cu f(x), probabilitatea ca acest semnal să aibă o anumită valoare x într-o durată de timp T 0

Σχετικά έγγραφα
PROCESAREA SEMNALELOR ÎN SISTEMELE ELECTROENERGETICE. Transmitere semnal analogic/canal stocare. Semnal analogic + zgomot. zgomot

SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β

Το άτομο του Υδρογόνου

3 Măsurarea tensiunilor şi a curenţilor electrici

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Αλληλεπίδραση ακτίνων-χ με την ύλη

Capitolul I ECUAŢII DIFERENŢIALE. 1 Matematici speciale. Probleme. 1. Să de integreze ecuaţia diferenţială de ordinul întâi liniară

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

HONDA. Έτος κατασκευής

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

!"!# ""$ %%"" %$" &" %" "!'! " #$!

SISTEME DE ORDINUL 1 MODEL, FUNCłIE DE TRANSFER, SIMULARE, IDENTIFICAREA PRAMETRILOR

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=


Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΚΑΝΟΝΙΚΩΝ ΚΑΙ ΕΠΑΝΑΛΗΠΤΙΚΩΝ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ

AMPLIFICATORUL DIFERENŢIAL

7. CONVOLUŢIA SEMNALELOR ANALOGICE

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

Parts Manual. Trio Mobile Surgery Platform. Model 1033

SONATA D 295X245. caza

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

METODE MODERNE DE PROCESARE A SEMNALELOR RADAR, BAZATE PE REPREZENTĂRI TIMP-FRECVENŢĂ


ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ÄÉÁÍüÇÓÇ

Eşantionarea semnalelor

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

Origin code number: Application: ,214,220,540,549; OPEL , B, , B.

LAPLACE TRANSFORM TABLE

Inductive Component Index. Inductance ( nh /μh / mh )

Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

Επιμέλεια: Φροντιστήρια «ΟΜΟΚΕΝΤΡΟ ΦΛΩΡΟΠΟΥΛΟΥ»

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

MÉTHODES ET EXERCICES

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ


Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

(1.1) în care am neglijat termenii de ordin superior. Al doilea termen din (1.2) este zero datorită condiţiei de echilibru (1.1).

Ερωηήζεις Πολλαπλής Επιλογής

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

Na/K (mole) A/CNK

! " #$% & '()()*+.,/0.

MICROMASTER Vector MIDIMASTER Vector

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

panagiotisathanasopoulos.gr

Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. MITSUBISHI MIC-M3019 MD MIC-2002 MD MIC-2002 MD MIC-2002 MD110166

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ :

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

Erkki Mäkinen ja Timo Poranen Algoritmit

Teorema Rezidurilor şi Bucuria Integralelor Reale

Μάθημα 10 ο. Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας. Μέγεθος ατόμων Ενέργεια Ιοντισμού Ηλεκτρονιακή συγγένεια Ηλεκτραρνητικότητα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. Αριθμός νετρονίων (n) Ca CL H Cu Ar Μαζικός αριθμός (Α) Αριθμός πρωτονίων (p + )

1. (α) Ποιες είναι οι τιμές των κβαντικών αριθμών για το ηλεκτρόνιο. (β) Ποια ουδέτερα άτομα ή ιόντα μπορεί να έχουν αυτή την ηλεκτρονική διάταξη;


Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση


a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

Problemas resueltos del teorema de Bolzano

SISTEME ELECTROENERGETICE


REFERENCE. Surge Absorber Unit. Contactor AS R 50Hz AC220V. Separate Mounting Unit. Mechanical Interlock Unit

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Κατανομή μετάλλων και αμετάλλων στον Π.Π.

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

ΛΑΜΠΕΣ LED ΛΑΜΠΕΣ CFLi (ΟΙΚΟΝΟΜΙΑΣ 80%) ΛΑΜΠΕΣ ΑΛΟΓΟΝΟΥ ECO 30 ΛΑΜΠΕΣ V I N T A G E ΛΑΜΠΕΣ ΠΙΣΙΝΑΣ - G4 /G9 - NYKTOΣ - ΚΙΤ LED ΤΑΙΝΙΕΣ LED A 05

Ημερομηνία: 18 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

Transcript:

..6 În cazl în car prrbaţa v zgomol nflnţază pţn mărma şr rapor zgomo/mnal nmnfcav, acaa poa f gnoraă în conroll procl nologc; anc cân prformanţl mp mărm şr n nvl rca rb laă în conrar ş cala prn car propagă prrbaţa pr şr, c ncar ş moll mamac al că zgomo. În ac caz volţa mărm şr poa f rmnaă acă cnoc moll clor oă că conrol ş zgomo, mnall nrar ş caracrcl ac al zgomol v..proprăţl ac al mnallor alaoar Dnaa probabla ş fncţa rparţ Pnr n mnal alaor x, fg..5.a, nmş na probabla noaza c fx, probablaa ca ac mnal ă abă o anmă valoar x înr-o raă mp f x Pr[ x x].39 obrvă că fx proporţonală c nmărl nrcţ al mnall x c orzonala corpnzăoar valor x, fg..5.b. Fncţa rparţ Fx rprznă probablaa ca mnall x ă abă valoara ma mcă câ x, rpcv F x Pr[ x x ].4 Fncţa rparţ ar proprăţl: a F - =, F = ; b o fncţ monoonă ncrcăoar, mărgnă ş connă cl pţn la ânga.

..6 x 4 - a. 8 6 gx=fx 4-4 6 x Fg..5 Dacă fncţa rparţ connă anc F x F x f x x; f x x n fx naa probabla..4 Pnr că fncţl fx, Fx n gr manvra, caracrzara n mnal alaor poa f făcă prn nrml momnlor b. Valor m ac Valoara m acă a momnl ornl, nmă ş pranţa mamacă, pnr n mnal alaor x fnş prn m xf x xf x x.4 n F x lm F x x F x.43 x rprznă probablaa ca x ă f cprn înr lml x ş x x, pnr x. -a înloc Fx c fxx, în.4.

..6 Momnl ornl al mnall alaor x fnş prn m x x F x x f x x.44 Momnl cnra ornl x calclază c rlaţa al mnall alaor M [ x x ] [ x x ] F x [ x x ] f x x.45 Momnl cnra ornl al mnall alaor x nmş pra ac mnal D [ x ] M [ x x] [ x x] F x.46 Pnr oă mnal alaoar x ş, c valorl m x, rpcv, nmş fncţ covaraţ momnl ornl al ola cov[ x, ] [ x x ] Pnr mnall x fncţa covaraţ x.47 xx cov[ x, x ] D x.48 x C aorl fncţlor ş fnş naa probabla normală a clopol l Ga fg..6. f x x.49 în car : = x, = D [x], - < < ; < < ; - < x <. obrvă că naa probabla normală mrcă faţă oronaă ş prznă o valoar maxmă pnr x =. c. Valor m mporal Valoara m mporală a n mnal x 3

..6 rmnă c rlaţa x lm x.5 fx x Fg..6 Valoara m păracă mporală a n mnal x rmnă c rlaţa x lm x.5 În rlaţl.5,.5 pnr nrvall mp lml ngrar po f conra ş la la, a la / la /. Pnr că ngrall n caţl.5,.5 aa n po calcla analc, lzază mo nmrc aproxmar a acora N x x N N N x x N N.53 n proaa şanonar, N nmărl şanoan. Fncţa aocorlaţ a n mnal x rprznă valoara m mporală a prol xx. a nmş ş valoar m al ola orn xx x x lm x x.54 car poa aproxma nmrc 4

..6 xx N x x.55 N N c, N ; Inrvall mp nmş mp corlar ş vn <, în.54 ş > în.55. Valoara fncţ aocorlar rprznă o mără a gral prvzbla ca valoara mnall x ă f gală c x. Fncţa aocorlaţ prznă proprăţl: xx lm x x xx ; xx vnţa ş în grafcl n fg..7. xx xx.56 Fncţa nrcorlaţ a oă mnal alaoar x, rprznă valoara m mporală a prol x Fg..7 x x lm x.57 ş poa rmna nmrc, pnr, N, > x N x.58 N N Fncţa nrcorlaţ ar proprăţl x x ; x x ; x xx.59 5

..6. Dnaa pcrală Dnaa pcrală a n mnal x ranformaa Forr a fncţ aocorlaţ xx a aca xx F xx xx.6 Şn fncţa na pcrală n.6 poa rmna fncţa aocorlaţ.6 xx xx ranformaa Forr a fncţ nrcorlaţ fnş fncţa na nrpcrală a oă mnal x ş. x F x x.6 conră xx lm x x x x.63 Înloc xx n.63 în rlaţa.6 obţn xx x x.64 fac cmbărl varabl =, = ş înlocc în.64. conră că conan cân varază. obţn xx x x x x X X X X Fx Dc naa pcrală a n mnal x gală c păral moll ranforma Forr a aca ;.65 6

..6 7 X xx.66 conră n m namc c fncţa ranfr, rpcv c fncţa ponr =L - {}. Ţnân ama că =, pnr <, mărma şr.67 Valoara m acă a l. ] [ con m m.68 Fncţa aocorlaţ a mărm şr rmnă c rlaţa.69. Ţnân ama rlaţl.57,.67 fncţa nrcorlaţ nr mărma nrar ş mărma şr a ml a calclază c rlaţa ] [ acă.7 M 9 laţa.7 nmş caţa Wnr opf ş con claa mol M 9.

..6 Dn.7 rzlă că fncţa nrcorlaţ τ fnă ngrala convolţ nr fncţa ponr ş fncţa aocorlaţ a nrăr, mlar rlaţ înr mărma şr ş mărma nrar, conform moll M. Moll M 9 amna n mol conn nparamrc al n m lnar ocac. În cazl mlor lnar în mp cr caţa Wnr-opf vn, prn crzara mpl.7 În omnl complx n m ocac poa f caracrza prn nrml nălor pcral nrpcral al mărmlor nrar-şr. aplcă ranformaa Forr în rlaţl.69,.7 ş obţn: F w w w w w w acă naa pcrală a mărm şr proporţonală c moll răpnl la frcvnţă a ml // ş c naa pcrală a mnall nrar. M.a F.7 8

..6 9 w w w w w w acă naa nrpcrală nrar-şr proporţonală c răpnl la frcvnţă ş c naa pcrală a nrăr.73 M.b caţa.73 nmş caţa Wnr ncn, car fac par n claa mol M. În cazl n m lnar ocac fg..3b, nrvn prbaţa alaoar v. Dacă prpn că mnall ş v n n corla, acă lm v v.74 ş ţnân ama că calclază în ac caz c rlaţa v.75 fncţa nrcorlaţ nrar-şr va rzla o în forma.7: v v v.76 Pnr n m ocac moll n poa f lza pnr a calcla valorl nanan al şr, c nma pnr a rmna nl proprăţ caracrc ac al aca

..6 Dacă prrbaţa v proc alaor raţonal, acaa poa f conraă ca fn mărma şr a n flr raţonal abl, fg..8 a căr mărm nrar n mnal alaor. Flr abl v Fg..9..3.. Mol ocac monovarabl conn p nrar-şr Pnr n m lnar monovarabl conn ocac caţa frnţală m n v b a.77 Pnr prrbaţa zgomol v alg n mol mlar părţ rmn a ml.77, forma c v r.78 Aplcân ranformaa Laplac, pnr conţ nţal nl n caţa.77 obţn P V U P Q a V U a b Y n n m.79 Dn caţa.78 obţn c V r.8 Înlocn.8 în.79 obţn ; P U Y.8

..6 n fncţa ranfr a părţ rmn, fncţa ranfr a flrl, fncţa ranfr a că prrbaţ şr. U Y Y v Y Fg..9 caţa.8 poa rprzna prn cma bloc n fg..9, în car Y componna rmnă a mărm şr n m, ar V =Y v componna mărm şr aoraă prrbaţ zgomol V V Yv P P..3.3. Mol ocac monovarabl p nrarşr în mp cr În mp cr para rmnă a n m monovarabl rprznă prnr-o caţ c frnţ A B.8 n - opraorl înârzr c n pa. Dacă prrbaţa n proc alaor c na pcrală raţonală, v şra n flr raţonal abl c fncţa ranfr cră la nrara căra aplcă n zgomo alb, fg...a, anc v v ; v.83 A

..6 v v a. C b Fg... Ţnân ama că para rmnă ar fncţa ranfr cră -, n fg...c rzlă n mol c frnţ n claa mol M..8 M Moll M obţn nr-n mol ocac cr corpnzăor moll conn.77 în car înlocş v n.83 A A B B v B A Flrl -, - n fncţ vcorl paramrlor. Forma gnrală a n mol c frnţ, conform fg..3.a D C F B A.85 M D C F B A Fg.. car lraă în fg... Zgomol ar pra ] [

..6 În ac mol polnoaml A., B., C., D., F., car a rpcv gral na, nb, nc, n, nf n fn afl A B C D F a b c f vcorl paramrlor fn... a... b nb... c...... f na nc n nf nb na nc n nf [ a a... ana b b... bnb c c... cnc... n f f b c a nb nc f... f n nf nf ] na nb nc n nf na Comparân moll M ş M n rlaţl.84, rpcv.85, conaă că.86 B C ;.87 A F A D xnţa pollor comn zrorl polnoml A - araă fapl că prrbaţa acţonază nva în nrorl ml. Dacă gral na al polnoml A - zro, anc cl oă că n compl para, fcl lor manfân- rc apra şr. Cazr parclar. Cazl, nc = n = nb = nf = ; oarc pnr nb = rzlă B - în ac caz moll gnral rc la M 3 a ] na A ; [ a a....88 n mol aorgrv A n claa mol M 3. Cazl, na = nb = nf = n = ; obţn n mol m alncăoar MA,n claa mol M 4. M 4 c ] nc C ; [ c c....89 3

..6 3. Cazl 3, nb = nf = n = ; obţn n mol aorgrv ş m alncăoar AMA, n claa mol M 5. M 5 A C ; [ a a... ana c c... c nc ].9 4. Cazl 4, nf = nc = n = ; obţn n mol aorgrv conrola a c mărm xogn AX, n claa mol M 6. M 6 A B ; [ a a... ana b b... b nb ].9 5. Cazl 5, n = nf = ; obţn n mol aorgrv ş m alncăoar c mărm xogn - AMAX, n claa mol M 7. M 7 A [ a B a... a na C b b... b nb ; c c... c ] nc.9 4