Ενέργεια στην περιστροφική κίνηση

Σχετικά έγγραφα
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

10 ο Μάθημα Δυναμική Περιστροφικής κίνησης. Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα

Κινητική ενέργεια κύλισης

Προσομοίωση βαρύτητας

Κύληση. ΦΥΣ Διαλ.33 1

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Διαγώνισμα Μηχανική Στερεού Σώματος

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

Υπολογισμός ροπής αδράνειας. Για συνεχή κατανομή μάζας έχουμε:

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΦΥΕ14-5 η Εργασία Παράδοση

Αγώνες αυτοκινήτου σε πίστα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣ Διαλ.12. Παράδειγμα Τάσεων

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

Έργο Ενέργεια Παραδείγµατα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Κέντρο Μάζας - Παράδειγμα

2 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

Παράδειγµα διατήρησης στροφορµής

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο

Β ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 19-Νοεµβρίου-2011

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 20-Νοεµβρίου-2010

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.

Κεφάλαιο 7. Στροφορμη Δυναμικη Στερεου Σωματος {Στροφική και Μεταφορική Κίνηση Στερεού Σώματος, Αρχή Διατήρησης Στροφορμής}

Ασκήσεις στροφικής κίνησης στερεού σώµατος

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

ΦΥΣ Τελική Εξέταση: 19-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

F r. 1

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση (Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

Α. Ροπή δύναµης ως προς άξονα περιστροφής

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

Στροφορµή. ΦΥΣ Διαλ.25 1

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

Διαγώνισμα: Μηχανική Στερεού Σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Τα θέματα συνεχίζονται στην πίσω σελίδα

3.3. Δυναμική στερεού.

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Μηχανική Στερεού Σώματος Εξέταση - Σελίδα από 9 9//06. (0 Βαθμοί) Ενας συμπαγής κύλινδρος Δ βάρους βάρους w και ακτίνας βρίσκεται μεταξύ ενός κατακόρυ

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

Transcript:

ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο γύρω από σταθερό άξονα. K i = 1 m iv i Αθροίζοντας ως προς όλα τα σωµάτια που απαρτίζουν το στερεό θα έχουµε: 1 K i = m 1 iv i = m ir i ω όλα έχουν το ίδιο ω i i i Η παραπάνω σχέση γράφεται: K i = 1 i i m i r i ω K tot = 1 Ιω Ορίζουµε σα ροπή αδράνειας: I = m i r i i Ανάλογο του K = 1 mv Ø Η ροπή αδράνειας, I, είναι το περιστροφικό ανάλογο της µάζας m. Δηλαδή, είναι πολύ πιο δύσκολο να προκαλέσεις περιστροφή σ ένα σώµα όταν η ροπή αδράνειας γίνεται µεγαλύτερη

ΦΥΣ 111 - Διαλ.31 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r r I = m i r i = mr 1 I = m(r) = 4mr Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή στην (β) περίπτωση q Η ροπή αδράνειας εξαρτάται από τον άξονα περιστροφής. q Η ροπή αδράνειας ορίζεται ως προς κάποιο σταθερό άξονα Ø Η τιµή της εξαρτάται από την θέση και τον προσανατολισµό του άξονα περιστροφής

ΦΥΣ 111 - Διαλ.31 3 Ροπή αδράνειας για στερεά συνεχούς κατανοµής q Για στερεά σώµατα συνεχούς κατανοµής µάζας η ροπή αδράνειας υπολογίζεται αντικαθιστώντας το άθροισµα µε ολοκλήρωµα: (αντικαθιστούµε όλες τις µάζες m i µε dm) I = m i r i i lim Δm i 0 i r i Δm i I = r dm Ροπή αδράνειας Θυµίζει τον υπολογισµό του κέντρου µάζας ενός σώµατος r CM = q Για παράδειγµα: έστω ρ η πυκνότητα = m/v για ένα στερεό ρ = dm / dv dm = ρdv I = r ρdv Για οµοιογενή κατανοµή µάζας, η πυκνότητα είναι σταθερή και έχουµε: I = ρ r dv Περισσότερη µάζα πιο αποµακρυσµένη από τον άξονα περιστροφής, µεγαλύτερη η ροπή αδράνειας Ι, και εποµένως µεγαλύτερη η αντίσταση του σώµατος στο να αλλάξει την περιστροφική του κίνηση rdm

Παράδειγµα υπολογισµού ροπής αδράνειας q Οµοιογενής κύλινδρος µάζας m, ακτίνας R και µήκους L. ΦΥΣ 111 - Διαλ.31 4 dr y r R Θεωρήστε ένα κυλινδρικό φλοιό ακτίνας r και πάχους dr. Αυτό το κάνουµε για να έχουµε την ίδια ακτίνα για όλες τις στοιχειώδεις µάζες dm. Το εµβαδό του δακτυλίου του κυλινδρικού φλοιού είναι: L da = πrdr I y = dv = LdA r dm = r ρdv I y = πρl r 3 dr 0 R I y = πρl R4 4 I y = 1 πρlr4 z x Αλλά V κυλ. = πr L και ρ = Μ V = M π R L Εποµένως I y = 1 πρlr4 = 1 MR Αυτή είναι η ροπή αδράνειας ως προς τον άξονα συµµετρίας y. Ποια θα ναι η Ι ως προς ένα άξονα παράλληλο προς τον y?

ΦΥΣ 111 - Διαλ.31 5 Θεώρηµα παράλληλων αξόνων z y dm(x,y) D CM y' CM y I = r dm = ( x + y )dm x = x + x CM y = y + y CM I = x + x CM x [( ) + ( y + y ) ] CM y CM dm D xcm I = ( x + y )dm + x CM x dm + y CM y dm + ( x CM + y CM ) dm Επομένως: I = I CM + 0 + 0 + MD x x' I = I CM + MD Θεώρηµα παράλληλων αξόνων

ΦΥΣ 111 - Διαλ.31 6 Εφαρµογή του θεωρήµατος παράλληλων αξόνων q Κυκλικό στεφάνι ακτίνας R και µάζας Μ κρέµεται από ένα σηµείο στην περιφέρειά του Θέλουµε την ροπή αδράνειας γύρω από αυτό το σηµείο R I στεϕ. = Ι CM + MR MR + MR I στεϕ. = ΜR q Οµοιόµορφη λεπτή ράβδος µάζας Μ και µήκους L µε άξονα κάθετο στο µήκος της Έστω dm στοιχειώδης µάζα µήκους dx σε απόσταση x από τον άξονα περιστροφής Ο. I O = Από την εξίσωση της ροπής αδράνειας: x L h dm = ρ x dx = M h L x 3 L h 3 h I O = 1 3 M ( L 3Lh + 3h ) Για h = 0 και h = L I O,L = 1 3 ML Για L h = IC = 1 1 ML

ΦΥΣ 111 - Διαλ.31 7 Ροπή αδράνειας - Σηµεία προσοχής Ø Δεν έχει νόηµα να αναφέρεστε στη ροπή αδράνειας ενός σώµατος χωρίς να προσδιορίζετε την θέση και προσανατολισµό του άξονα ως προς τον οποίο υπολογίζετε την ροπή αδράνειας Ø Για συνεχείς κατανοµές µάζας χρειάζεται να υπολογίσουµε τα ολοκληρώµατα για την εύρεση της ροπής αδράνειας. q Μην προσπαθήσετε να υπολογίσετε τη ροπή αδράνειας θεωρώντας ότι όλη η µάζα βρίσκεται στο κέντρο µάζας του σώµατος και παίρνοντας την απόσταση του κέντρου µάζας από τον άξονα περιστροφής ΛΑΘΟΣ ü Η ροπή αδράνειας της ράβδου στο προηγούµενο παράδειγµα είναι Ι=ΜL 3 /3 ως προς άξονα που περνά από ένα άκρο της. Αν υποθέσω το κέντρο µάζας το οποίο βρίσκεται στο µέσο της η ροπή αδράνειας θα ήταν Μ(L/) =ML /4 που είναι λάθος.

ΦΥΣ 111 - Διαλ.31 8 Περισσότερες περιπτώσεις (α) ομοιογενής ράβδος άξονας στο κέντρο (β) ομοιογενής ράβδος άξονας στο άκρο της (γ) ομοιογενές φύλλο άξονας στο μέσο (δ) ομοιογενές φύλλο άξονας σε πλευρά (ε) συμπαγής κυλινδρικός δακτύλιος (στ) συμπαγής κύλινδρος (ζ) κοίλος κύλινδρος (λεπτά τοιχώματα) (η) ομοιογενής σφαίρα (η) κοίλη σφαίρα

Δυναµική στην περιστροφική κίνηση στερεού ΦΥΣ 111 - Διαλ.31 9 q Μέχρι τώρα είδαµε: ü Ροπή αδράνειας: I σ = r dm ü σε αντιστοιχία µε τη θέση του CM: q Θεώρηµα παράλληλων αξόνων I σ = Ι CM + MD r CM = 1 M rdm D CM q Κινητική ενέργεια ενός περιστρεφόµενου στερεού γύρω από σταθερό άξονα K = 1 Iω q Όλα τα σημεία του στερεού κινούνται με ίδια γωνιακή ταχύτητα και γωνιακή επιτάχυνση

ΦΥΣ 111 - Διαλ.31 10 Ενέργεια περιστροφής - µεθοδολογία προβληµάτων Ότι έχουµε δει µέχρι τώρα σε προβλήµατα ενέργειας ισχύουν και για την περίπτωση ενός περιστρεφόµενου στερεού. Ø Χρησιµοποιώντας το θεώρηµα έργου-ενέργειας και διατήρηση της µηχανικής ενέργειας µπορούν να βρεθούν εξισώσεις για τη θέση και κίνηση του στερεού. v Μόνη διαφορά ότι τη θέση της µάζας και ταχύτητας παίρνουν η ροπή αδράνειας και γωνιακή ταχύτητα. K = 1 mυ K = 1 Iω Ø Πολλά προβλήµατα περιέχουν σχοινιά γύρω από στερεά σώµατα που δρουν σα τροχαλίες: ü Το σηµείο της επαφής του σχοινιού στην τροχαλία έχει την ίδια γραµµική ταχύτητα µε αυτή του σχοινιού (το σχοινί δεν γλιστρά στην τροχαλία) ü Από τις σχέσεις µεταξύ εφαπτοµενικής και ακτινικής επιτάχυνσης βρίσκουµε τις γωνιακές ταχύτητες και επιταχύνσεις v = ω r a = d ω dt r + ω d r dt a = α r + ω v εφαπτοµενική ακτινική

Παράδειγµα ΦΥΣ 111 - Διαλ.31 11 Νήµα αµελητέας µάζας είναι τυλιγµένο γύρω από κύλινδρο µάζας 50kg και διαµέτρου 0.1m, ο οποίος µπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα που στηρίζεται σε σηµεία χωρίς τριβές. Τραβούµε το ελεύθερο άκρο του νήµατος µε σταθερή δύναµη F=9.0N κατά απόσταση.0m. To νήµα ξετυλίγεται χωρίς να γλιστρά προκαλώντας περιστροφή στον κύλινδρο. Να βρεθεί η τελική γωνιακή ταχύτητα του κυλίνδρου και τελική γραµµική ταχύτητα του νήµατος αν ο κύλινδρος αρχικά είναι ακίνητος. Ο κύλινδρος περιστρέφεται επειδή υπάρχει τριβή µεταξύ του νήµατος και κυλίνδρου Από το θεώρηµα έργου-ενέργειας: W F = F s = K f K i = 1 Iω f 1 Iω i Η ροπή αδράνειας του κυλίνδρου είναι: I = 1 MR W F = F s = 1 1 MR ω f ω f = Επειδή το νήµα δεν γλιστρά, δεν υπάρχει ολίσθηση του νήµατος ως προς το κύλινδρο Άρα δεν υπάρχει απώλεια ενέργειας λόγω τριβών R Fs M ω f = 0rad /s ενώ ω i = 0 και εποµένως έχουµε: Η υ f του νήµατος είναι η τελική εφαπτοµενική του κυλίνδρου: υ f = ω f r =1. m s

ΦΥΣ 111 - Διαλ.31 1 Quiz Ø Γράψτε σε μια σελίδα το όνομά σας και τον αριθμό ταυτότητάς σας Έτοιµοι;

ΦΥΣ 111 - Διαλ.31 13 Δυναµική στερεού σώµατος - Ροπή q Η ικανότητα µιας δύναµης να περιστρέφει ένα σώµα γύρω από ενα σηµείο ως προς το οποίο περιστρέφεται ένα σώµα περιγράφεται από ένα καινούριο µέγεθος που ονοµάζεται ροπή. Ορίζεται: F = ma = d p ροπή: τ = r F = Fr sinθ = Fd dt Μονάδες: Νm Ø Στην παραπάνω εξίσωση ορισµού F η δύναµη και d η απόσταση του σηµείου εφαρµογής της δύναµης από το σηµείο περιστροφής Ø Χρησιµοποιούµε τον κανόνα του δεξιού χεριού για να βρούµε τη διεύθυνση της ροπής. q Εµπειρικά έχει βρεθεί ότι είναι πιο εύκολα να περιστρέψουµε ένα σώµα αν εφαρµόσουµε µια δύναµη µακριά από το σηµείο περιστροφής και εποµένως d µεγάλη. Αν d=0 τότε η ροπή είναι µηδέν q Δυνάµεις που η διεύθυνσή τους περνά από τον άξονα ή σηµείο περιστροφής έχουν µηδενική ροπή

ΦΥΣ 111 - Διαλ.31 14 Παραδείγµατα ροπών q Για ένα µόνο σωµατίδιο που κινείται σε κύκλο κάτω από την επίδραση µιας δύναµης F είναι: r F = ma = ma εφ. = mαr F Ανάλογο του F=mα q Για ένα στερεό σώµα I = m i r i και για οµοιογενές στερεό: I = r dm Aπό τις δυνάµεις που ενεργούν σε κάθε στοιχειώδη µάζα έχουµε: df εφ = (dm)a εφ = (dm)αr = (rdm)α rdf dτ = αr εφ = r(rdm)α dm Όλα τα σηµεία όµως έχουν την ίδια γωνιακή επιτάχυνση α εποµένως ολοκληρώνουµε την τελευταία σχέση: τ συνισταµενη = i rf = mαr = (mr )α rf = Iα τ = Iα ( r dm)α = α r dm = Iα Οποιαδήποτε στιγµή το στερεό περιγράφεται από ω, α και τ συνισταµένη

Παράδειγµα q Εκκρεµές εξαρτάται από αβαρή ράβδο. Ποια είναι η ροπή στη µάζα m? θ l T Μ τ = r M g = lmgsinθ Προς το εσωτερικό του χαρτιού ΦΥΣ 111 - Διαλ.31 15 Μg q Θέλετε να ξεβιδώσετε µια βίδα και το κλειδί που χρησιµοποιείται είναι κοντό. Βάζετε ένα σωλήνα και πατάτε πάνω του µε όλο το βάρος σας (900kg). Η απόσταση του άκρου του σωλήνα από τη βίδα είναι 0.8m, ενώ η γωνία του κλειδιού µε οριζόντιο είναι 19. Ποια η ροπή l = r sin71 = 0.76 τ = lf = 900 0.76 = 680N m Διαφορετικά τ = r F = rf sinφ τ = 0.8 900sin(109 ) Η δύναµη προκαλεί περιστροφή προς τη φορά των δεικτών του ρολογιού και εποµένως η ροπή είναι κάθετη στη διαφάνεια και προς το εσωτερικό

ΦΥΣ 111 - Διαλ.31 16 Παράδειγµα F L F 3 F 1 = F = F 3 = F 4 F 1 L θ L L F 4 Ποια από τις δυνάµεις έχει την µεγαλύτερη ροπή ως προς το σηµείο θ? κλειδί βίδα κλειδί βίδα ράβδος κλειδί βίδα ράβδος κλειδί βίδα Θέλετε να ξεβιδώσετε µια σκουριασµένη βίδα. Ποια η καλύτερη διάταξη που µπορείτε να χρησιµοποιήσετε; -1-4-3 Επειδή η δύναµη είναι ίδια σε όλες τις περιπτώσεις χρειάζεται να συγκρίνουµε την απόσταση του σηµείου εφαρµογής της από το σηµείο περιστροφής (βίδα)

Παράδειγµα ΦΥΣ 111 - Διαλ.31 17 Ένα στεφάνι και ένας κύλινδρος και τα δυο µάζας Μ και ακτίνας R κυλούν κατά µήκος κεκλιµένου επιπέδου κλίσης θ από ύψος h. Ποιό από τα δυό σώµατα φθάνει στη βάση του κεκλιµένου επιπέδου µε την µεγαλύτερη κινητική ενέργεια; (Α) Στεφάνι (Β) Κύλινδρος (Γ) Ίδια ΚΕ h

Παράδειγµα ΦΥΣ 111 - Διαλ.31 18 Ένα στεφάνι και ένας κύλινδρος και τα δυο µάζας Μ και ακτίνας R κυλούν κατά µήκος κεκλιµένου επιπέδου κλίσης θ από ύψος h. Ποιo από τα δυό σώµατα φθάνει στη βάση του κεκλιµένου επιπέδου µε την µεγαλύτερη ταχύτητα (Α) Στεφάνι (Β) Κύλινδρος (Γ) Ίδια ΚΕ I = MR I = 1 MR h