Μάθημα Επιλογής 8 ου εξαμήνου

Σχετικά έγγραφα
Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Διάλεξη 1: Βασικές Έννοιες

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Διάλεξη 4: Τεχνικές επίλυσης μη-γραμμικών συστημάτων

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Εφαρμοσμένα Μαθηματικά ΙΙ

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Εφαρμοσμένα Μαθηματικά ΙΙ

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Επίλυση Γραµµικών Συστηµάτων

όπου Η μήτρα ή πίνακας του συστήματος

21 a 22 a 2n. a m1 a m2 a mn

Αριθμητική Ανάλυση και Εφαρμογές

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Παναγιώτης Ψαρράκος Αν. Καθηγητής

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Οδηγίες χρήσης Aspen Plus 7.1

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

Γραμμικά συστήματα. - όπου Α είναι ένας (m x n) πίνακας, ο οποίος περιέχει. - όπου Β είναι ένας (m x 1) πίνακας που περιέχει τους

Στοχαστικά Σήµατα και Εφαρµογές

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

Δείκτες & Πίνακες Δείκτες, Πίνακες

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κλασικη ιαφορικη Γεωµετρια

Linear Equations Direct Methods

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

2.1 Αριθμητική επίλυση εξισώσεων

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Διανύσµατα στο επίπεδο

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

Επιστηµονικός Υπολογισµός Ι

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών

Οδηγός λύσης για το θέμα 2

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

Ορισμοί και πράξεις πινάκων

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ Τάξη Ηµερήσιου Γενικού Λυκείου

ΜΕΜ251 Αριθμητική Ανάλυση

Μαρία Λουκά. Εργαστήριο Matlab. Αριθμητικός υπολογισμός ιδιοτιμών και ιδιοδιανυσμάτων. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.

ΜΕΜ251 Αριθμητική Ανάλυση

Οδηγός λύσης θέματος 2

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Non Linear Equations (2)

Αριθμητική Ανάλυση και Εφαρμογές

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Μοντελοποίηση Προσομοίωση

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΝΕΑ ΠΑΙΔΕΙΑ

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Χαρακτηριστική Εξίσωση Πίνακα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

Transcript:

EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης ιεργασιών & Συστημάτων ιάλεξη 2: Υπολογιστικές προκλήσεις διαχείρισης συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου ιδάσκων: Α. Κοκόσης Συνεργάτες: Α. Νικολακόπουλος, Θ.Χ. Ξενίδου

Επισκόπηση Κατηγορίες και μέγεθος συστημάτων Επισκόπηση Επαναληψιμότητα υπολογισμών και παθογένεια Αναγνώριση παθογένειας Αραιά συστήματα Τεχνικές διαχείρισης μνήμης Δομημένα συστήματα

1. Επαναληψιμότητα & παθογένεια

Επαναληψιμότητα & παθογένεια i. Προκλήσεις και παθογένεια συστημάτων Επαναληψιμότητα Σειριακή προσομοίωση (κλειστών συστημάτων): σύγκλιση απαιτείται για κάθε νέα τιμή αποκοπής (tear) Συγχρονισμένη προσομοίωση (κλειστών συστημάτων): ) σύγκλιση απαιτείται για κάθε μορφή γραμμικοποίησης Προσομοίωση ανοικτών συστημάτων : σύγκλιση απαιτείται για κάθε θέση των γραμμικοποίησης ανοικτών συστημάτων

Επαναληψιμότητα & παθογένεια Υπολογιστικό παράδειγμα Ας υποθέσουμε ένα γραμμικό σύστημα, π.χ. στην k επανάληψη με A x = b k 1 x = A b 200 400 201 b = και A = k 800 401 200 Ak k+ 1 και η γραμμικοποίηση στην επανάληψη k, με Τότε προκύπτει η λύση: x 100 k και A x 1 1 x = 200 x 2 k 2 k + 1 Αν και η μεταβολή από A A k k + 1 είναι πολύ μικρή, η καινούρια λύση είναι εντελώς διαφορετική. Γιατί; 401 201 = 800 401 = [ 79800]

Αραιά συστήματα & διαχείριση μνήμης Ιδιάζοντες πίνακες και παθογένεια τι έκανε στο προηγούμενο πρόβλημα τη λύση να αλλάζει τόσο πολύ; μπορούμε να επηρεάσουμε σε κάτι τους υπολογισμούς; Ιδιοτιμές, αριθμητική κατάσταση, ιδιάζουσα τιμή Ax 1 = b x = A b ( ) ( ) adj A 1 A = (1) det A T ( ) ( ) ji adj A = C = C πίνακας συμπαραγώντων ( ) i det A = n ij = λ i= 1 ( Ax λ x ) = 0 ή det ( A I ) 0 μ λ = με Ax n = λ u x i= 1 i i i

Επαναληψιμότητα & παθογένεια Παθογένεια συστημάτων (ill-conditioning) ( ) ( ) A = (1) 1 adj A det A ( ) ( 0 i ) Αν dt det A 0 ή λ 0, τότε 1 A Αν λ : λ = 0 i i (ιδιάζων πίνακας) λi : λi 0 (σχεδόν ιδιάζων πίνακας) ) Η μικρότερη τιμή προετοιμάζει για το πόσο δύσκολο είναι να αντιστραφεί ο πίνακας Αριθμός κατάστασης: προετοιμάζει για το πόσο ισοσταθμισμένο είναι το σύστημα Αν λ max, λ min οι μεγαλύτερες/μικρότερες τιμές (απόλυτες) των ιδιοτιμών του πίνακα ( ) Α (ή των Re λ i αν είναι μιγαδικές), τότε μια ένδειξη είναι η: λ max K( A ) = λmin

Επαναληψιμότητα & παθογένεια Ιδιάζουσα τιμή ( ) Τα λ A ισχύουν μόνο για τετράγωνους πίνακες. Στην ουσία μας ενδιαφέρει το μέγεθος του σήματος που δίνει το A. Δηλαδή, για το y = Ax Μας ενδιαφέρει ισοδύναμα T T T y y= xaax ( ) y i i ax i Δηλαδή, ο πίνακας T ( ) 1 2 AA ο οποίος είναι τετράγωνος και θετικός. Η μικρότερη τιμή λέγεται ιδιάζουσα τιμή. { 1 T 2 ( ) } min σ = λ min AA

Επαναληψιμότητα & παθογένεια Παράδειγμα 1 Στην προηγούμενη περίπτωση είχαμε A k 400 201 = 800 401 λ 801.5 λ = 0.49 1 2 K( A) 1635 σ 0.4 σ 1000 1 2 Τι μπορούμε να κάνουμε για να βελτιώσουμε εγγενείς παθογένειες;

Επαναληψιμότητα & παθογένεια Παράδειγμα 2 5 λ 0.999 λ 3.75 10 1 2 A k 400 201 = 800 401 4 ( ) K A 3 10 ' Αν εναλλακτικά, ορίσουμε 2 = ( 2) y y x10000 τότε A k 0.9995 0.9999 = 0.375 0.75 λ1 1, 49 K( A) 6 λ2 0.25

2. Αραιά συστήματα & διαχείριση μνήμης

Αραιά συστήματα & διαχείριση μνήμης Παράδειγμα Σύστημα με 1000 εξισώσεις δεξί μέλος 1000 άγνωστοι (1000) x (1000) + (1000) = 1,001,000? Στοιχεία Αν υποθέσουμε πως έχουμε: 5 μη μηδενικά μηδενικά στοιχεία / εξίσωση 50 μη μηδενικά στοιχεία στο δεξί μέλος τότε προκύπτουν, 5 x 1000 + 50 = 5050 Συνολικά, 5050 0.5% ή 1, 001,000 o 5 oo

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση και αναπαράσταση δεδομένων Αναπαράσταση συντεταγμένων F σειριακή (coordinate & serial format) Αποθήκευση μεταβλητών στο Aspen Δομημένα μητρώα για ειδικές διεργασίες Βασικά Δεν υπάρχει σαφής διάκριση αραιών / μη αραιών συστημάτων N Συνήθως s < 5 με 10% N

Αραιά συστήματα & διαχείριση μνήμης Αναπαράσταση συντεταγμένων σε αραιούς πίνακες x coordinate (JC) y coordinate (JR) τιμές (AA) π.χ. A = 1 0 0 2 0 3 4 0 5 0 6 0 7 8 9 0 0 14 11 0 2 0 0 0 12 AA = 12 9 7 5 1 2 11 3 6 4 8 10 JR = 5 3 3 2 1 1 4 2 3 2 3 4 JC = 5 5 3 4 1 4 4 1 1 2 4 3 b) Σειριακή αναπαράσταση (serial format) AA = 12 9 7 5 1 2 11 3 6 4 8 10 SF = 1 4 6 7 9 11 13 14 15 18 19 25

Αραιά συστήματα & διαχείριση μνήμης Εξοικονόμηση NF πλήρης πίνακας Ν 2 ΝCF CF 3NS NSF SF 2N Για Ν = 1,000 και NS α= = 3 N o oo N N 2 F CF = = 10N = 10,000 N 3NS CF N N 2 F SF = = 16N = 16, 000 SF N 2NS ή 10 4 της μνήμης για CF 10 4 10 5 της μνήμης για SF Ακόμη μεγαλύτερη εξοικονόμηση με NSF όταν υπολογίζει κανείς Ιακωβιανές συντεταγμένες.

ιαχείριση δεδομένων στο Aspen Plus

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση μεταβλητών στο Aspen Plus Δεδομένα καταχωρούνται ξεχωριστά για Ρεύματα του ροοδιαγράμματος Κάθε μία διεργασία ξεχωριστά a) Ρεύματα S: F 1 F 2,, F c F TOT T P h V F L F s ρ M W Παράδειγμα flash NC δεδομένα F V L F V L COMMON / B / B (NPLEX) B-Block 3 ανύσματα με γνωστές διαστάσεις αφού ΝC γνωστά

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση μεταβλητών στο Aspen Plus b) Δεδομένα διεργασίας Block input Παράδειγμα flash TEMP MAXIT PRES TOL VFRAC DUTY ENTRY F Block results QCALC V L F1 FLOWSHEET BLOCK F1 IN=FEED OUT=VRLIQ ρεύματα διεργασίας BLOCK F1 FLASH2 PARAME TEMP=120 PRES=13.23 δδ δεδομένα διεργασίας

Αραιά συστήματα & διαχείριση μνήμης ομημενα συστήματα Συχνά προκύπτουν σε Αποστακτικές στήλες Συστοιχίες διεργασιών A = Εδώ μπορεί να χρησιμοποιηθεί και σε εξειδικευμένους αλγορίθμους για Λιγότερη μνήμη Συνεκτική / συμπαγή αναπαράσταση (π.χ Inside out algorthithm)