Answers. Answers. 1 Consumer arithmetic

Σχετικά έγγραφα
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Chapter 8 Exercise 8.1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Sheet H d-2 3D Pythagoras - Answers

Answers to practice exercises

Homework 8 Model Solution Section


-! " #!$ %& ' %( #! )! ' 2003

! " #$% & '()()*+.,/0.

Παρατηρήσεις στα ϑέµατα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"


! " #! $ %! & & $ &%!

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Solutions Key Circles

Matrices and Determinants

!"!# ""$ %%"" %$" &" %" "!'! " #$!

DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

M p f(p, q) = (p + q) O(1)

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Evaluation et application de méthodes de criblage in silico

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Review Exercises for Chapter 7

Ax = b. 7x = 21. x = 21 7 = 3.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Το άτομο του Υδρογόνου

Rectangular Polar Parametric

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

Quadratic Expressions

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

/&25*+* 24.&6,2(2**02)' 24

Section 8.3 Trigonometric Equations

. visual basic. int sum(int a, int b){ return a+b;} : : :

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MÉTHODES ET EXERCICES

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

ITU-R P (2012/02) &' (

Cyclic or elementary abelian Covers of K 4

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Διευθύνοντα Μέλη του mathematica.gr

MICROMASTER Vector MIDIMASTER Vector

rs r r â t át r st tíst Ó P ã t r r r â

March 14, ( ) March 14, / 52

tel , version 1-7 Feb 2013

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Microcredit: an answer to the gender problem in funding?

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

HONDA. Έτος κατασκευής

AE F F E C F E D ABC D


! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

TALAR ROSA -. / ',)45$%"67789

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ELEMENTS BOOK 2. Fundamentals of Geometric Algebra

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

ABCDA EF A A D A ABCDA CA D ABCDA EF

ITU-R P (2012/02)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Fractional Colorings and Zykov Products of graphs

Logique et Interaction : une Étude Sémantique de la

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

Trigonometric Formula Sheet

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

A note on special cases of Van Aubel s theorem

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Statics and Strength of Materials


SENIOR GRAAD 11 MARKS: PUNTE:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Batigoal_mathscope.org ñược tính theo công thức

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Integrability condition for higher rank Killing-Stäckel tensors. Kentaro Tomoda

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Transcript:

Answers Consumer arithmetic Eercise. a $, b $, c $, d $, e $, f $, g $., h $. a $, b $ a $, b $., c $., d $9.9 a $, b $, c $., d $. a $9., b $., c $., d $. a $., b $., c $., d $. a $9., b $. a $, b $ 9a $, b $, c $ $. $ $ ears 9 months % p.a..% p.a. a % p.a., b % p.a., c % p.a., d % p.a. months 9 das Eercise. a Year Opening balance Interest Closing balance st $ $. $ nd $ $. $ rd $ $. $ 9. b $9. a Balance = $9.; Interest = $., b Balance = $.; Interest = $. a $., b $. a $., b $., c $9.9, d $.9, e $., f $.9, g $., h $. a $9., b $.9, c., d $9., e $.9, f $99., g $9., h $. a $., b $., c $., d $.9 a $., b $9.9, c $.9, d $9., e $9., f $., g $., h $., i $. a $ 9., b $9. 9 $ 9. a $.9, b $.9 Christine, $. B A, $. $. Value = $.; Interest = $. a $9, b $, c $ 9 a $., b $., c $., d $. 99 9 9 $ $ $ a $, b $, c $, d $ Eercise. $ a $9, b $9, c $, d $ $ $ $ a $, b $ 9a kl, b 9 kl 9 a $ 9, b $ $9 ears ears ears $ $ % 9 a 9%, b $ Eercise. $. a $., b $. a $, b $ a no, b $. $9. a $, b $ a $, b.% 9 $ B, $ a $, b $9, c $9. a $ 9, b $.9 a $, b $, c $., d $., e $9. a $, b $, c $9., d $ 9., e $. a $, b $, c % 9.% 9.% Eercise. a April, b, c.9%, d $, e $9, f $., g $., h $., i $, j $. a.% p.a., b.% p.a., c.% p.a., d.% p.a., e.% p.a., f.9% p.a. a $., b $., c $., d $. a $., b $., c $., d $9. $. a $.9, b $9.9 a.%, b, c $.9 a $., b $., c $9.9 9a $, b $. a Yes, b $, b $. $. Answers

Mathscape Etension Eercise. a $., b $., c $., d $.9, e $., f $. a $., b $9., c $., d $., e $., f $. ai $, ii $, bi $9., ii $9., ci $, ii $, di $9., ii $. a $, b $, c $, d.% a $, b $, c.9% p.a. a $, b.%, c.% p.a. a Sunshine Bank, $ $ 9 $ a $, b $ 9, c.9% p.a. a No, a month is longer than fortnights. b -- ears, c $, d The loan is paid off more quickl and the amount of interest paid is reduced. ai $9, ii $9 9., iii $9., iv $ 99., b Yes, the repament is greater than the monthl interest. c No, the repament is less than the monthl interest. a $., b Increase the size of the repaments. Chapter Review a $, b $., c $9., d $. $ a $, b $.9, c $. a $., b $. $ % p.a. a $, b $, c $. Balance = $9.9, Interest = $9.9 9 a $., $., b $9., $9., c $., $., d $9., $., e $., $9., f $., $. a $., b $., c $., d $. a $., b $., c $.9, d $ 9., e $9., f $. a $ 9., b.% p.a. B, b $. A, b $. $ $. a $, b $, c $ a $, b $, c $, d $9 9 $ a $, b $ 9 ears a $, b no a $, b $, c.% p.a. a $9, b $ 9, c $ a $, b $, c $, d $. a $9, b $9, c % p.a. a $., b $. $. 9 a $., b $., c $., d $. a $9., b $., c $ a $, b $, c $, d.% p.a. $9 a $, b $ 9, c $.% p.a. Trigonometr Eercise. a opp = QR, adj = PQ, hp = PR, b opp = EG, adj = FG, hp = EF, c opp = XZ, adj = XY, hp = YZ ai --, ii --, iii --, bi -----, ii -----, iii -----, ci -----, ii -----, iii -----, di -----, ii -----, iii -----, 9 9 ei -----, ii -----, iii -----, fi -----, ii -----, iii ----- aα, b θ, c θ, d θ, e α, f α a -----, b -----, c -----, d -----, e -----, f -----, g -----, h -----, i -----, j -----, k -----, l ----- a =, b = 9, c p =, d c =, e e =, f n = a sin θ = -----, cos θ = -----, tan θ = ----- a cm, b sin θ = -----, cos θ = -----, 9 tan θ = ----- a mm, b sin α = -----, cos α = -----, tan α = ----- 9a sin θ = -----, cos θ = -----, 9 9 9 9 9 b cos θ = -----, tan θ = -----, c tan θ = -----, sin θ = ----- sin θ = --------------------, cos θ = -------------------- + + Eercise. a, b, c, d, e, f, g, h a, b, c, d, e, f, g 9 h a., b., c., d., e., f., g 9., h., i., j., k., l. a.9, b., c. a.9, b. a, b, c, d, e, f, g, h, i 9, j, k, l a, b 9, c, d a.,., b.9,. 9a 9, b 9, c Eercise. ap =., b m =., c =., d =., e t =., f a =., g g =., h b =., i k =., j z =., k c =., l w =., m e =., n n =., o u =.9 a =., b t =., c e =., d m = 9., e c =., f v =. a. cm, b. m, c. cm, d cm m

Answers. m. m m 9 cm 9. m. cm a. cm, b cm a cm, b cm a. cm, b. cm 9 m. m. m m. m 9. m m a m, b 9 m a mm, b. mm, c mm, d mm.9 cm a. cm, b. cm,, c. cm a cm, b cm m a AD =. cm, DC =. cm, b cm a.9 cm, b 9.9 cm 9 m Eercise. a, b, c, d, e, f 9, g, h 9, i, j 9, k, l a, b, c, d, e, f, g, h 9, i 9 a 9, b, c a, b, c 9 9 a 9, b a, b 9, c, d 9 9 a, b 9, c, d Eercise. 9 a sin θ = --, cos θ = --, tan θ = --, b sin θ = -----, cos θ = -----, tan θ = -----, c sin θ = -----, cos θ = -----, tan θ = a, b, c, d a -----, b -----, c -----, d ----- a, b, c, d, e 9, f a, b, c 9 9 ----- Eercise. a b b a ai --, ii --, iii --, iv --, bi sin θ = cos (9 θ), ii cos θ = sin (9 θ) a 9, c Yes, sin θ = cos (9 θ). c c c c a sin =., b cos =., c sin =.9, d cos =.9 a =, b =, c =, d =, e =, f =, g =, h =, i =, j =, k = 9, l = a, b, c, d a =, b =, c =, d =, e =, f =, g =, h =, i =, j =, k =, l = a., b. 9 a, b tan θ, c, d tan θ, e sin θ, f cos θ, g sin θ, h cos θ, i cos θ -- Eercise. a --, b ------, c ------, d ------, e ------, f, g ------, h --, i a, b --, c, d --, e --, f -- a --, b --, c, d --, e ------, f ------, g ------, h ------, i --, j --, k --, l ------ a, b ---------, c, d, + + + + + + e ---------------, f --------------------, g ---------, h ---------------, i -- a -------------------, b --------------------------, c -------------------, + + d -------------------------------- a, b --, c, d --, e, f -- a, b, c --, d, e, f ---------, g ------, h ------ 9a, b, c, d, e, f, g, h, i a =, b k =, c t =, d n =, e u =, f e = 9 a h =, b p =, c w = a, b, c, d, e, f a cm, b cm a =, b =, c cm a cm, b cm m Eercise. aia = N E, B = S E, C = N W, ii A =, B =, C = 9, bia = S E, B = S W, C = N9 W, ii A =, B =, C =, cia = N E, B = S W, C = N W, ii A =, B =, C = a, b, c, d a 9, b a.9 km, b.9 km, c. km, d 9. km a 9. km, b. km, c. km, d. km ai 9, ii 9, bi, ii, ci 9, ii 9, di, ii ai HSP = + = 9, ii m, bi HBS = + = 9, ii. km a km, b 9a. NM, b. NM, c 9 NM, d 9 km

Mathscape Etension Chapter Review a -----, b -----, c -----, d -----, e -----, f ----- = sin θ = -----, cos θ = -----. 9 9 a, b. aa = 9.9, b p =., c z =. a. cm, b. cm 9a, b, c a. cm, b. cm, c m. m m a cm, b 9 cm C 9 a sin θ, b cos θ a, b, c 9 a =, b =, c =, d =, e =, f = a, b tan θ, c cos θ, d sin θ a ------, b --, c, d ---------, e --, f --, g, h ------ a =, b = ai N9 E, ii 9, bi S E, ii, ci S W, ii, di N W, ii a 9, b 9 a 9. km, b.9 km a. NM, b.9 km ai, ii, bi, ii a IJK = + = 9, b m a PQR = 9 + = 9, b km Volume and surface area Eercise. a cm, b cm, c.9 cm, d. cm a cm, b cm, c cm. cm a cm, b cm, c.9 cm a 9 cm, b cm a cm, b cm ai = 9., ii cm, bih =, ii 9 cm a cm, b cm, c cm 9a =, b cm a.9 m, b $99. a. m, b $. cm, cm, cm 9 cm cm a cm, b cm, c cm d cm Eercise. a cm, b cm a cm, b cm, c cm b cm a cm, b cm, c cm a. cm, b. cm, c. cm a. cm, b 9. cm a 9. cm, b. cm b 9 cm, c. cm Eercise. a. cm, b. cm, c. cm, d 9. cm a π cm, b 9π cm a. cm, b 9. cm, c 99. cm, d.9 cm, e. cm, f. cm a 9. cm, b. cm, c cm a cm, b π cm, c π cm, d 9. cm a. cm, b 9. cm aa = πr + πrh, b mm a 9 cm, b cm 9a. m, b $. a 9π m, b π m, c.π m, d. m $. a 9 cm, b cm, c cm, d 9 cm cm π cm Eercise. a π cm, b π cm, c π cm a. cm, b. cm, c. cm, d. cm, e 9. cm, f. cm a cm, b cm, c cm, d 99 cm, e cm, f cm a π cm, b π cm, c π cm, d π cm a. cm, b. cm, c. cm a 9π cm, b π cm a 9 cm, b cm, c cm a. cm, b.9 cm, c. cm 9a = 9, S.A. = cm, b =, S.A. = cm, c = 9.9, S.A. = cm km a cm, b 9 cm a cm, b π cm cm : a cm, b 9 cm, c cm, d cm, e cm, f cm 9π cm Eercise. a units, b units, c 9 units a cm, b cm, c cm, d 9 cm, e 9. cm, f. cm a cm, b cm, c cm a cm, b cm, c 9 cm, d cm a. m, b. m, c. m a cm, b. cm, c 9. cm, d. cm a m, b 9 m, c m, d m, e. m, f. m a cm, b cm, c cm 9a 9 cm, b mm a mm, b m, c. cm a cm, b m, c mm a 9 cm, b mm, c. cm, d. m ai =., ii 9. cm, bip =, ii. cm, cik =, ii 9. cm a m, b m, c m, d. m, e. m, f m, g. m, h 9 m, i m a cm, b cm units

Answers Eercise. a cm, b cm, c 9 cm, d cm, e cm, f cm a. cm, b 9. cm, c. cm, d 9. cm a π mm, b π mm, c π mm, d π mm a 9 cm, b 9 cm, c 9. cm, d. cm, e. cm, f. cm a m, b m a m, b m a cm, b cm, c 9 cm, d 9 cm, e 9 cm, f 99 cm a π cm, b 9 cm, c.% 9ah = cm, r = cm, b 9 cm, c.9 L. L a.9 m, b 9 L cm a π cm, b π cm Eercise. a cm, b cm, c cm, d cm, e. cm, f. cm a cm, b. cm, c cm a. cm, b m, c mm, d. cm, e. m, f. mm. cm a cm, b cm a cm, b cm, c cm, d cm a. cm, b. cm a cm, b cm 9a cm, b cm, c cm a. cm, b. cm, c cm a cm, b. cm, c cm, d. cm, e. cm, f cm. cm a cm, b =, c cm a OA = 9 cm, OB = cm, b cm, c cm, d -- Eercise. a. cm, b. cm, c. cm, d. cm, e. cm, f 9. cm a cm, b cm, c cm, d cm a π cm, b π cm, c π cm ai =, ii.9 cm, bi =, ii. cm, ci =, ii. cm a mm, b mm a mm, b mm ai cm, ii cm, bi cm, ii cm a --, b cm 9. cm a cm, b. cm a cm, b 9 cm, c 9 cm, d cm, e cm, f cm ai cm, ii 9 cm, b cm a. L, b. L. cm. cm Eercise.9 a cm, b cm, c cm, d cm, e cm, f cm a. mm, b. mm c. mm, d.9 mm a π cm, b 9π cm, c π cm, d π cm, e π cm, f π cm a m, b m, c m a cm, b cm, c cm, d cm, e cm, f cm g a 9π cm, b π cm, c. cm a cm, b cm 9 : a cm, b cm, c cm. cm a cm, b ml a r cm, b cm, c -- πr cm, d :, e π cm Chapter Review a cm, b cm cm a =, b cm cm a PE = cm, PF = cm, b 9 cm cm cm cm 9. cm. cm 9. cm a π cm, b cm. cm cm cm a. cm, b. cm cm a cm, b cm 9 a cm, b cm, c cm. mm a w =, b cm, c L.9 cm a 9 cm, b cm a cm, b.9 cm a 99 cm, b 9 cm, c cm, d cm a π cm, b π cm, c π cm a 9 cm, b.9 cm a cm, b π cm 9 a cm, b cm a. cm, b cm, c cm a 9 cm, b cm a cm, b cm, c 9 cm, d 9 cm Deductive geometr Eercise. a =, b =, c t =, d u =, e p =, f k =, g m =, h a =, i z =, j r =, k w =, l n = a =, b p =, c r =, d k = 9, e =, f f = a =, b p =, c c =, d a =, e t =, f h =, g q = 9, h k =, i s = az =, b b =, c n =, d a =, e u =, v =, f =, =, g p = 9, h v =, w =, i k =, j d =, e =, k r = 9, s =, l j =, k =, m a = 9, b =, n f =, o = 9, z = a =, =, b p =, q =, c a =, b =, d g =, e k =, f n =, g c =, h b = 9, i v = 9 aa = 9, b =, b u = 9, v =, c c =, d =,

Mathscape Etension d m =, n =, e j =, k =, f g =, h =, i = at =, b n =, c r =, d c =, e h =, f k = a es, b no, c no 9 aa =, b =, c =, b =, =, z =, c p =, q =, r = 9 a b =, b e =, c g =, d =, e t =, f n =, g s =, h w =, i = a a =, b =, b m = 9, n = 9, c p =, q =, d =, =, e c =, d =, f g = 9, h = 9, g r =, s =, h u = 9, v =, i j =, k =, j e =, f =, k p =, q =, l m =, n = a a =, b =, b e =, f =, c p = 9, q =, d u = 9, v =, e g = 9, h = 9, f v =, w =, g j =, k =, h c =, d =, i s =, t = a m =, n =, b b = 9, c =, c a = 9, b =, c =, d =, d a =, b =, c =, e =, =, z =, f = 9, =, z = = = Eercise. a, b, c, d, e, f, g 9, h, i a conve, b non-conve, c conve, d non-conve a regular, b irregular, c irregular, d regular ai rectangle, ii rhombus, b no all sides and all angles are equal in regular polgons. a, b, c, d c = 9a, b, c a, b, c, d 9 a, b Eercise. a AED = (co-interior s, AB CD) CEF = (verticall opposite s) = c XZV = (corresponding s, TU VW) VZS = (adjacent s in a right angle) = e KLN = (co-interior s, KL MN) KLJ = ( s at a point) IJL = (co-interior s, IJ KL) = g BFG = (verticall opposite s) EGD = (co-interior s, AB CD) HGD = (HG bisects EGD) = i WRS = (corresponding s, PQ RS) TRP = (WV bisects TRS) VRU = (verticall opposite s) = b PRQ = (verticall opposite s) PQR = ( sum of a ) PQU = (UQ bisects PQR) = d EFG = (co-interior s, EF HG) DEF = (alternate s, DE FG) EDF = ( sum of a ) = f CBD = (adjacent s in a right angle) CDB = (base s of an isosceles, CB = CD) DCE = (alternate s, CE BD) CED = (base s of an isosceles, DC = DE) = b LKM = ( K bisects JKM) KMN = (alternate s, KL NM) = d DIH = (corresponding s, DE FG) DEJ = (corresponding s, GH EJ) = f TUX = (adjacent s on a straight line) TUV = (sum of adjacent s) STU = (alternate s, ST UV) = h DBC = (adjacent s in a right angle) BDE = (co-interior s, DE BC) DEG = (alternate s, BD EG) DEF = ( s at a point) = a BCD = (alternate s, AB CE) BDE = (eterior of a ) = c ZXY = ( sum of a ) WXV = (verticall opposite s) VWX = (base s of isosceles, VW = VX) WVX = ( sum of a ) = e LMN = (corresponding s, JK LM) LNO = (eterior of a ) ONP = (OK bisects LNP) = g EDG = ( s at a point) EFG = ( sum of a quadrilateral) GFH = 9 (adjacent s on a straight line) = 9

Answers 9 h QRS = (alternate s, PQ RS) UTS = (opposite s of a parallelogram) STV = (adjacent s in a right angle) = j UWV = ( in an equilateral ) VWX = ( s at a point) WVY = (co-interior s, VY WX) = l IML = ( in a regular pentagon) MLN = (alternate s, LN IM) LMN = ( sum of a ) = b PQ SR (opposite sides of a rectangle are parallel) QPR = (alternate s, PQ SR) = a BC = CD (sides of a rhombus) CBD = (base s of an isosceles, BC = CD) m = c AD BC (opposite sides of a rhombus are parallel) ABC = (co-interior s, AD BC) EBC = (diagonals of a rhombus bisect s at the vertices) m = e BEC = 9 (diagonals of a rhombus are perp.) FEC = (alternate s, EF DC) BEF = 9 (adjacent s in a right angle) m = 9 i VWX = (co-interior s, UV XW) XWZ = ( s at a point) WXY = ( sum of a quadrilateral) = k OA = OB (equal radii) OAB = (corresponding s, AB CD) OBA = (base s of an isosceles, OA = OB) EOB = (eterior of a ) = a QRS = 9 ( in a rectangle) QSR = ( sum of a ) = c PT = TS (diagonals of a rectangle are equal and bisect each other) PST = (base s of an isosceles, PT = TS) PTS = ( sum of a ) QTR = (verticall opposite s) = b AEB = 9 (diagonals of a rhombus are perp.) ABE = ( sum of a ) CBE = (diagonals of a rhombus bisect s at the vertices) m = d ADC = (adjacent s on a st. line) ADB = (diagonals of a rhombus bisect s at the vertices) m = f DEF = (base s of an isosceles, DE = DF) EDF = ( sum of a ) AB DC (opposite sides of a rhombus are parallel) DAB = (co-interior s, AB DC) m = Eercise. Let AEC AED = α (adjacent s on a straight line) DEB = ( α) (adjacent s on a straight line) AEC = DEB (both equal to α) Let POR POS (PO bisects ROS) ROQ = α (adjacent s on a straight line) SOQ = α (adjacent s on a straight line) ROQ = SOQ (both equal to α) a Let ABD DBC = 9 α (adjacent s in a right angle) EBC (adjacent s in a right angle) ABD = EBC (both equal to α) b ABE + DBC = 9 + α + 9 α = Let ABD and FBC = β DBE (DB bisects ABE) EBF = β (FB bisects EBC) + β = ( s on a straight line) α + β = 9 DBF + β (sum of adjacent s) = 9 DB BF

9 Mathscape Etension Let TWX TUY (corresponding s, WX UY) YUV (UY bisects TUV) UVZ (alternate s, UY ZV) TWX = UVZ (both equal to α) Let AEF, CAE = β and ACD = γ BAE = α (co-interior s, AB EF) ( α) + β + γ = (co-interior s, AB CD) α = β + γ 9 Let ABP PBD (PQ bisects ABD) ABD (sum of adjacent s) BDE (alternate s, AB CE) BDS (RS bisects BDE) PBD = BDS (both equal to α) PQ RS (alternate s are equal) Let ABC and CDE = β Construct FC, parallel to BA and DE BCF (alternate s, BA FC) DCF = β (alternate s, FC DE) BCD + β (sum of adjacent s) BCD = ABC + CDE Let CHG GHD = α (adjacent s on a straight line) CDI = α (alternate s, GH DJ) DIE = ( α) (co-interior s, CD EF) JIF (verticall opposite s) CHG = JIF (both equal to α) Eercise. Construct DE, through B, parallel to AC DBA = BAC (alternate s, DE AC) EBC = BCA (alternate s, DE AC) DBA + ABC + EBC = ( s on a straight line) BAC + ABC + BCA = C = A + B (given) A + B + C = ( sum of a ) A + B + ( A + B) = ( A + B) = A + B = 9 C = 9 ABC is right-angled Let BAC BCA (base s of isosceles, AB = BC) DCE (verticall opposite s) DEC (alternate s, AB DE) CDE is isosceles ( DCE = DEC) Let PRS QRS (SR bisects PRQ) PRQ (sum of adjacent s) PQR (base s of isosceles, PQ = PR) PSR (eterior of QRS) PSR = PRS Construct CE, parallel to AB ECD = BAC (corresponding s, AB CE) BCE = ABC (alternate s, AB CE) BCD = ECD + BCE (sum of adjacent s) BCD = BAC + ABC Let BCA DAC = 9 α ( sum of ACD) EBC = 9 α ( sum of BCE) DAC = EBC (both equal to 9 α) Let CAB ACB (base s of isosceles, AB = BC) EBD (corresponding s, AC BE) CBE (alternate s, AC BE) CBE = EBD (both equal to α) EB bisects CBD BAD = (given) ABD = (base s of isosceles, AD = BD) DBC = (adjacent s in a right angle) BCD = ( sum of ABC) BDC = (eterior of ABD) BCD is equilateral (all s are )

Answers 9 9 Let YXW and XYW = β a XWZ + β (eterior of XYW) b WXZ (XW bisects YXZ) XZY = β (base s of isosceles, XY = XZ) XWY + β (eterior of XWZ) c XWY + XWZ = (adjacent s on a straight line) (α + β) + (α + β) = α + β = α + β = 9 XWZ = XWY = 9 XW YZ a OA = OB = OC (equal radii) b Let OAC and OBC = β OCA (base s of isosceles, OA = OC) OCB = β (base s of isosceles, OB = OC) α + β = ( sum of ABC) α + β = 9 ACB + β (sum of adjacent s) ACB = 9 Let ABG and CDG = β GBD (EB bisects ABD) GDB = β (FD bisects BDC) α + β = (co-interior s, AB CD) α + β = 9 BGD = (α + β) ( sum of a ) = 9 = 9 EB FD a BDC + β (eterior of ABD) b BCE = BAD (given) DBC = β (BD bisects ABC) DEC + β (eterior of BCE) BDC = DEC (both equal to α + β) CD = CE (equal sides lie opposite equal s) Let ABF and ACE = β EBC (EB bisects ABC) ACB (base s of isosceles, AB = AC) BEC (alternate s, AB EC) ECD = β (EC bisects ACD) α + β = (adjacent s on a straight line) α + β = 9 BFC + β (eterior of CEF) BFC = 9 AC BE a Let BAD ABD (base s of isosceles, AD = DB) DBC = 9 α (adjacent s in a right angle) ACB = 9 α ( sum of ABC) DBC = ACB (both equal to 9 α) BCD is isosceles b AD = DB (given) DB = DC (equal sides lie opposite equal s, DBC = ACB) AD = DC (both equal to DB) D is the midpoint of AC a Let ABE and BAC = β BEC + β (eterior of ABE) EBC (BE bisects ABC) BCD = (α + β) + α + β (eterior of BCD) b BAC + BCD = β + α + β = (α + β) = BEC Let UWY WUX = 9 α ( sum of UWX) VYW (base s of isosceles, VW = VY) XZY = 9 α ( sum of XYZ) UZV = 9 α (verticall opposite s) WUX = UZV (both equal to 9 α) UVZ is isosceles Let ABG and CDE = β GBC (GB bisects ABC) ABC (sum of adjacent s) BCF = α (co-interior s, AB FE) CED = β (base s of isosceles, CD = CE) ECD = β ( sum of CDE) BCF = ECD (verticall opposite s) α = β α = β GBC = CDE GB DE (alternate s are equal)

9 Mathscape Etension Eercise. a AAS, b RHS, c SSS, d SAS a es, SAS, b no, c es, RHS, d no no, AAA is not a congruence test a QR = SR (given) PR = TR (given) QRP = SRT (verticall opposite s) PQR TSR (SAS) b DF = FH (given) DEF = FGH (alternate s, DE GH) DFE = GFH (verticall opposite s) DEF HGF (AAS) c XY = XW (given) YZ = WZ (given) XZ is a common side XYZ XWZ (SSS) a AE = BE (CD bisects AB) CE = DE (AB bisects CD) AEC = BED (verticall opposite s) ACE BDE (SAS) AC = BD (matching sides of congruent s) c WXY = WZY (given) XYW = ZYW (WY bisects XYZ) WY is a common side XYW ZYW (AAS) WX = WZ (matching sides of congruent s) XWZ is isosceles e QPR = SRT (corresponding s, PQ RS) QRP = STR (corresponding s, QR ST) PR = RT (QR bisects PT) PQR RST (AAS) PQ = RS (matching sides of congruent s) g CD = DE (given) DF is a common side DFC = DFE = 9 (DF CE) CDF EDF (RHS) CF = FE (matching sides of congruent s) DF bisects CE i AB = BD (BC bisects AD) BC = DE (given) ABC = BDE (corresponding s, BC DE) ABC BDE (SAS) BAC = DBE (matching s of congruent s) AC BE (corresponding s are equal) a PQ = PR (given) QX = RY (given) PQX = PRY (base s of isosceles, PQ = PR) PQX PRY (SAS) b PX = PY (matching sides of congruent s) PXY is isosceles a ABC = ACB (base s of isosceles, AB = AC) BLC = CMB = 9 (CL AB, BM AC) BC is a common side BLC CMB (AAS) c LN = MN (matching sides of congruent s) d LM = MN (given) MK is a common side MKL = MKN = 9 (MK LN) MLK MNK (RHS) b OI = OK (equal radii) OJ is a common side OJI = OJK = 9 (OJ IK) OIJ OKJ (RHS) IOJ = KOJ (matching s of congruent s) OJ bisects IOK d OA = OD (equal radii) OB =OC (equal radii) AB = CD (given) AOB DOC (SSS) AOB = COD (matching s of congruent s) f IJL = JLK (alternate s, IJ LK) ILJ = LJK (alternate s, LI KJ) LJ is a common side IJL KLJ (AAS) IJL = KJL (matching s of congruent s) LJ bisects IJK h RS = QT (given) RT is a common side SRT = RTQ (alternate s, RS QT) RST TQR (SAS) RTS = QRT (matching s of congruent s) QR TS (alternate s are equal) j OX = OY (equal radii) XM = MY (OM bisects XY) OM is a common side OMX OMY (SSS) OMX = OMY (matching s of congruent s) But, OMX + OMY = (adjacent s on a straight line) OMX = OMY = 9 OM XY a AB = AC (given) PB = QC (P, Q are midpoints of equal sides) b PB = QC (proven above) BC is a common side ABC = ACB (base s of isosceles, AB = AC) PBC QCB (SAS) PC = QB (matching sides of congruent s) b BL = CM (matching sides of congruent s) BLN = CMN = 9 (CL AB, BM AC) BNL = CNM (verticall opposite s) BLN CMN (AAS)

Answers 9 9 a Construct AD, the angle bisector of A AB = AC (given) BAD = CAD (AD bisects BAC) AD is a common side BAD CAD (SAS) ABC = ACB (matching s of congruent s) a AC = CB (sides of an equilateral ) ACD = BCD (CD bisects ACB) CD is a common side ACD BCD (SAS) A = B (matching s of congruent s) b AB = AC (sides of an equilateral ) BAE = CAE (AE bisects BAC) AE is a common side ABE ACE (SAS) B = C (matching s of congruent s) c A = B (proven above) B = C (proven above) A = B = C But, A + B + C = ( sum of a ) A = B = C = QM = PN (given) PM = SN (given) LMN = LNM (base s of isosceles, LM = LN) QMP PNS (SAS) PQ = PS (matching sides of congruent s) PQS = PSQ (base s of isosceles, PQ = PS) b Construct AD, the angle bisector of A ABC = ACB (given) BAD = CAD (AD bisects BAC) AD is a common side ABD ACD (AAS) AB = AC (matching sides of congruent s) i Let ABC and PBC = β ABP β (b subtraction) ACB (base s of isosceles, AB = AC) PCB = β (base s of isosceles, PB = PC) ACP β (b subtraction) ABP = ACP (both equal to α β) ii AB = AC (given) ABP = ACP (proven above) PB = PC (given) ABP ACP (SAS) BAP = CAP (matching s of congruent s) PA bisects ABC i BAC = ( in an equilateral ) DAC = (adjacent s on a straight line) ACB = ( in an equilateral ) BCE = (adjacent s on a straight line) ACD = (adjacent s in a right angle) ABC = ( in an equilateral ) CBE = (adjacent s in a right angle) ii AC = BC (sides of an equilateral ) ACD = CBE = (proven above) DAC = BCE = (proven above) ACD CBE (AAS) CE = AD (matching sides of congruent s) Eercise. BAC + ABC + BCA = ( sum of ABC) DAC + ADC + DCA = ( sum of ADC) ( BAC + DAC) + ABC + ( BCA + DCA) + ADC = (b addition) A + B + C + D = a ABP = PDC (alternate s, AB DC) BAP = PCD (alternate s, AB DC) AB = DC (opp. sides of a parallelogram) APB CPD (AAS) b AP = PC (matching sides of congruent s) BP = PD (matching sides of congruent s) c the diagonals of a parallelogram bisect each other. a BAC = ACD (alternate s, AB DC) BCA = CAD (alternate s, BC AD) AC is a common side ABC CDA (AAS) b AB = DC (matching sides of congruent s) AD = BC (matching sides of congruent s) c ABC = ADC (matching s of congruent s) d the opposite sides of a parallelogram are equal, and the opposite angles of a parallelogram are equal. a BCA (base s of isosceles, AB = BC) DAC (alternate s, AD BC) b BDC = β (alternate s, AB DC) BC = CD (sides of a rhombus are equal) CBD = β (base s of isosceles, BC = CD) c the diagonals of a rhombus bisect the angles at the vertices.

9 Mathscape Etension a BCA (base s of isosceles, AB = BC) CBD = β (diagonal of a rhombus bisects the at the verte) b α + β = ( sum of ABC) α + β = 9 c BPC + β (eterior of ABP) BPC = 9 AC BD d the diagonals of a rhombus are perpendicular. a i α + β = ( sum of a quadrilateral) α + β = ii BAD + ADC + β = AB DC (co-interior s are supplementar) BAD + ABC + β = AD BC (co-interior s are supplementar) bi AB = CD (given) BC = AD (given) AC is a common side ABC CDA (SSS) ii BAC = ACD (matching s of congruent s) AB CD (alternate s are equal) BCA = CAD (matching s of congruent s) BC AD (alternate s are equal) c i AB = DC (given) BAC = ACD (alternate s, AB DC) AC is a common side ABC CDA (SAS) ii BCA = CAD (matching s of congruent s) AD BC (alternate s are equal) di AP = PC (BD bisects AC) BP = PD (AC bisects BD) APB = CPD (verticall opposite s) APB CPD (SAS) ii AB = DC (matching sides of congruent s) ABP = PDC (matching s of congruent s) AB DC (alternate s are equal) a ADP (base s of isosceles, PA = PD) ABP = β (base s of isosceles, PA = PB) b α + β = ( sum of ABD) α + β = 9 DAB + β (sum of adjacent s) DAB = 9 c ABCD is a parallelogram (diagonals bisect each other) But, DAB = 9 (proven above) ABCD is a rectangle (parallelogram with one angle a right angle). a AB = CD (opposite sides of a rectangle are equal) ABC = BCD = 9 (angles in a rectangle) BC is a common side ABC DCB (SAS) b AC = BD (matching sides of congruent s) c the diagonals of a rectangle are equal. a AP = PC (BD bisects AC) BPA = BPC = 9 (BD AC) BP is a common side ABP CBP (SAS) b AB = BC (matching sides of congruent s) c ABCD is a parallelogram (diagonals bisect each other) AB = BC (proven above) ABCD is a rhombus (parallelogram with a pair of adjacent sides equal) 9 i α = ( sum of a quadrilateral) α = 9 ii BAD + ADC + α = AB DC (co-interior s are supplementar) BAD + ABC + α = AD BC (co-interior s are supplementar) ABCD is a parallelogram (two pairs of opposite sides parallel) But, ABC = 9 ABCD is a rectangle (a parallelogram with one angle a right angle). a PBR = RDC (alternate s, AB DC) BPR = RQD (alternate s, AB DC) BR = RD (AC bisects BD) BPR DQR (AAS) b PB = DQ (matching sides of congruent s) AB = DC (opposite sides of a parallelogram are equal) AB PB = DC DQ AP = QC

Answers 9 a BDC (alternate s, AB DC) ADB (BD bisects ADC) AB = AD (equal sides lie opposite equal s) b ABCD is a rhombus (parallelogram with a pair of adjacent sides equal). a Let DBC ADB (alternate s, AB DC) FBC = α (adjacent s on a st. line) ADE = α (adjacent s on a st. line) FBC = ADE (both equal to α) b FBC = ADE (proven above) BC = AD (opposite sides of a parallelogram are equal) BF = ED (given) FBC EDA (SAS) c BFC = DEA (matching s of congruent s) FC AE (alternate s are equal) FC = AE (matching sides of congruent s) AFCE is a parallelogram (one pair of opposite sides equal and parallel). Eercise. a = 9, b a =, c t =, d m =, e u =, f e = a no, b es, c no, d es abd = cm, BC = cm, b AC = AB + BC ; ABC is right-angled. cm m cm = cm, cm, cm cm b AC = +, BC = +, c AB = AC + BC a AB = AD + BD, b CD = BC BD d In a quadrilateral in which the diagonals are perpendicular, the sum of the squares on the opposite sides are equal. Chapter Review a =, b p =, c a =, d c =, e e =, f s =, g m =, h b = a ABD + DBC = 9, AB BC, b PQS + SQR =, P, Q, R are collinear. a no, corresponding s are not equal, b es, co-interior s are supplementar, c es, alternate s are equal a, b a,, b,, c,, d,, e,, f, a, b, c a, b, c no 9 a Let ABG CDG = ABG (corresponding s, AB CD) DEF = ABG (given) CDE = DEF (alternate s, CD EF) Now, CDE = CDG (both equal to α) CD bisects GDE c Let IMH IMN = 9 + α (b addition) JIM = (9 + α) (co-interior s, IJ MN) = 9 α JIK = JIM (IM bisects JIK) = α IKL (co-interior s, IJ KL) IKL = IMH e Let GBD ABG = GBD (BG bisects ABD) BDF = 9 α ( sum of BED) CDF = BDF (FD bisects BDC) = 9 α Now, ABD + BDC + (9 α) = AB CD (co-interior s are supplementar) b Let QSR PQS = α (co-interior s, PQ RS) QST = 9 α (TS RS) TSU = 9 (9 α) (QS SU) Now, PQS + TSU =, PQS and TSU are supplementar. d Let PQS SPQ = PQS (base s of isosceles, PS = SQ) SQR = 9 α (PQ QR) PRQ = 9 α ( sum of PQR) Now, SQR = PRQ (both equal to 9 α) QRS is isosceles f Let EAC and ECA = β ABC = EAC (given) BCD = ECA (DC bisects ACB) = β AED + β (et. of ACE) ADE + β (et. of BCD) Now, AED = ADE (both equal to α + β) ADE is isosceles

9 Mathscape Etension a i AB = BC (given) OA = OC (equal radii) OB is a common side OAB OCB (SSS) ii AOB = COB (matching s of congruent s) OB bisects AOC b i PQS = QSR = 9 (alternate s, PQ SR) PS = QR (given) QS is a common side PQS RSQ (RHS) ii PSQ = RQS (matching s of congruent s) PS QR (alternate s are equal) PQ SR (given) PQRS is a parallelogram (opposite sides are parallel) c i XWZ = XYZ (given) XZW = XZY (XZ bisects WZY) XZ is a common side XWZ XYZ (AAS) ii XW = XY (matching sides of congruent s) WXY is isosceles a PQ = SR (opposite sides of a parallelogram) PQT = RST (alternate s, PQ SR) PTQ = STR (vert. opp. s) PQT RST (AAS) b PT = TR (matching sides of congruent s) QT = TS (matching sides of congruent s) the diagonals bisect each other d i CD = EF (given) DCE = FEG (corresponding s, CD EF) CE = EG (EF bisects CG) CDE EFG (SAS) ii DE = FG (matching sides of congruent s) a KN = LM (opposite sides of a rectangle) KNM = LMN = 9 ( s in a rectangle) NM is a common side KNM LMN (SAS) b KM = LN (matching sides of congruent s) diagonals of a rectangle are equal a XY = YZ (sides of a rhombus) a diagonals bisect each other XZY = ZXY (base s of isosceles, XY = YZ) b SW is a common side SWV = SWT = 9 (SU VT) WXZ = XZY (alternate s, WX ZY) VW = WT (SU bisects VT) SVW STW (SAS) Now, WXZ = ZXY (both equal to α) c SV = ST (matching sides of congruent s) ZX bisects WXY STUV is a rhombus (parallelogram with a pair of b WX = XY (sides of a rhombus) adjacent sides equal) XWY = XYW (base s of isosceles, WX = XY) = β α + β = ( sum of WXY) α + β = 9 WAX + β (eterior of XAY) = 9 XZ WY a AB = AC (given) BR = CS (R, S are midpoints of AB, AC) b BR = CS (proven above) ABC = ACB (base s of isosceles, AB = AC) BC is a common side RBC SCB (SAS) c CR = BS (matching sides of congruent s) d TR = TS (given) CR TR = BS TS TB = TC BTC is isosceles AC = AB + BC AD = AC + CD = AB + (AB) = AB + (AB) = AB = 9AB AD = AB MP LP a -------- = ------- (given) LP PN a LP ------ = ------ LP b LP = ab LP = ab b LM = a + ab, LN = b + ab c LM + LN = a + ab + b + ab = a + ab + b = (a + b) = MN LMN is right-angled (converse of Pthagoras theorem)

Answers 9 Factorisation and algebraic fractions Eercise. + + a + + +, b pq p + q, c uv u v + a + +, b m + m +, c u + u, d b + b, e a a, f t t +, g c c +, h z z +, i d + d, j + +, k m + m +, l a a, m g g +, n t t, o n + n, p r + r +, q k + k, r v v + a + +, b p + p +, c a + a +, d t 9t +, e b b +, f c c +, g z + z, h d d, i s + s, j e + e, k u + u, l k k, m f + f +, n w w, o r r +, p g + g, q h + h, r v + v +, s q q +, t m + m, u i 9i, v l + l, w 9, j j + a 9a aa + ab + b, b m + mn + n, c g gh + h, d p pq + q aa + a + 9, b p p +, c c + c +, d t t +, e u u +, f k + k +, g s + s + 9, h p p + 9a + + 9, b 9t t +, c m + m +, d c c +, e 9 g + g, f + r + r, g 9p pq + q, h 9a + ab + b, i e ef + f, j c + cd + d, k 9g gh + 9h, l j + jk + k, m p q + pqr + r, n a b abcd + 9c d, o + + ---- a no, b es, c no, d es, e es, f no, g no, h no, i es a, b p, c +,, d a, a, e k +,, f u,, g b, h e +, e, i n +,, j z, 9 a m n, b p, c r, d 9 g, e 9, f w, g t, h k, i b, j e 9, k r, l 9c, m 9h, n n, o p q, p 9z, q 9s t, r a b c a a + 9a +, b t, c p p +, d e e +, e a + a +, f + +, g m, h + 9, i k k +, j c, k h +, l m a + + +, b a a + a, c k + k + k +, d n n n +, e p + p + p + 9, f + 9, g t + t + t +, h e 9e + e Eercise. a (c + ), b (m + ), c ( + e), d ( + ), e (g ), f (k ), g (9 r), h ( t), i ( + ), j (m n), k (p + q), l (f g), m ( + z), n b(a c), o m(m + ), p c(c ) a (n + ), b (b + ), c ( ), d (u ), e (p + ), f (g ), g (w + ), h (z ), i (h ), j (d + ), k (q ), l (f ), m ( 9k), n ( + 9v), o ( a), p ( s) a ( + z), b p(q + r), c g(f h), d c(d e), e j(i + k), f n(m p), g v(u w), h t(s + u), i b(b + ), j a(a ), k q(q ), l u( + u), m pq(r + s), n de(c f), o ( + ), p ab(c b), q fg(g fh), r k(j + km), s tu(u + tv), t gh(gh i) a (p + q + r), b a(b + c d), c ( + z), d (e + f + g), e (m m + n), f ( v v ), g (c c + ), h a(b + b ), i r(r s ), j ( z + ), k i(j + i k), l z( z), m pq(p + + q), n rs(9 s r), o abc(a + b c) a (k + ), b (n + ), c (c + ), d (w + ), e ( ), f 9(d ), g (m ), h (g ), i 9( + ), j ( e), k ( + z), l ( 9t), m d(c + e), n j(i k), o a(a + ), p v( v), q n(n ), r b( + b), s f( 9e), t cd(c + d) am ( + m), b ( + ), c t ( t ), d ( ), e a ( + a ), f g ( g ), g u (u + ), h h ( h), i c (c + ), j g (g + ), k q ( q ), l z (9z ) Eercise. a 9, ( + )( ), b, ( + )( ) a (p q)(p + q), b (c d)(c + d), c (m n)(m + n), d (u v)(u + v) a ( )( + ), b (a )(a + ), c (p )(p + ), d ( )( + ), e (z )(z + ), f (c )(c + ), g (t )(t + ), h (b 9)(b + 9), i ( k)( + k), j ( g)( + g), k ( m)( + m), l ( u)( + u) a (e )(e + ), b (h )(h + ), c ( s)( + s), d (9 j)(9 + j) a (a )(a + ), b (p )(p + ), c (q )(q + ), d (c )(c + ), e ( )( + ), f ( r)( + r), g ( u)( + u), h ( 9t)( + 9t), i (a b)(a + b), j ( )( + ), k (e f)(e + f), l (j k)(j + k), m (g h)(g + h), n (m n)(m + n), o (p q)(p + q), p (s t)(s + t), q (ab c)(ab + c), r (p qr)(p + qr), s ( z)( + z), t (ef 9gh)(ef + 9gh) a (m )(m + ), b (a )(a + ), c (t )(t + ), d ( )( + ), e ( )( + ), f ( p)( + p), g ( e)( + e), h ( z)( + z), i (n )(n + ), j (c )(c + ), k ( f)( + f), l (k )(k + ), m a(a )(a + ), n n ( n)( + n), o d(d )(d + ), p u( u)( + u), q h(h )(h + ), r w(w )(w + ), s s( s)( + s), t j(j )(j + ) a (a )(a + ), no each factor still has a common factor of. b (a )(a + ) a 9(k )(k + ), b (c )(c + ), c ( )( + ), d (e f)(e + f) 9 a, b 9, c a (a + b c)(a + b + c), b (m n p)(m n + p), c ( + )( + + ), d (j k )(j k + ), e (b )(b + ), f p(p + ), g (m + n )(m + n + ), h (c d )(c d + ), i (p + q r)(p + q + r)

9 Mathscape Etension Eercise. a (c + d)(a + b), b ( + )( + ), c (p )(n + ), d ( + )(w z), e (t )(t 9), f (a )(g h), g (q + r)(p + s), h (a + )( c), i ( + )(mn ), j (d + e)(u + ), k (p q)( + w), l (i j)(h ), a (m + n)(k + ), b (c + d)(a + b), c (p + q)(p + ), d (w + )( + ), e (e )(c + d), f (h )(g + ), g (v + )(u + ), h ( + )( + a), i (n )(m + p), j (k + h)(g + ), k (r + )(pq + ), l (m + p)(n + ), m (a b)( + c), n (e + f)( + e), o (a + )(a + ) a (c + d)( e), b (q + s)(p r), c (p q)(p ), d ( )( ), e (h + i)(g ), f (u v)( w), g ( )( ), h (k + )(k m), i (m )(jk ), j (p q)(n ), k (z w)(z u), l ( + )( z) a ( + z)( + w), b (p + q)(r + ), c (n + p)(m + k), d ( + )(z + ), e (d + )(c + ), f (e + )(f + ) a ( )( ), b (z )( z), c (b c)(a + b), d (a b)(a b), e ( n)(m + n), f (m n)( + p), g (v w)(u + w), h (d c)(e ), i ( )(w ), j (c d)(c + d), k (q r)(p q), l (s t)(9r + s) a ( + )( + + ), b (m )(m + n), c (k )(k + m), d (a + b)(a + b + c), e ( )( w), f (g + h)(f + g + h) a (c d)(c + d + ), b (p q)(p q + r) Eercise. a,, b,, c,, d,, e,, f,, g,, h, 9, i,, j,, k,, l 9, bia >, b >, ii a <, b <, iii a >, b <, iv a <, b > a ( + )( + ), b ( + )( + ), c (u + )(u + ), d (m + )(m + ), e (a + )(a + ), f (t + )(t + ), g (k + )(k + ), h (p + )(p + ), i (n + )(n + 9), j (d + )(d + ), k (s + )(s + ), l (b + )(b + 9), m (e + )(e + ), n (c + )(c + ), o (r + )(r + ), p (z + )(z + ) a (m )(m ), b (q )(q ), c (d )(d ), d (a )(a ), e (u )(u 9), f (e )(e ), g (n )(n ), h (w )(w ), i (h )(h 9), j (v )(v ), k (t )(t ), l (s )(s ), m (k )(k ), n (j )(j ), o ( )( 9), p (f )(f ) a ( + )( ), b (d + )(d ), c (a + )(a ), d (p + )(p ), e (v )(v + ), f (u 9)(u + ), g (m )(m + ), h ( )( + ), i (f + )(f ), j (w 9)(w + ), k (k 9)(k + ), l (c + )(c ), m (z )(z + ), n (i + )(i ), o (r )(r + 9), p (e )(e + ), q (s + )(s ), r (h + )(h ), s (b )(b + ), t (t + )(t 9) a (n )(n ), b (c + )(c + ), c ( )( + ), d (d + )(d ), e (q + )(q + ), f (t )(t ), g (v + )(v + ), h (j )(j + ), i (g )(g + ), j (b + )(b + ), k (r 9)(r + ), l (u )(u ), m (e + )(e + ), n (l )(l + ), o ( )( ), p (p + )(p ), q (z )(z + ), r (a + )(a ), s (f )(f ), t (m + )(m + ), u (w 9)(w + ), v (k + )(k + ), w (h )(h ), (i + )(i ) a (p + ), b (c + ), c (g ), d ( ), e (t + ), f (r ), g ( 9), h (j + ) a (m )(m ), b (k + )(k + ), c (a + )(a ), d (c 9)(c + ), e (t )(t ), f ( )( + ), g (d )(d ), h (n + )(n ), i ( )( + ) 9a +, b g + a ( )( + )( )( + ), b ( )( +)( )( + ), c ( )( )( + ), d ( +)( )( + ), e ( + )( )( + ), f ( )( + )( )( + ), g ( )( )( + ), h ( )( + )( )( + ), i ( )( + )( )( + ), j ( )( )( + ), k ( + )( )( + ), l ( )( + )( )( + ) Eercise. B C D A a ( + )( + ), b ( + )( + ), c ( + )( + ), d ( + )( + ), e ( + )( + ), f ( + )( + ), g ( + 9)( + ), h ( + )( + ), i ( + )( + ), j ( )( ), k ( )( ), l ( )( ), m ( )( ), n ( )( ), o ( )( ), p ( )( ), q ( )( ), r ( )( ) a ( )( + ), b ( + )( ), c ( )( + ), d ( )( + ), e ( + )( ), f ( + )( ), g ( + 9)( ), h ( + )( ), i ( )( + ), j ( + )( ), k ( )( + ), l ( + )( ), m ( )( + ), n ( )( + ), o ( )( + ), a (k + )(k + ), b (c + 9)(c ), c (n 9)(n ), d ( + )( ), e (p )(p ), f (a + )(a ), g (b + )(b + ), h (u )(u + ), i (w + )(w ), j (h + )(h + ), k (j )(j + ), l (l )(l 9) a (a + )(a + ), b (n )(n ), c (k + 9)(k ), d (p )(p + ), e (c + )(c + ), f (e )(e + 9), g (t )(t ), h (b )(b + 9), i (m )(m ), j ( + )( + ), k (9w + )(w ), l (q )(q + ) 9a ( )( + ), b ( a)( + a), c ( p)( + p), d ( m)( m), e ( + g)( + g) f ( w)( + w) a (k + )(k + ), b (p )(p ), c (a + )(a ), d (v + )(v ), e (f )(f ), f (e )(e + ) a a +, b n + 9 a ( + )( + ), b ( )( ), c ( )( + ), d ( + )( ), e ( )( ), f ( )( + ) Eercise. a (e + ), b (a )(a + ), c (m + )(m + ), d (n + )(n + p), e ( + )( + ), f ( k)( + k), g ( ), h (t )(t ), i (w + ), j (p )(a + ), k ( + ), l (q )(q ), m (g h)(g + h), n (j k), o (u )(u + ), p (b + )(b + ), q t(t 9u), r (c )(c + ), s ( )( + 9), t fg(e + h), u (h + )(h ), v (v w)(v + w), w (g )(m ), (f )(f + ) a 9p(q + p), b ( )( + ), c (e f)(e + f), d (b + )(b ), e (g + h)( i), f ( ), g (z + )(z ), h (pq r)(pq + r), i ( k)( + k), j ( kl)( + kl), k (m + )(m n), l (s )(s 9), m 9(h )(h + ), n ( + )( ), o ( j)( k),

Answers 99 p n(n )(n + ), q (a + b)(a + b + c), r ( + t)( + t ), s (u + ), t (f )(f + ), u (a b)( + c), v a(a + b ), w k(k + 9)(k ), v(u + )(u ) a ( + )( + + z), b (t + )(t )(t + ), c (w )(w + )(w )(w + ), d b (a c)(a + c), e ( + n )( n)( + n), f ( + )( ), g (a + b + c + d)(a + b c d), h (a )(a + )(a b), i ( )( + )(g + ) Eercise. a t k m c a q p b g e a --, b --, c -----, d ------, e -----, f -----, g --, h -----, i --, j --, k --, l --, m -----, n -----, o -----, p u, q --, d g c s g s v r d a t r ---, s -----, t -------- a +, b k, c m +, d --------------, e -------------, f b + c, g -----------, h +, i -------------, w c v w t c d n + m g h a j --------------, k ----------------, l -----------------, m --, n --, o --, p -- am +, b -----------, c -----------, d --------------, e t +, p g z + n p q w + c e + z 9 s f h +, g -------------------, h ------------ a +, b a, c ------------, d -----------, e ----------, f -------------, g -------------, h -------------, ( k ) p+ q n c e z s + d + p + k + h + 9 v + k + u + i ------------------- a +, b --------------, c ---------------, d --------------, e --------------, f -------------- ap + q, b ------------, c -----------, ( d ) r k + h v m + v w + b c n p d -----------, e -------------------, f a, b, c, d, e a, f, g, h, i ( a + ) n ------------ c 9 s g ( + k) -- -- ---------- ---------- ----------- ---------------------- + p k + g Eercise.9 9c eq mn s d ( b ) ( ) a -----, b --, c -----, d -----------, e ------, f -----, g ----, h -------- a, b --, c -------------------, d --, e -------------------, 9 cp 9t 9c 9 ( k + ) ac ca ( + b) f ------------------- a --, b --, c ----------, d u m a + s t 9 ---------------------, e --------, f -------- a -----------, b --, c ------------------, d -----------, ( k + ) c 9 t n ( t ) c + n + r + a+ b bb ( ) ( w + ) e --, f -----------, g -----------, h -----------, i -----------, j -------------------, k a + e + c+ d ----------------------, l -----------, m -----------, n ----------- k c + n r ab w a e d n + ( a ) z + r m + q a --, b -----------, c --, d ----------------------, e -------------, f --, g --, h ----------, i ------------, j -----------, k -----------, l -----, m, k n + z r m q + v c + n n ----------------- a -----, b --, c -----------, d ---- c 9 z q Eercise. z a m k 9 f + 9n 9t + b + a ----, b -----, c ---, d --, e -----, f ---------, g -----, h ----- a --------------, b -----------------, c ----------------, d -----------------, 9u k + z 9 + + + + e --------------, f ------------- a -------------------, b ---------------------------------, c ---------------------------------, d -------------------, e ---------------------------------, ( + ) ( + ) ( ) ( + ) ( + ) ( + ) ( + ) ( + ) + + + 9 f ---------------------------------, g -------------------, h -------------------, i ---------------------------------, j -------------------, k ---------------------------------, l --------------------------------------- ( ) ( + ) ( + ) ( + ) ( ) ( + ) ( + ) ( + ) ( + ) ( ) ( ) a + + ---------------------------------, b ---------------------------------, c + + + + --------------------------------- a --, b ---------------------------------, c ---------------------------------------------------, ( + ) ( + ) ( + ) ( ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) + 9 + d --------------------------------------------------, e ------------------------------------, f --------------------------------------------------, g --------------------------------------------------- ( + ) ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + ) ( + ) 9 + h --------------------------------------------------, i ------------------------------------------, j ------------------------------------------------------, k -------------------------------------------------- ( ) ( + ) ( + ) ( ) ( ) ( + ) ( ) ( + ) ( ) ( ) ( + ) l + + + + ------------------------------------ a ----------------------, b ----------------------, c ---------------------------------, d ------------------------------------, ( ) ( + ) ( + ) ( + ) ( ) ( + ) ( ) ( + ) + + + 9 + e --------------------------------------------------, f --------------------------------------------------, g ---------------------------------------------------, h --------------------------------------------------, ( ) ( + ) ( + ) ( ) ( ) ( + ) ( + ) ( + ) ( + ) ( 9) ( + ) ( + 9)

Mathscape Etension + + 9 + + i --------------------------------------------------, j -----------------------------------------------------, k ------------------------------------------------------, l ------------------------------------------------------ ( + ) ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) ( + ) ( + ) ( + ) ( ) 9 a ----------------------, b ----------------------, c ---------------------------------, d ------------------------------------, e -------------------------------------------, ( ) ( + ) ( ) ( + ) ( ) ( + ) ( ) ( + ) f --------------------------------------------------, g -----------------------------------------------------, h ---------------------------------------, i --------------------------------------------------------, ( ) ( + ) ( ) ( ) ( ) ( ) ( ) ( + ) ( ) ( + ) ( ) j -----------------------------------------------------, k ---------------------------------------------------------, l ----------------------------------------------------------- ( ) ( + ) ( 9) ( ) ( + ) ( + ) ( ) ( + ) ( ) Chapter Review a + 9 +, b m m +, c t + t, d a a a p p +, b r r am m + 9, b c + c +, + a (t + ) = t + t +, b (n 9) = n n +, c ( + ) = 9 + +, d (u ) = u u + a no, b no, c es, d no, e no, f es aa + a + 9a +, b n n +, c a 9, d u u a ( + ), b a(a + ), c (m + ), d (p q), e s(r + t), f pq(r s), g 9( ), h gh(g h), i a(b ), j c(9c + d) 9a (m n)(m + n), b (z )(z + ), c ( p)( + p), d ( r)( + r), e (w )(w + ), f (a )(a + ), g ( )( + ), h (9u v)(9u + v), i (ab c)(ab + c), j (pq rs)(pq + rs) a (z + )( + ), b (q r)(p ), c (e + f)(e ), d (k )(j ), e ( q)(p q), f ( d)(c + d) a ( + )( + ), b (b )(b ), c (e )(e + ), d (p + )(p ), e (a + ), f (q 9) a (t + )(t + ), b (m )(m ), c (c )(c + ), d (b + )(b ), e (s + )(s + ), f (d 9)(d + ) a (n )(n + ), b (v + )(v + ), c (k + ), d (e + )(e + ), e (a + )(a + b), f (h )(h + ), g (p )(p + ), h ( + z), i ( + u)( + u ), j (a b)(a + b), k (m + )(m ), l ( )( + ), m (d + e)(c ), n rs(s r + ), o (g + )(g ) a ( )( + ), b (a + )(a + ), c n(n )(n + ), d (h )(h + ), e a(b )(b ), f (u + )(u + ), g (z )(z + ), h ( )( ) t a p a --, b -----, c -----, d -- d v q h + k + p b c a e +, b -----------, c -----------------, d --, e u +, f --------------, g -----------, h -----------, i ---------------, j --------------, k, a + 9 + k + p a c a c a + h + l --------------- a -----------, b ----------, c --, d -------------- a -----------------, b --------------, c -------------------, d + ---------------------------------, a c + ( + ) ( ) ( + ) e + 9 + + + --------------------------------- 9 a ------------------------------------, b --------------------------------------------------, c --------------------------------------------------, ( + ) ( + ) ( + ) ( ) ( ) ( + ) ( + ) ( ) ( 9) ( ) d + --------------------------------------------------------- ( ) ( + ) ( + ) Quadratic equations Eercise. ai, ii, iii, bi, ii, iii., ci, ii, iii --, di, ii, iii, ei, ii, iii -----, fi 9, ii 9 --, iii ----- a no, b es, c es, d no, e es, f es, g es, h no, i es, j no, k no, l es, m no, 9 n es, o es, p no a = +, b =, c =, d =, e = +, f = a = + +, b = + +, c = +, d = +, e = +, f =, g = + +, h = + a =, b =, c =, d =, e =, f = a =,, b =,, c =, a =,, b =,, c =, 9 a ( + ) cm, b =, c cm cm Eercise. a =,, b a =,, c t =,, d m =,, e k =,, f c =,, g =,, h e =,, i p =,, j n =,, k z =,, l q =,, m w =, --, n f =, --, o u =, --, p a = --,, q q = --,, r c = --,, 9 s t = --, --, t v = --, --, u b = --, -----, v =, w = 9, m = -- aa =,, b =,, c p =,, d q =,, e e =,, f g =,, g n =,, h d =,, i r =,, j h = 9, 9, k f =,, l t =,, m k =,, n m =,, o =,, p =,, q a =,, r z = 9,, s n =,, t j =,, u r =, 9,

Answers v p =, w h =, v = a =,, b c =,, c d =, 9, d k =, --, e e =, --, f m =, -----, g =, h u = -----, i t = -- a = --,, b a = --,, c p = --,, d u = --,, e = --,, f c = --,, g e = --,, h k = --,, i m = --, 9, j v = --,, k g = --,, l d = --,, m t = --, --, n h = --, --, o n = --,, p w = --, --, q u = --, --, r s = --, --, s a = --, --, t j = --, --, u z = --, -- aa =,, b p =,, c s =,, d q =,, e b =,, f u =,, g =,, h u =,, i =,, j n =,, k p =, 9, 9 l r =,, m c =,, n u =,, o m =,, p z = --,, q w = --,, r k = --, a + =, b + =, c + + =, d + + =, e =, f + =, g =, h + 9 = Eercise. 9 a 9, +, b, +, c,, d,, e 9, +, f,, g,, h, + a --, + --, 9 9 b -----, + --, c -----, --, d --, --, e --------, + -----, f -----, -- a =,, b =,, c =,, d =,, e =,, f =,, g =,, h =, 9, i =, a = ±, b = ±, c = ±, d = ±, e = ±, f = ±, g = ±, h = ±, i = ±, j = ±, k = ±, l = ± a =.,., b =.,., c =.,., d =.,., e =.9,., f =.,., g =.,., h =.,., i =.,., j =.,., k =.,., l =.,., m =.,.9, n =.,., o = 9.,., p =.,., q =.,., r =.,. a -----, + --, b -----, --, 9 9 9 9 c --------, + -----, d --, + --, e -----, --, f -----, --, g -----, + --, h -----, + --, i --------, -----, j -----, -- 9 9 a =.,., b =.,., c =.,., d =.,.9, e =.9,., f =.,. Eercise. a =,, b =,, c =,, d =,, e =,, f =,, g =,, h =,, i =,, j =,, k =,, l =, a = --,, b = --,, c = --,, d = --,, e = --,, ± ± f = --,, g = --,, h = --,, i = --, a = -------------------, b = ----------------------, ± ± 9 ± ± 9 ± ± c = -------------------, d = ----------------------, e = ----------------------, f = -------------------, g = ----------------------, h = -------------------, ± ± ± ± i = ----------------------, j = -------------------, k = -------------------, l = ---------------------- a = ±, b = ±, c = ±, d = ±, e = ±, f = ±, g = ±, h = ±, ± ± ± ± ± i = ±, j = -------------------, k = ----------------, l = -------------------, m = ----------------------, n = -------------------, ± ± ± ± o = -------------------, p = ----------------, q = -------------------, r = ---------------------- a = --, b, c It is a perfect square. a There are no solutions. b b ac if the equation has solutions. a + =, b + 9 =, c = Eercise. a =,, b =,, c =,, d =,, e =.,., f =.,., g =,, h =,, i =,, j =.,., k =.,., l =.,., m = --,, n = --,, o = --,, --

Mathscape Etension p =.,., q =.,., r =.,. a =,, b =,, c =,, d =,, e =,, f =,, g = --,, h = --,, i = --,, j =.,., k =.,., l =.,.9 9 a =,, b =,, c =,, d =,, e = --,, f = --,, g =.,., h =.,., i =.9,.9, j =.9,.9, k =.,.9, l =.,. a =,, b =,, c =, 9, d = --,, e =,, f =,, g =.,., h =.,., i =.,., j = 9.,., k =.,., l =.9,. a =,, b =,, c =,, d =,, e =,, f = --,, ± ± ± ± g = -------------------, h = -------------------, i = ----------------, j = ±, k = ±, l = ------------------- a = --,, b = --,, c = --,, d =.,., e =.,., f =.,. -- a =, = and =, =, b =, = and =, = 9, c =, = 9 and =, =, d =, = and =, =, e =, = and =, =, f =, = and =, =, g =, =, h =, = and =, =, i =, = and =, =, j =, = and =, =, k = --, = -- and =, =, l = --, = -- and =, = a =,,,, b =,,,, c =,,,, d =,, e =,, f =,, g =,,,, h =,, i =,,,, j =,, k =,,,, l =,,, 9a =,, b =,, c = ------, ------,, a =,, b =,, c =, Eercise. a,, b,, c,, d, 9, e, a, b, a,, b,, c,, d, 9,, cm cm cm a =, b cm 9a s, s, b s, c No, the greatest height is m when t =. s. m = cm, 9 cm a, b, c = --, b cm cm cm cm a A =, b m m, m m -- Chapter Review a es, b es, c no, d es, e es, f no a =, b = + a = +, b = + am =,, b =,, c t =,, d n =, --, e p =,, f k = --, -- ap =,, b u =,, c n =,, d e =,, e =,, f c =,, g =, h a =,, i q = --,, j t = --, aa =,, b t =,, c b =,, d =,, e k =,, f w = --, a =,, b = ± a =.,., b =.9,.9, c =.,., d =.,. 9a =,, b = --,, ± 9 ± c = -------------------, d = ------------------- a =,, b =.,., c =,, d =.,., e =,, f =,, g = --, a,, b,, c, 9 a cm cm, b cm = a s, b s, s, c s Graphs in the number plane Eercise. ar, b P, c P, d Q ab, b C, c A, E, d D, E ai Ton, ii Pete, iii Quentin, iv Robin, bi Quentin, Robin, ii Pete, Steve a A, D, b B, C c D, d B B C B D 9 A A A a B, b C, c A a D, b B, c C, d A

Answers a b c d Height Height Time Height Height Time Height Time Height Time a She probabl opened a new account, since the opening balance is $. b Tuesda, Wednesda, Frida, c Frida, d Thursda, e Sunda Time Time 9 a b Water level Water level Time (minutes) Time (minutes) Water level Noise level Jan. Feb. Mar. April Ma June Jul Time a b c d Distance Distance Distance Distance Time (s) Time (s) Time (s) Time (s) Eercise. a km, b Her speed increased, the line became steeper. c noon, d -- h, e km, f -- h, g km a 9 am, b km, ci km/h, ii km/h, d noon, e km, f km a km, b km, c am noon, d km, e km, f. pm, g km a km, b. pm pm, c. am, d. am, 9. am,. pm, e 9am 9. am,. am. am, f -- h, g km a am, b. am, 9. am, c km, d Steve, e km, f km, g Steve km/h, Perr km/h a km, b am,. pm, c km, d Sourav, e Irena, b km, f. pm. pm, g. km/h

Mathscape Etension a Distance (km) noon Time b km/h, c pm, d. pm, e. am,. pm a a Distance (km) 9 noon Time b h, c. pm, d km/h, e km Eercise. a b c = = + = d c + = = a d = = b e = + 9 =

Answers f g h = i j k = = = + + = = l = + am =, b =, b m =, b =, c m =, b =, d m =, b =, e m =, b =, f m =, b =, g m = --, b =, h m = --, b = a = +, b = +, c =, d = --, e = -- a = + --, m =, b = --, b = -- --, m = --, b = --, c = --, m = --, b =, d = -- + -----, m = --, b = ----- a b c = = + = +

Mathscape Etension d e f = = = g h i = = + = + j k l = = = a =, b = +, c =, d = a =, b = --, c =, d = -- 9a = +, b = +, c = +, d = --, e = --, f = -- a =, b =, c =, d =, e =, f =, g =, h = a =, b =, c =, d = a es, b no, c no, d es, e no, f es a no, b es, c es, d no, e es, f no, g es, h es a no, b es, c es, d no, e no, f es, g es, h no a c =, b g =, c m =, d z = a = +, b =, c = +, d =, e = +, f = 9, g = +, h = -- ai = 9, ii =, iii =, bi = 9, ii =,, iii =, c = + for, = + for < ai =, ii =, iii =, bit =, ii = --, --,, iii t, t =, 9