙ Đ ÊÙ Ú ÅÑ Æ Æ Ç Å, ÊÙ ÚÑÆ, ÊÙÑÌ ĐÈ, Í Â Ñ Ú µ. ËÍ [1] Zhang X P, Yin L M, Yu C B. Chin J Mater Res, 28; 22: 1 (ÊÑ,, Ä. Ñ Ð, 28; 22: 1) [2] Yin L M, Zhang X P. Acta Electron Sin, 28; 36: 161 (, ÊÑ. Ü«Ð, 28; 36: 161) [3] Huang Z H, Conway P P, Jung E, Thomson R C, Liu C Q, Loeher T, Minkus M. J Electron Mater, 26; 36: 1761 [4] Arzt E. Acta Mater, 1998; 46: 5611 [5] Zimprich P, Betzwar Kotas A, Khatibi G, Weiss B, Ipser H. J Mate Sci: Mater Electron, 28; 19: 383 [6] Wang F J, Qian Y Y, Ma X. Acta Metall Sin, 25; 41: 775 (,, Đ. ² Ð, 25; 41: 775) [7] Islam M N, Sharif A, Chan Y C. J Electron Mater, 25; 34: 143 [8] Chen H T, Wang C Q, Yan C, Huang Y, Tian Y H. J Electron Mater, 27; 36: 33 [9] Sharif A, Chan Y C, Islam R A. Mater Sci Eng, 24; B16: 12 [1] Wong C K, Pang J H L, Tew J W, Lok B K, Lu H J, Ng F L, Sun Y F. Microelectron Relia, 28; 48: 611 [11] Ho C E, Lin Y W, Yang S C, Kao C R, Jiang D S. J Electron Mater, 26; 35: 117 [12] Wiese S, Roellig M, Mueller M, Bennemann S, Petzold M, Wolter K J. Proc 57th Electronic Components and Technology Conf, May 29 June 1, 27, Reno, Nevada, USA, 27: 548 [13] Ren F, Nah J W, Suh J O, Tu K N, Xiong B S, Xu L H, Pang J H L. Inter Symp Adv Pack Mater: Process, Properties and Interfaces, 25; 16 18: 66 [14] Ren F, Nah J W, Tu K N, Xiong B S, Xu L H, Pang J H L. Appl Phys Lett, 26; 89: 1 [15] Plumbridge W J. J Mater Sci, 1996; 31: 251 [16] Kim K S, Huh S H, Suganuma K. Microelectron Relia, 23; 43: 259 [17] Saxton H J, West A J, Barrett C R. Metall Trans, 1971; 2: 999 [18] West A J, Saxton H J, Tetelman A S, Barrett C R. Metall Trans, 1971; 2: 19 [19] Courtney T H. Mechanical Behavior of Materials, New York: McGraw Hill, 199: 21 [2] Bridgman P W. Studies in Large Plastic Flow and Fracture. Cambridge: Harvard University Press, 1964: 9