a A, b B,m M,n N} n + n m + m b + b, + ψ(n m ) an + nb ma + bm bb + ϕ(m n, a + a

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Prey-Taxis Holling-Tanner

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

High order interpolation function for surface contact problem

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Congruence Classes of Invertible Matrices of Order 3 over F 2

The q-commutators of braided groups

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Θεοδώρα Θεοχάρη Αποστολίδη

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Quick algorithm f or computing core attribute

Motion analysis and simulation of a stratospheric airship

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Single-value extension property for anti-diagonal operator matrices and their square

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

A General Note on δ-quasi Monotone and Increasing Sequence

ER-Tree (Extended R*-Tree)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

ΜΗ ΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Discriminantal arrangement

A summation formula ramified with hypergeometric function and involving recurrence relation

Available online at shd.org.rs/jscs/

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

X g 1990 g PSRB

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Approximation Expressions for the Temperature Integral

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

-! " #!$ %& ' %( #! )! ' 2003

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Tridiagonal matrices. Gérard MEURANT. October, 2008

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

Jordan Form of a Square Matrix

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

On Inclusion Relation of Absolute Summability

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

Κβαντικη Θεωρια και Υπολογιστες

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Homomorphism in Intuitionistic Fuzzy Automata

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Space-Time Symmetries

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

100x W=0.1 W=

M p f(p, q) = (p + q) O(1)

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Wishart α-determinant, α-hafnian

ACTA SCIEN TIAE CIRCUMSTAN TIAE

ACHILLES DRAMALIDIS CV

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

NATIONAL HERALD VOL. 97 No GREEK-AMERICAN DAILY NY, NJ, PA, MA $ CT $1.50. Οι αντάρτες μπήκαν στο κτιριακό συγκρότημα του Καντάφι

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

Το άτομο του Υδρογόνου

On Generating Relations of Some Triple. Hypergeometric Functions

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ

21 a 22 a 2n. a m1 a m2 a mn

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Cable Systems - Postive/Negative Seq Impedance

NATIONAL HERALD VOL. 101 No GREEK-AMERICAN DAILY NY, NJ, PA, MA $ CT $1.50

Παρασκευή 16 Ιουλίου 2010 / Friday, July 16, NATIONAL HERALD VOL. 96 No GREEK-AMERICAN DAILY NY, NJ, PA, MA $ CT $1.

Vol. 5 No. 1 Feb EL ECTROCHEMISTR Y ( ) ( ) ( EHD), ( FDN) ( TEA- PTS), Tri2 tonx-100 ,FDN. EHD. EHD. RH. RH 2. Guidelli, 1.

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

2.1

Transcript:

/46Φ/42 c ψ E Vol 46 No 4 217-7> ADVANCES IN MATHEMATICS CHINA July 217 doi: 111845/sjz215154b χ 'ffiμ Φnrff fi"# UH 1 [BK 2 Q]G 1 1 ff^s&k_χcfi ff^ _ 239; 2 3#χbχΞ vf 2196 $ψ: 6F<MV>PJDE/A:5^W9@ -RSOV>CTL? ; F IPJD56 F< 6F<81CTL? ;IPJD5E/A: 43C F D2ZPJ75WN u}l: PJD; 6F<; PJ7 MR21 +»s : 13C1; 13C6 / *νs v: O1533 ßffj Π: A ß%iv: 1-9172174-557-6 ]9%g}b +$azn @NJ$affi+;CTνΛ"`Z$+wE 1976 Goodearl @ [2]!Λ]flNAj6S*' Z$+] i WDwΠL] J ] 2 NA] flw%fl@6»ο+» us@ Artin $aωfl%5`z$+2 @ffiz+:r8 fifl5_mffiilgj>"+!λ &4V[K6'' q pcω!λ ~+u3λv T 1999 Haghany W Varadarajan [4 5] 6 WDwΠL]~νοΛv+!Λ e Krylov W Tuganbaev @ [7] Λv!Λο WΠL]g3%+ΩP p P8 WΠL]+ΩPe»!Λ Sfi r [3 1 12] 6b}M Kρο WΠL]GwJ%Wfl%+* fl[ ±"[ $2+;±QU P8 WΠL]+ffΠ Ifi r Φ [1 6 9] ΩP +lv r [7] +]Ψ}U5% <+z] %Ψ}Uh<+f% 1 ffi &wfl m~t C6 WDwΠL]g~'ffl+ F V3 5A± W: { A N a n F a A b Bm Mn N} M B m b 3 A B [5% +z] M [f B-6A- d% N [f A- 6 B- d% om ϕ : M A N B ψ : N B M A [d%uk 76?+ m m M nn N ffid ϕm nm mψn m ψn mn nϕm n 2 F +n<wμ<a±: a n a n + a + a n + n m b m b m + m b + b a n a n aa m b m b + ψn m an + nb ma + bm bb + ϕm n B F 68i2+?hg ] JJ]Ξ[ WΠL] %»} Morita Λv] aqπl] I@2: 215-8-2 ρdi @2: 216-7-21 c fl: _Q:s[1fl No KJ216A545 _QG c>ffχc No KJ215B12 E-mail: uqb@163com

558 b χ D 46Φ ϕ ψ +ffiaff[] A B + fi J fi%»}] F +e fi trace ideal mfl+ W ΠL]Ψ 5ρe fi 42*Q WDwΠL][ffi ]+'n» i]q C'Jß +] K ΞU@ρ!-< e e 1BB]uN8 WΠL] eke ek1 e 1 eke 1 ek1 e C U V [] K G+5ΨO f 6K % Bbuk] EndU V un8 WΠL] EndK U Hom K VU Hom K U V End K V 4ffifirP8 WΠL]+ΩP p@]fl9%fl!λ 5Z$+ L8+P8 WΠL ]+»afi r [3] ±" I WΠL] F M A N B G%+zN ψfitt A- W B- % NA F - % M [f A- % [f B- % f : N B [ A- %uk g : M A [ B- %uk 6?+ m M n N y 5 nm nm mny mny 3 m ny +%μ2}: a n m b y a + ny m + by Bßfflν< fig f F - % C 7 N M B [ +a% P8 F%+NAfi r Φ [7] R χjf F - %%fiω Gßfflν+ W ff V [f F - % e 1 1 e 1 B ev [f A- % 1 ev [f B- % Bf F - % V fiω} ev 1 ev HG`>< ttfνdfiq%4f A- % NAρf F - % 3%μ2}: B M A f : N B M A N B M A A A g : M A M A [f F - % e 68f B- % N B %[f F - % 2 ffi &wfl ffl mqωz 6b/ [!ΛwJ%* fl[+z$]5 6 R- % P ψ» Hom R P R [ P +6 μjuψf y i P ϕ i Hom R P R»} P +6b C3ffid±μr: 1 6 P?+'J<g p @ ϕ i e855ψj ϕ i V ϕ i p 2 p ϕ ip ϕ ipy i ±"Kρ6b/ 3P#fi r [6 2 543] 'J%[wJ%'7}'j5'J6b oλ 21 pψy!λ wj%+6b9b4%+b5 W+ffiu wj%+<g26bωρs 3Ω< ffi ' 9b4%+χJ<g2bΩρS 3Ω< ' ±"tt% +6b NA F - % M +6b A M {ϕ i i } [wjf A- % +6b { i } [ F - % M +O <ψ {ϕ A i 1 A N ϕ i } [ Hom F M A M B +'J<gψ 3 ϕ i : A 1 ϕ i : M A M A A M

42 fi9fi GffiP O: μ±m^hk&7/ch413 559 76?+ i I 5 1 ϕ i m mϕ i fi r [12] ±"P#O <ψ { i } WkJψ {ϕ i 1 ϕ i } N F - % oλ 22 [ F - % M +6b A 2 M [wjf B- % C {ψ j y j } j J [ +6b B { 1 ψ j ψ j yj }j J [ F - % N B +6b M +6b A 1 M [wjf A- % C {ϕ i i } [ +6b B {ϕ i 1 ϕ i i } ± VffP# 1 efip# 2 #P6?+ ϕ i 1 ϕ i m i m A M 5 A m A ifi ZTG i ϕ i 1 ϕ i m ϕi i mϕ i ϕ i i ϕi i mϕ i i mϕ i i mϕ i i m ϕ i i m 2 *P 2 22 fi2 NA WΠL] F M A N B GwJ% Q P +6b @ [8] Krylov 9 ardykov P#ο P N B Q M A 42 22Q {ϕ i 1 ϕ i i } W { 1 ψ j ψ j y j } Aff[ F - % N B j J M A 9 +6b 9fi2 P Q +O <ψw6bkja±: { pt q t } t T { pi } q i { } pj q j j J { i { { ϕi 1 ϕ α t β t i t i I 1 ψ j ψ j t j J 3 T I J οξ 21 {α t β t pt q t } t T [ F - % P Q +6b ± 6?+ p q P Q Vff#P p α t β t q t T?H [4 2 32] +P#fiAμ8ffl: pt q t } t i I yj} t j J; p q

56 b χ D 46Φ ^ ' p q 1 ' t I S 2 ' t J S α t β t m S m ϕ i 1 ϕ i α t β t m 1 ψ j ψ j α i β i m m α j β j m m ϕi mϕ i ; 9 p pt α t β t pt q q t β t t m t T t Tα ϕi q t mϕ i ϕi i ϕi i mϕ i mϕ i i ϕ i i mϕ i i m efip#' p q α t β t n y y S 5 n y pt y q t n y y pi q i 2 22 Wyfl 21 +'JTy2A±: oλ 23 1 [wj A- %'7}' M A [wj F - % 2 [wj B- %'7}' N B [wj F - % ± 46b/ 92 22 Wyfl 21 * ""q ο [8 2 31] +P#Tν 681l%%5 e+yfl P# r [7 $p 63] Krylov 9 ardykov @ [8] Kρο F - % P Q [wj%wfl%+οaφ$rs ΩP+ zfl@z"+p#`2 oλ 24 [8] 6 F - % P Q ±Dr-p: 1 Q P [ F - wj% 2 P/NQ [ A- wj% Q/MP [ B- wj% 7 N Q/MP NQ M P/NQ MP 3!@ A- wj% B- wj% V* P NQ Q MP 7 M A MP N B NQ

42 fi9fi GffiP O: μ±m^hk&7/ch413 561 4!@ A- wj% B- wj% V* P Q M A N B i]q?+%45*jξ &flffi[i5+%45wje ± mfl WΠL]G% +wje+!@ p 'J]»}f 6 z;] ASB]G+χJ1l%4[wJ% z;] G+χJ%45wJE ±"Kρ F - % 5wJE+'Jο$rs 5wJE+οAΦ$rs[ A- % oλ 25 M F [ WΠL] [ F - % B /N B- % /M Aff5wJE ± οaο om A- % /N B- % /M Aff5wJE σ 1 : P 1 /N σ 2 : P 2 /M ff η 1 : /N η 2 : /M [buk 4 P 1 P 2 [wj%q!@%uk γ 1 : P 1 γ 2 : P 2 V* η 1 γ 1 σ 1 η 2 γ 2 σ 2 ff ε 1 :N B P 2 P 1 3 ε 1 N B P 2 f1 N γ 2 ε 1 P1 γ 1 ff ε 2 :M A P 1 P 2 3 ε 2 M B P 1 g1 M γ 1 ε 2 P2 γ 2 42 24 Q [ F - wj% ±"P# N B P 2 P 1 M A P 1 P 2 ε ε 1 ε 2 : +wje }ffivff#p±μ: P1 M A P 1 N B P 2 P 2 N B P 2 P 1 M A P 1 P 2 [ F - % 1 ε 1 : N B P 2 P 1 ε 2 : M A P 1 P 2 [ffiuk ZTG } η 1 ε 1 N B P 2 P 1 η 1 N + ε 1 P 1 + σ 1 P 1 /N i N + ε 1 P 1 χ9 ε 1 [ffiuk u fip ε 2 [ffiuk 2 l K kerε 1 L kerε 2 B K N B P 2 P 1 L M A P 1 P 2 4 [7 $p 32] V$P# N B P 2 +K P 1 P 1 M A P 1 +L P 2 P 2 4 ε 1 N B P 2 N * ε 1 1 NN B P 2 + K 7} ker σ 1 γ1 1 NN B P 2 + K P 1 i N B P 2 +K P 1 P 1 u fip M A P 1 +L P 2 P 2 Φ$ο 42 24 fiom ε ε 1 ε 2 : N B P 2 P 1 M A P 1 P 2 [ F - % +wje 3 P 1 P 2 [wj% ff K kerε 1 L kerε 2 B ε 1 :N B P 2 P 1 ε 2 :M A P 1 P 2 [ffiuk 7 K N B P 2 P 1 L M A P 1 P 2 ε 1 N B P 2 4 [7 $p 32] N B P 2 +K P 1 P 1 M A P 1 +L P 2 P 2 7} f1 N ε 2 P2 i ε 1 N B P 2 fn B N ε 1 1 fn B N B P 2 +K

562 b χ D 46Φ ff i 1 : P 1 N B P 2 P 1 }5Buk B σ 1 η 1 ε 1 i 1 : P 1 /N [ A- %ffiuk fl7 ker σ 1 ε 1 1 fn B P 1 N B P 2 +K P 1 χ9 ker σ 1 P 1 O σ 1 : P 1 /N [ A- % /N +wje efip B- % /M 5wJE σ 2 : P 2 /M οξ 22 M F [ WΠL] B±"μr-p: 1 F [fz;]; 2 A B Aff[fz;] ± M F [fz;] :1l A- % B M A [1l% 7 F [fz;]q M A [wj% 4 [7 2 73] Q [wj% χ9 A [fz;] u fip# B %[fz;] R A B Aff[fz;] 4 [7 2 73] Q?+1lf F - %[wj% 9 F [f z;] fl gif NH_mio+ΠRßCt-! k ρfi [1] Auslander M Reiten I and Smalø SO Representation Theory of Artin Algebras Cambridge: Cambridge Univ Press 1997 [2] Goodearl KR Ring Theory: Nonsingular Rings and Modules New ork: Marcel Dekker 1976 [3] Green EL and Psaroudakis C On Artin algebras arising from Morita contets Algebr Represent Theor 214 175: 1485-1525 [4] Haghany A and Varadarajan K Study of formal triangular matri rings Comm Algebra 1999 2711: 557-5525 [5] Haghany A and Varadarajan K Study of modules over formal triangular matri rings J Pure Appl Algebra 2 1471: 41-58 [6] Kasch F and Wallace DAR Modules and Rings London: Academic Press 1982 [7] Krylov PA and Tuganbaev AA Modules over formal matri rings J Math Sci 21 1712: 248-295 [8] Krylov PA and ardykov E Projective and hereditary modules over rings of generalized matrices J Math Sci 29 1636: 79-719 [9] Lam T Lectures on Modules and Rings Grad Tets in Math Vol 189 New ork: Springer-Verlag 1999 [1] Tang GH Li CN and Zhou Q Study of Morita contets Comm Algebra 214 424: 1668-1681 [11] Tang GH and Zhou Q A class of formal matri rings Linear Algebra Appl 213 43812: 4672-4688 [12] ardykov E The dual basis of projective modules over generalized matri ring Bull Tomsk State Univ 27 3: 18-11 The Dual Basis of Some Projective Modules Over a Formal Matri Ring and Its Application U Qingbing 1 ZHANG Kongsheng 2 WANG Zhengping 1 1 Department of Basic Courses Chuzhou Institute of Technology Chuzhou Anhui 239 P R China; 2 Department of Mathematics Southeast University Nanjing Jiangsu 2196 P R China Abstract: The dual basis is an important tool for studying projective module internal structure In this paper the projective module over the formal matri rings are characterized by the dual basis Also the sufficient and necessary conditions are found for an F module to admit a projective cover Keywords: projective module; dual basis; projective cover