(b) (c) (d) When, where

Σχετικά έγγραφα
[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

PhysicsAndMathsTutor.com

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Example 1: THE ELECTRIC DIPOLE

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Oscillatory integrals

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Déformation et quantification par groupoïde des variétés toriques

Exam Statistics 6 th September 2017 Solution

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Analytical Expression for Hessian

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar


Laplace s Equation in Spherical Polar Coördinates

The Neutrix Product of the Distributions r. x λ

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

PID.

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

General Certificate of Education

8πε0. 4πε. 1 l. πε0 Φ =

Solve the difference equation

Optimal Placing of Crop Circles in a Rectangle

Chapter 15 Identifying Failure & Repair Distributions

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

r = x 2 + y 2 and h = z y = r sin sin ϕ

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Homework for 1/27 Due 2/5

Estimators when the Correlation Coefficient. is Negative

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

ECE 468: Digital Image Processing. Lecture 8

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

Parts Manual. Trio Mobile Surgery Platform. Model 1033

%78 (!*+$&%,+$&*+$&%,-. /0$12*343556

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

RMTP Journal of Software. Vol.13, No /2002/13(08) , )

Note: Please use the actual date you accessed this material in your citation.

arxiv: v1 [math.ap] 22 Dec 2018

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

α & β spatial orbitals in

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻

Instructor s Solution Manual Introduction to Electrodynamics Fourth Edition. David J. Griffiths

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

!"#$%&'()*+%,)-$%.')*+)-+/0&"-%.')+.'"-$%.')+

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Μαθηματική Ανάλυση ΙI

Answer sheet: Third Midterm for Math 2339

Solutions_3. 1 Exercise Exercise January 26, 2017

Synthetic Aperture Radar Processing

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Latent variable models Variational approximations.

Homework 4.1 Solutions Math 5110/6830

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Solutions Ph 236a Week 2

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

The one-dimensional periodic Schrödinger equation

Homework 8 Model Solution Section

Example Sheet 3 Solutions

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Areas and Lengths in Polar Coordinates

Fundamental Equations of Fluid Mechanics

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Tutorial Note - Week 09 - Solution

Universal Levenshtein Automata. Building and Properties

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Parametrized Surfaces

Byeong-Joo Lee

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Transcript:

. Ug Dc delt fucto the ppopte coodte, expe the followg chge dtbuto thee-dmeol chge dete ρ(x). () I phecl coodte, chge ufomly dtbuted ove phecl hell of du R. (b) I cyldcl coodte, chgeλpe ut legth ufomly dtbuted ove cyldcl ufce of du b. (c) I cyldcl coodte, chge ped ufomly ove flt ccul dc of eglgble thcke d du R. (d) The me pt (c), but ug phecl coodte. Soluto : () (b) (c) ρ() d = ρ = δ( R) = θddθdϕ ρ() d = dρ() = R = ρ = δ( R) R ρ( ) = δ( b) λ λ= ρ() ddθ= πb ρ= δ( b) πb ρ θ ( ) = δ ( z) θ ( R ) ( x) whee, f x < =, f x > ρ πr () = δ ( z) θ ( R ) (d) Whe, c ρ( ) = cδ( z) θ( R ) = cδ( coθ) θ( R ) = δ( coθ) θ( R ) = ρ() θddθdϕ= πc θ( R ) d ( co ) d( co ) cr δ θ θ = π π c= ρ() = δ( coθ) θ( R ) πr πr.4 Ech of thee chged phee of du, oe coductg, oe hvg ufom chge dety wth t volume, d oe hvg pheclly ymmetc chge dety tht ve dlly (>-), h totl chge. Ue Gu theoem to obt the electc feld both de d outde ech phee. Sketch the behvo of the feld fucto of du fo the ft two phee, d fo the thd wth = -,+.

Soluto :.., f < E d= E = ε, f > ε ρ() =, < 4 π ρ () E d = θddθdϕ 4 π E() =, f < ε 4 ε, f < ε E() =,f > ε π. ρ () = C = C d= C C = ( + ) + + + + + C C whee <, E() = C ( ) d = = ε + ε ε + ε, whe = ε E () =, whe = 5 ε +.5 The tme-veged potetl of eutl hydoge tom gve by q e α α Φ= + ε Whee q the mgtude of the electoc chge, d, beg the Boh du. Fd the dtbuto of chge (both cotuou d dcete) tht wll gve th potetl d tepet you eult phyclly. Soluto :

q α α q α α ρ= ε Φ= e + = e + α α α α e αe e αe α α α α e + = + e αe = α α α α α α α e e ( e ) ( α) e α e α e = + α α α α α α α αe α αe = e αe αe α e α e e + + + = + α α α α α e α αe αe = e + = e δ( ) + = δ( ) + α ( e δ = δ δ =, whe ) q αe qα q e 8π α ρ ε δ = Φ= + = δ.6 A mple cpcto devce fomed by two ulted coducto djcet to ech othe. If equl d oppote chge e plced o the coducto, thee wll be cet dffeece of potetl betwee them. The to of the mgtude of the chge o oe coducto to the mgtude of the potetl dffeece clled the cpctce ( SI ut t meued fd). Ug Gu lw, clculte the cpctce of () Two lge, flt, coductg heet of e A, epted by mll dtce d; (b) Two cocetc coductg phee wth d, b (b>); (c) Two cocetc coductg cylde of legth L, lge comped to the d, b(b>). (d) Wht the e dmete of the oute coducto -flled coxl cble whoe cete coducto cyldcl we of dmete mm d whoe cpctce - F/m? - F/m? Soluto : σ σ Aε AE = E = = E = E = = E d C = = ε Aε ε ε d α tot. tot. () b b εb E = E= = d C ε ε = = ε ε b b () c E πl= E= ε πε L b b L = d= C= = πε πε L πε b L

.8 () Fo the thee cpcto geomete Poblem.6 clculte the totl electottc eegy d expe t ltetvely tem of the equl d oppote chge d plced o the coducto d the potetl dffeece betwee them. (b) Sketch the eegy dety of the electottc fled ech ce fucto of the ppopte le coodte. Soluto : () Pe plte: Ad d ε A ε εa ε ε σ W = E = Ad = = = = C Sphecl: ε b bd b W = 4 d C π ε = = = = 8πε 8πε b C Cyldcl: ε b b W = πld = = = C πl εl C (b) Pe plte: ε W () = whe d, d W ( ), othewe < < = Aε Cocetc phee: ε W () = whe b, d W ( ), othewe < < = ε Cocetc cylde: ε W () = whe b, d W ( ), othewe < < = πε L.9 Clculte the ttctve foce betwee coducto the pllel plte cpcto (Poblem.6) d the pllel cylde cpcto (Poblem.7) fo () Fxed chge o ech coducto; (b) Fxed potetl dffeece betwee coducto. Soluto : () Pe plte cpcto: ε ε σ Ad d z W = E = Ad ε = = = A ε εa εa z We chooe the z decto F = W = = eˆ ε A ε A z

(b) Pllel cylde cpcto C C πε d =, the cpctce pe ut legth πε L d λ d d Lπε πε = = = = λ λ d λ z W = = = We chooe the z decto C πε πε λ z λ λ πε = W = = eˆ ˆ ˆ z = ez = e z πε πεz πε z d d = d F the foce pe ut legth (c) Pe plte cpcto: Aε Aε Aε C= = W = C = = d d z We chooe the z decto Aε Aε Aε F = W = = eˆ = eˆ z z d Aε ˆz ε = eˆz = e Aε d A Pllel cylde cpcto C πε d = z z z= d, the cpctce pe ut legth πε πε d z d W = C = = We chooe the z decto πε πε πε = = = ˆ ˆ z = e z F W e z z z z = d d d the foce pe ut legth. Pove Gee ecpocto theoem: If Φ the potetl due to volume-chge dety ρ wth volume d ufce-chge dety σ o the coductg ufce S boudg the volume, whle Φ' the potetl due to othe chge dtbuto ρ' d σ', the Φ ρ + σφ d = ρ Φd x + σ Φd Soluto :

Ψ ϕ Ψ Ψ dx= Ψ d ϕ ϕ ϕ S ϕ =Φ Let Ψ=Φ ρ ρ Φ σ Φ σ,,, ε ε ε ε Φ= Φ = = = ρ ρ σ σ d Φ Φ dx= Φ Φ ε ε S ε ε Φ + Φ = Φ + Φ ρ σ d ρ σ d S S.4 Code the electottc Gee fucto of Secto. fo Dchlet d eum boudy codto o the ufce S boudg the volume. Apply Gee theoem (.5) wth tegto vble y d Φ=G(x,y), φ= G(x',y), wth yg(z,y)=-δ(y-z) Fd expeo fo the dffeece [ G(x,x')- G(x',x)] tem of tegl ove the boudy ufce S. () Fo Dchlet boudy codto oe the potetl d the octed boudy codto o the Gee fucto, how tht G D (x,x') mut be ymmetc x '. (b) Fo eum boudy codto, ue the boudy codto (.45) fo G (x,x') to how tht G (x',x) ot ymmetc geel, but tht G (x,x')-f(x) ymmetc x ', whee F ( x) = G ( x, y) d y S (c) Show tht the ddto of F(x) to the Gee fucto doe ot ffect the potetl Φ(x). See poblem.6 fo exmple of the eum Gee fucto. Soluto : ψ φ v ( φ ψ ψ φ) dx= φ ψ d, letφ= Gxy (, ) & ψ= Gx (, y) Gx (, y) Gxy (, ) v( Gxy (, ) ygx (, y) Gx (, y) ygxy (, )) dy Gxy (, ) Gx (, y) = dy Gx (, y) Gxy (, ) v ( Gxy (, )( 4 πδ( x y) ) Gx (, y) ( 4 πδ( x y) )) dy= Gxy (, ) Gx (, y) d Gx (, y) Gxy (, ) Gxx (, ) Gx (, x) = Gxy (, ) Gx (, y) dy () Fo Dchlet boudy codto we domd (.4): GD( x, y) = fo y o S GD( x, y) GD( x, y) GD( xx, ) GD( x, x) = GD( xy, ) GD( x, y) dy GD( x, y) GD( x, y) = d y = G ( x, x ) clely ymmetc x D y

(b) G ( x, x ) Eq.(.45), = fo x o S S G( x, y) G( x, y) G ( x, x ) G ( x, x) = G ( x, y) G ( x, y) d y = G( xyd, ) y G( x, yd ) y= Fx Fx S S G ( x, x ) ot ymmetc x ButG ( xx, ) G ( x, x) = Fx Fx ( ) G ( xx, ) Fx = G ( x, x) Fx ( ) let G ( x, x ) = G ( x, x ) F( x) & G ( x, x) = G ( x, x) F( x ) G ( x, x ) = G ( x, x) G ( x, x ) = G ( x, x ) F( x) clely ymmetc x () c Φ( x) Eq Φ x = Φ + ρ x G x x + G x x d.(.46), (, ) (, ) ε v G( x, x ) G( x, x ) F( x), F( x) = G( x, y) dy S Φ( x ) Φ x = Φ + x G x x F x + G x x F x d ρ (, ) (, ) ε v Φ( x) Φ( x ) = Φ + ρ( x ) G (, ) (, ) xx dx G xx d ρ x F xdx Fxd ε + v ε v Fx Fx Φ( x ) Fx Fx Φ( x ) = Φ = Φ + Φ ( ) x ρ xdx x dx d ε v v Fx Φ( x ) F( x) Φ( x ) =Φ ( x) + d d =Φ x the ddto of F( x ) to the Gee fucto doeot ffect the potetl Φ( x).6 Pove the followg theoem: If umbe of ufce e fxed poto wth gve totl chge o ech, the toducto of uchged, ulted coducto to the ego bouded by the ufce lowe the electottc eegy. Soluto : q q q q q q E, E, + q + = the toducto of uchged, ulted coducto to the ego

Itl electottc eegy : W = ε E E : Fl electottc eegy: W ε E E : : 新加入導體的體積 不包含導體的體積 = 不包含導體的體積 P ove : W W = + W W= ε E Edx ε EEdx = ε E Ed x ε EEd x + = ε ( E E E Edx ) EEdx = ε( ( E E E Edx ) ) ε E dx ( E E) = E E + E E E E = E E + E E E E+ E E = ( E E E E) + E ( E E) ( E E E E) = ( E E) + E ( E E) = ε ( E E E E) E E = ε ( E E) + E ( E E) ε E = ε( E ( E E) ) ε E + E E 其中 = φ ( E E) ˆ d + φ ( E E) = A+ B E E E= φ E E= φ E E + φ E E S A= E E ˆ d = E E d ˆ = E E d ˆ + + φ φ φ S S S = = equl potetl o coducto ufce S = ˆ = = = + + + φ ( E E) d φ ( σ σ) d φ ( q q) S S = = = q = q, equl chge o ech coducto (o chge de ) B= φ E E = φ ρ ρ = ( E E) ˆ d φ ( E E) ε( ) ε φ + S dx= A+ B= W W = E E Edx Edx + E Edx = ε E + E E The ulted coducto to the ego lowe the electottc eegy

.7 A volume vcuum bouded by ufce S cotg of evel epte coductg ufce S. Oe coducto held t ut potetl d ll the othe coducto t zeo potetl. () Show tht the cpctce of the oe coducto gve by C = ε Φ d x whee Φ(x) the oluto fo the potetl. (b) Show tht the tue cpctce C lwy le th o equl to the qutty C [ Ψ] = ε Ψ whee Ψ y tl fucto tfyg the boudy codto o the coducto. Th vto pcple fo the cpctce tht yeld uppe boud. () W = = j= ε ε = d = d = C = C = C φ j j φ = j= C j j C= ε φ d Becue thee oly oe coducto, o =, (b) Let Ψ ( x, λ) = φ( x) + λf ( x), f ( x) bty fucto Ψ( x, λ) & φ( x) hve me B.C. Ψ ( x, λ) = φ( x) = φ( x) + λf( x) λf( x) = S S S S S [ ] C Ψ= ε φ( x) + λf( x) = C + ελ φ( x) f( x) + ε λ f( x) = ε φ x + ε λ φ x f x + ελ f x φ( x) f( x) = ( f( x) φ( x)) ( f( x) φ( x)) = ˆ ( f( x) φ( x)) d ( f( x) φ( x)) = ˆ ( f( x) φ( x)) d ( f( x) φ( x)) S S = σ S f( x) d ( f( x) φ( x)) = ( f( x) φ( x)) BC.. f( x) =, o coducto ufce S C[ Ψ= ] C ( f( x) φ( x)) + ε λ f( x) = C+ ελ f( x) φ( x) ( o chge o ) = C[ Ψ ] = ελ f( x) ε = λ =, C[ Ψ ] = C mmu λ C[ Ψ ] = C+ ελ f( x) C

.9 Fo the cyldcl cpcto of Poblem.6c, evlute the vto uppe boud of Poblem.7b wth the ïve tl fucto,ψ(ρ)=(b-ρ)/(b-). Compe the vto eult wth the exct eult fo b/=.5,,. Expl the ted of you eult tem of the fuctol fom of Ψ. A mpoved tl fucto teted by Coll(pp. 75-77). εb C=, whee b> b b ρ Ψ Ψ ( ρ) = Ψ ( ρ) = ρˆ = ρˆ, By.7(b) b ρ b b ε b ε b C[ Ψ= ] ε Ψ ( ρ) d= d = ( b ) ( b ) b C[ Ψ] = C b b b/ =.5 C[ Ψ] (.5) = =.5556 C.5(.5 ) b/ = C[ Ψ] = =.6667 C ( ) b/ = C[ Ψ] = =.44444 C ( )