Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Σχετικά έγγραφα
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Sampling Basics (1B) Young Won Lim 9/21/13

Assignment 1 Solutions Complex Sinusoids

CRASH COURSE IN PRECALCULUS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Spectrum Representation (5A) Young Won Lim 11/3/16

Trigonometric Formula Sheet

Math221: HW# 1 solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Ψηφιακή Επεξεργασία Φωνής

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Numerical Analysis FMN011

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Section 7.6 Double and Half Angle Formulas

What happens when two or more waves overlap in a certain region of space at the same time?

Areas and Lengths in Polar Coordinates

HMY 220: Σήματα και Συστήματα Ι

LTI Systems (1A) Young Won Lim 3/21/15

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Sum of Two Sinusoids by Richard (Rick) Lyons

Second Order RLC Filters

Fundamentals of Signals, Systems and Filtering

2 Composition. Invertible Mappings

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Section 9.2 Polar Equations and Graphs

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

CT Correlation (2B) Young Won Lim 8/15/14

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

HMY 220: Σήματα και Συστήματα Ι

0 2j e jπt e j2πkt dt (3)

3 Frequency Domain Representation of Continuous Signals and Systems

6.003: Signals and Systems. Modulation

Homework 3 Solutions

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Probability and Random Processes (Part II)

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

x j (t) = e λ jt v j, 1 j n

Example Sheet 3 Solutions

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

Areas and Lengths in Polar Coordinates

Differentiation exercise show differential equation

BandPass (4A) Young Won Lim 1/11/14

Nachrichtentechnik I WS 2005/2006

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +


Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Quadratic Expressions

Αθανάσιος Σκόδρας /

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

EE512: Error Control Coding

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4

Homework 8 Model Solution Section

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Ψηφιακή Επεξεργασία Φωνής

ΔΕΙΓΜΑΤΟΛΗΨΙΑ - SAMPLING -

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

COMPLEX NUMBERS. 1. A number of the form.

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Ψηφιακή Επεξεργασία Φωνής

Section 8.2 Graphs of Polar Equations

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

MATH 150 Pre-Calculus

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09

SPECIAL FUNCTIONS and POLYNOMIALS

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

6.4 Superposition of Linear Plane Progressive Waves

F-TF Sum and Difference angle

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

HMY 220: Σήματα και Συστήματα Ι

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

10.7 Performance of Second-Order System (Unit Step Response)

Transcript:

Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e st s=a+jb complex exponentials

Complex Exponential Signals s=a+jb s=σ s=±jω s=-σ ±jω e st e -σt e ±jωt e -σ±jωt exponential decay sinusoids exponential sinusoids cosθ = ejθ + e jθ characteristic functions of LTI systems x(t)=sin(ωt) Linear Time Invariant System y(t)=a sin(ωt+φ) output has same frequency as input but is scaled and phase shifted

Sinusoids θ(rad) y =sin(θ) π/6 π /4 π /3 π / π 3π/ π.5.77.866 y =cos(θ).866.77.5 Periodic y(θ)=y(θ +πn) sine odd sin(-θ)=sin(θ) cosine even cos(-θ)=-cos(θ)

Continuous sinusoids θ=θ(t) y(t)=a sin(ωt+φ) y(t)=a sin(πft+φ) Parameters: A: amplitude φ: phase (radians) ω: radian frequency (radians/sec) or f: frequency (cycles/sec-hz) Relations: ω=πf rad/sec= (π rad/cycle)*cycle/sec T:period (sec/cycle) y(t)=y(t+t) T = /f= π/ω sec/cycle= / (cycle/sec)= (π rad/cycle)/(rad/sec)

Continuous sinusoids θ=θ(t) y(t)=a sin(ωt+φ) y(t)=a sin(πft+φ) Parameters: A: amplitude φ: phase (radians) ω: radian frequency (radians/sec) or f: frequency (cycles/sec-hz) Phase shift In: x(t)=sin(t) Out: y(t)=.5sin(t-π/3) x()= y(π/3)= (t- π/3) delay of π/3 plot moves to the right

Sampled Continuous Sinusoid Continuous Sinusoid y(t) = sin(πt).8.6.4 sampled continuous sinusoids Sample rate: t = nt s T s = 5 sec y[n]=cos(*pi*n/5). -. -.4 TextEnd Discrete Sinusoid [ ] = sin(π 5 [ ] = sin( 5 π n) y n y n -.6 -.8 - n) 3 4 5 6 7 8 9 n 3 4 y[n].5.49.368.488 n - samples

Discrete sinusoids θ=θ[n] n=,, y[n]=a sin(ωn+φ) y[n]=a sin(πfn+φ) A: amplitude φ: phase (radians) ω: radian frequency (radians/sample) f: frequency (cycles/sample) Relations: ω=πf rad/sample= (π rad/cycle)*cycle/sample N:period (samples/repeating cycle [integer]) Smallest integer N such that y[n]=y[n+n] Find an integer k so N=k/f is also an integer N f f = k/n (f: rational number -> k/n is ratio of integers)

Period of a Discrete Sinusoid:ex y[ n] = sin(π n) 5 T=5 samples (integer) y[ n] = y[n + 5] sin() = sin(π)

Period of discrete sinusoids: ex ex: y[n]=cos(π(3/6)n) What is the period N?.8.6.4 period of discrete sinusoids y[n]=a cos(πfn+φ) frequency: f=3/6 cycles/sample y[n]=cos(*pi*3/6*n). -. -.4 TextEnd N:period (samples/repeating cycle [integer]) Smallest integer N such that y[n]=y[n+n] Find an integer k so N=k/f is also an integer f=3/6 let k=3 N=(3)*6/3=6-5 5 5 3 n - samples f = k/n (rational number -> k/n is ratio of integers) -.6 -.8

y[ n] = sin(π 3 n) 5 Period of discrete sinusoids: ex3. f = 3 5 cycles sample y[ n] = y[n + N] N=?? samples N: integer N f 5/3 integer

discrete function y[ n] = sin(π 3 n) 5 Period of discrete sinusoids: ex3. frequency: f = 3 5 cycles sec period: N=?? samples y[ n] = y[n + N] f N = k N, k:integers 3 5 N = k N k = 5 3 samples cycle ratio of integers rational number periodic N=5 samples, k=3 cycles

Aperiodic discrete sinusoids continuous function ( ) = sin(π t) y t T = sec sample t = nt s periodic T s = 5 sec y=sin(*pi*sqrt()/5*n).8.6.4. -. -.4 -.6 TextEnd irrational frequency discrete function [ ] = sin(π y n period? [ ] = y[n + N] y n N=?? samples (integer) n) 5 -.8 -.5.5.5 3 3.5 4 time (sec) f = 5 f N = k N,k: integers N k = 5 not a ratio of integers irrational number sampled discrete sinusoid aperiodic

Periodicity arbitrary continuous signal y(t+τ)=y(t) After what interval does the signal repeat itself? T:period (sec/cycle)

Period of Sum of Sinusoids y( t) = y( t + T)

Ex: Period of sum of sinusoids.5 -.5-3 4 5 6 T=. seconds, T=.75 seconds - - 3 4 5 6 time (sec) Tsum=? seconds

seconds to complete cycles T=.s=/5 seconds /5s, /5s, 3/5s 4/s, 8/s, /s, 6/s, /s, 4/s, 8/s, 3/s, 36/s, 4/s, 44/s, 48/s, 5/s, 56/s, 6/s 5 cycles Least common multiple /5*k=3/4*l k/l=5/4 seconds to complete cycles T=.75s=3/4 seconds 3/4s, 6/4s, 5/s. 3/s, 45/s, 6/s rational number 4 cycles Tsum=5*T=5/5=3 seconds Tsum=4*T=3/4*4=3 seconds Tsum=3 seconds

Instantaneous frequency y(θ)=sin(θ) time varying argument θ=θ(t) instantaneous frequency ω=dθ/dt sinusoid constant frequency y(t)=a sin(ωt+φ) θ=ωt+φ dθ/dt=ω chirp linearly swept frequency ω=dθ/dt ω =((ω -ω )/T)t +ω integrate θ =(ω -ω )/T t +ω t + C t ω ω Τ ω y chirp (t)=a sin((ω -ω ) /(T) t +ω t + φ)

Representations of a sinusoid y(t)=a cos(ωt+φ) y(t) = Ae jφ e jωt + e jωt [ ] y(t)=re{ae jφ e j(ωt) } trig function complex conjugates real part of complex exponential e j( θ) = e j( ωt+φ) = e jφ e jωt X= Ae jφ complex amplitude (constant) y(t)=re{xe j(ωt) } rotating phasor Add spectrum Euler s relations e jθ =cos(θ)+jsin(θ) cosθ = ejθ + e jθ sinθ = ejθ e jθ j

cartesian polar polar cartesian s=a+jb s=re jθ s = Complex Conversions a + b e j a tan( b ) a s = rcosθ + jrsinθ Complex Arithmetic Addition Subtraction cartesian cartesian ( a + jb ) + ( a + jb ) = ( a + a ) + j( b + b ) ( a + jb ) ( a + jb ) = ( a a ) + j( b b ) Multiplication polar r e jθ r e jθ = r r e j ( θ +θ ) Division polar r e jθ r e jθ = r e j ( θ θ ) r Powers polar ( re jθ ) n = r n e jnθ Roots polar z n = s = re jθ z = s / n = r / n e j θ / n +πk / n ( ) k =,Kn

Complex Exponentials Why use complex exponentials? Trigonometric manipulations -> algebraic operations on exponents Trigonometric identities cos(x)cos(y) = [ cos ( x y ) [ cos( x + y) ]] ( ) cos + cos x (x) = Vector representation (graphical) Properties of exponentials re x e y = re x+y (re x ) n = r n e nx n x x = x = x / n

Complex Exponentials Why use complex exponentials? Trigonometric manipulations -> algebraic operations on exponents Adding sinusoids of same frequency but multiple amplitudes and phases or A cos(ωt+φ )+ B cos(ωt+φ )= C cos(ωt+φ 3 ) A [cos(ωt)cos(φ )- sin(ωt)sin(φ )] + B [cos(ωt)cos(φ )- sin(ωt)sin(φ )] -[Asin(φ )+Bsin(φ )] sin(ωt) + [Acos(φ )+Bcos(φ )] cos(ωt) A. A. B. cos φ φ B. sin ω. t A. cos ω φ B. cos ω φ Re. A. e jφ... e j ω t B. e j. φ... e j ω t Re. A. e jφ B. e j. φ... e j ω t atan A. cos φ B. cos φ A. sin φ B. sin φ Re. A. cos φ j. sin φ B. cos φ j. sin φ... e j ω t Re. A. cos φ B. cos φ j. A. sin φ B. sin φ. cos ω. t j. sin ω. t Re. A. sin φ B. sin φ. sin ω. t A. cos φ B. cos φ. cos ω. t A. cos φ B. cos φ. sin ω. t A. sin φ B. sin φ. cos ω. t A. sin φ B. sin φ. sin ω. t A. cos φ B. cos φ. cos ω. t. j *sum formula for sin & cos trig id Re( )=cos Adding complex amplitudes cos + jsin

Complex Exponentials Amplitude modulation (multiply two sinusoids of different frequencies) Acos(ω t) B cos(ω t+φ)= C(cos(ω 3 t +φ )+ cos(ω 4 t +φ )) A. cos ω. B. cos ω φ A. B. cos ω. cos ω. cos φ sin ω. sin φ A. B. cos ω. cos φ A. B. cos ω. sin ω. sin φ cos ω ω cos ω ω sin ω ω sin ω ω A. B.. cos φ A. B.. sin φ cos ωs cos ωd sin ωs sin ωd A. B.. cos φ A. B.. sin φ... A B cos φ. cos ωs cos φ. cos ωd sin φ. sin ωs sin φ. sin ωd. A. B. cos ωs φ sin ωd φ or A. cos ω. B. cos ω φ A. e j. ω. e j ω. B. e j. ω φ e j. ω φ cos = complex conj mult. exponentials=add exponents... 4 A B exp j. φ ω ω exp j. φ ω ω exp j. φ ω ω exp j. φ ω ω... 4 A B. cos φ ω ω. cos φ ω ω. A. B. cos φ ω ω cos φ ω ω *sum formula for sin & cos trig id *product formula for sin & cos trig id *sum formula for sin & cos trig id cos = complex conj

Ex. ( ) Re Ae Acos πkf t + φ k n j πft +φ { } { } = Re Ae jφ e j πft { } = Re Xe j πft ( ) ( ) Ae jφ e j πft +e j πft e = X j πft +e j πft A k cos( πft + φ k ) = Re A k e πft +φ k { } = Re A k e φ k eπft 3cos π 4t + π Representations of Sinusoids Sum multiple cosines same frequency n n = Re A k e φ k { } e πft ( ) cos( π 4t π 6 ) + cos( π 4t + π 3 ) Re 3e j π e jπ 4t e j π 6 e jπ 4t + e π 3 e Re 3e j π e j π 6 + e 3 π jπ 4t e { } Re 5.34e j.545 π 4t e 5.34cos( π 4t +.545) jπ 4t n { } sum complex amplitudes

Multiply cosines of different frequencies A cos( ω t) A cos( ω t + φ) A A A 4 A A 4 A A e jω t + e jω t e j ( ω t +φ ) + e j( ω t +φ) A e jωt e j ω ( ( t +φ) + e jωt e j( ω t +φ) + e jωt e j( ω t +φ) + e jωt e j( ω t +φ) ) e j ω t +ω ( ( t +φ) + e j( ω t ωt +φ) + e j( ω t ωt +φ) + e j( ωt +ω t +φ) ) ( cos( ( ω + ω )t + φ) + cos( ( ω ω )t + φ) )

Composite signals (waveform synthesis) x(t) = A + A k ( ) = X + Re cos πkf t + φ k e j πkf t synthesize a periodic signal x(t) from a sum of a series of sinusoids - the Fourier series. f k =kf, k integer f fundamental frequency f k harmonic frequencies Note: The sum of harmonic sinusoids is periodic with a period equal to the fundamental period. ex. = 8 k odd π k k even f = 5Hz

x(t) = A + Composite signals (waveform synthesis) A k ( ) = X + Re cos πkf t + φ k 8 k odd = π k k even X = 8/(π )=.85 f =kf = 5=5 x(t) =.85cos( π5t + π) e j πkf t 8 = π k e jπ k odd k even.8.8.6.6.4.4. -. -.4 =. -. -.4 -.6 -.6 -.8 -.8 -..4.6.8.. -..4.6.8..

.8 x(t) = A + k=3 Composite signals (waveform synthesis) A k ( ) = X + Re cos πkf t + φ k 8 = π k e jπ k odd k even X 3 = 8/(3 π )=.85 f 3 =kf =3 5=75 e j πkf t x(t) =.85cos( π5t + π) +.9cos( π 75t + π).8.6.6.4. =.4. -. -. -.4 -.4 -.6 -.8 -..4.6.8.. -.6 -.8 -..4.6.8..

x(t) = A + k=5 Composite signals (waveform synthesis) A k ( ) = X + Re cos πkf t + φ k 8 = π k e jπ k odd k even X 5 = 8/(5 π )=.34 f 5 =kf =5 5=5 e j πkf t x(t) =.85cos( π5t + π) +.9cos( π 75t + π) +.34 cos( π5t + π).8.8.6.4. -. -.4 -.6 -.8 -..4.6.8.. =.6.4. -. -.4 -.6 -.8 -..4.6.8..

spectrum.8.6.45.4.35.3.453e jπ.453e jπ.4. -. -.4 -.6 -.8 -..4.6.8.. X.5..5..45e jπ.45e jπ.5 jπ.6e.6e jπ -3 - - 3f -5-75 -5 5 75 5 x(t) =.85cos( π5t + π) +.9cos( π 75t + π) +.34cos( π5t + π) +... x(t) =.85 e π e j π 5 t + e j π 5 t ( ) +.9 ( ) +.34 e π e j π 75 t j π 75 t + e ( ) +... e π e j π5 t j π5 t + e

Fourier Series For a given signal, how do we find for each k? = A k e jφ k Fourier Analysis x(t) = A + where A k ( ) = X + Re cos πkf t + φ k e j πkf t X = T T x(t)dt f :fundamental frequency T =/ f = T T x(t)e j πkt T dt

Fourier Series x(t) = t t < T x(t) = A + A k ( ) = X + Re cos πkf t + φ k e j πkf t X = T T x(t)dt.4.4 t. T = T tdt = T t T = T T = T...3.4 t.4 Mathematica: athena%add math athena%math In[]:=/T*Integrate[t,{t,,T}] Out[]:=T/ = T T x(t)e j πkt T dt

x(t) = t t < T x(t) = A + X = T = T = T = T = j T T A k te j πkt T dt Fourier Series ( jπk +) e jπk T π k π k ( jπk +) kπ π k + T π k T π k = j T πk = T πk e j π ( ) = X + Re cos πkf t + φ k T π k π k e j πkf t e jπk = ( e j π ) k = k =

Fourier Series Mathematica: In[]:= /T*Integrate[t*Exp[-I**Pi*k*t/T],{t,,T}] = T T te j πkt T dt ( I) k Pi -((- + E - ( I) k Pi) T) Out[]= ------------------------------------ ( I) k Pi E k Pi In[3]:= Simplify[%,Element[k,Integers]] e jπk = e jπk = k I T Out[3]= ---- k Pi = j T πk = T πk e j π

x(t) = t t < T x(t) = A + X = T = T πk e j π A k cos πkf t + φ k x(t) = T + T cos πkf t + π πk Fourier Series ( ) = X + Re ( ) e j πkf t x(t) = T + T π cos ( πf t + π ) + T π cos ( π f t + π ) +K f :fundamental frequency T =/ f.4 y t t.4....3.4 t.4 f = 5Hz T =/ f =.4 7 terms

x(t) = t t < T x(t) = A + X = T = T πk e j π A k cos πkf t + φ k x(t) = T + T cos πkf t + π πk Fourier Series ( ) = X + Re ( ) e j πkf t x(t) = T + T π cos ( πf t + π ) + T π cos ( π f t + π ) +K.4.4 y t t..4...4.4 t.4 Defined between <t<.4 Periodic with period.4

Fourier Series:Square Wave x(t) = t < T T t < T z t.....3.4 t.4 X = T T dt + dt T T T In[]:=/T*Integrate[,{t,,T/}]+ /T*Integrate[-,{t,T/,T}] Out[]:= X =

Fourier Series:Square Wave = T T e j πkt T dt + e j πkt T T dt T T In[]:=/T*Integrate[Exp[-I**Pi*k*t/T],{t,,T/}]+ /T*Integrate[- Exp[-I**Pi*k*t/T],{t,T/,T}] -I k Pi I k Pi -I ( - E ) I (- + E ) Out[]= ----------------- + ---------------- k Pi ( I) k Pi E k Pi In[3]:= Simplify[%,Element[k,Integers]] k -I (- + (-) ) Out[7]= ---------------- k Pi = j( + ( ) k ) kπ = j 4 k odd kπ k even = j ( ) kπ = j4 kπ = j ( + ) kπ = j ( ) kπ

x(t) = t < T T t < T X = = j 4 k odd kπ k even 4 = kπ e j π k odd k even x(t) = A + A k ( ) = X + Re cos πkf t + φ k e j πkf t. x(t) = 4 cos πf π ( t π ) + 4 cos π 3 f 3π ( t π ) +K.5 y t z t.5..5..5..5.3.35.4 t.4