|
|
- Ευάριστος Νικολάκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Επιμέλεια:xr.tsif Σελίδα 1
2 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 9ο ΑΣΚΗΣΕΙΣ Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης Χρήστος : xr.tsif Επιμέλεια:xr.tsif Σελίδα
3 ΘΕΜΑ 801 Να λυθεί στο R η εξίσωση ΘΕΜΑ 80 x x x x (ΧΡΗΣΤΟΣ ΤΣΙΦΑΚΗΣ). (ΧΡΗΣΤΟΣ ΤΣΙΦΑΚΗΣ) Nα βρεθούν όλα τα ζεύγη ακεραίων (x,y) για τους οποίους ισχύει 3 3 x y (x y). ΘΕΜΑ 803 (ΘΑΝΟΣ ΜΑΓΚΟΣ) Έστω a,b,c 0 με abc 1. Αν ισχύει a b c k 1, να αποδείξετε ότι ισχύει και για κάθε θετικό ακέραιο k. k k k a b c για k k k ΘΕΜΑ 804 Να βρεθεί το ψηφίο των μονάδων του αριθμού: A ΘΕΜΑ 805 Να εξετάσετε αν ο αριθμός: , διαιρείται με το ΘΕΜΑ 806 Βρείτε όλους τους πρώτους της μορφής a b 3 3 a b ab όπου a,b Z. Επιμέλεια:xr.tsif Σελίδα 3
4 ΘΕΜΑ 807 Να λυθεί η εξίσωση n m με m,n Z. ΘΕΜΑ 808 Δείξτε ότι για κάθε θετικό ακέραιο n, ο αριθμός n τον 6 1. n 7 1 δε διαιρείται από ΘΕΜΑ 809 Βρείτε 01 διαφορετικούς ανά δύο θετικούς ακεραίους με άθροισμα τέλειο τετράγωνο και γινόμενο τέλειο κύβο. ΘΕΜΑ 810 Βρείτε όλους τους πρώτους της μορφής ακέραιος , όπου n θετικός 11 nones ΘΕΜΑ 811 Να προσδιορίσετε τα στοιχεία των συνόλων A {x N x 4a 7b, a,b N} και B {x N x 3a 11b, a,b N}. ΘΕΜΑ 81 Σε ένα πρωτάθλημα ποδοσφαίρου συμμετέχουν 18 ομάδες. Μετά τις πρώτες 6 αγωνιστικές παρατηρήθηκε ότι όλες οι ομάδες είχαν διαφορετικό αριθμό βαθμών. Πόσα παιχνίδια έληξαν ισόπαλα; (Σε κάθε αγωνιστική πραγματοποιούνται 9 παιχνίδια. Κατά τα γνωστά, η νίκη βαθμολογείται με 3 βαθμούς, η ισοπαλία με 1 βαθμό ενώ η ήττα με 0 βαθμούς.) Επιμέλεια:xr.tsif Σελίδα 4
5 ΘΕΜΑ 813 (Μπάμπης Στεργίου) Το άθροισμα των αντιστρόφων 013 θετικών ακεραίων είναι τουλάχιστον ίσο με 11. Να αποδείξετε ότι δύο τουλάχιστον από αυτούς τους 013 αριθμούς είναι ίσοι. ΘΕΜΑ 814 Οι πραγματικοί αριθμοί x,y,zείναι τέτοιοι ώστε x y z xyz. Να δείξετε ότι xy yz zx xz yx zy x 1 y 1 z 1 x 1 y 1 z 1. ΘΕΜΑ Έστω x,y,z 1πραγματικοί αριθμοί ώστε 1. x 1 y 1 z Να δείξετε ότι 1. x 1 y 1 z 1 ΘΕΜΑ 816 Έστω a,b,c θετικοί ακέραιοι τέτοιοι ώστε ο αριθμός a bc να είναι τέλειο τετράγωνο. Να δείξετε ότι ο αριθμός a b c δεν είναι πρώτος. ΘΕΜΑ 817 Έστω a,b,c θετικοί ακέραιοι. Να δείξετε ότι δεν είναι δυνατόν οι αριθμοί a b c, b c a, c a b να είναι και οι τρεις τέλεια τετράγωνα. ΘΕΜΑ 818 Βρείτε όλους τους μη αρνητικούς ακεραίους nτέτοιους ώστε n n n 8 n. Επιμέλεια:xr.tsif Σελίδα 5
6 ΘΕΜΑ 819 Το σύνολο A αποτελείται από 5 ακέραιους αριθμούς. Προσθέτοντας ανά δύο αυτούς τους πέντε αριθμούς λαμβάνουμε τα επόμενα 10 αθροίσματα 0,,4,5,7,9,10,1,14,17. Να προσδιορίσετε το A. ΘΕΜΑ 80 Οι θετικοί ακέραιοι a b c d είναι τέτοιοι ώστε a b c d 1000 και a b c d Να βρείτε όλες τις δυνατές τιμές του a. ΘΕΜΑ 81 Να προσδιορίσετε όλους τους τετραψήφιους ακεραίους αριθμούς που είναι ίσοι με τον κύβο του αθροίσματος των ψηφίων τους. ΘΕΜΑ 8 Έστω p(n)το γινόμενο των ψηφίων του θετικού ακεραίου n. Να υπολογιστεί το άθροισμα p(1) p()... p(1000). ΘΕΜΑ 83 Να λυθεί η εξίσωση [x ] 5[x] 0. ΘΕΜΑ 84 Έστω x,y,z 0. Να βρεθεί η ελάχιστη τιμή της παράστασης 16x 9y 36z y z z x x y. Επιμέλεια:xr.tsif Σελίδα 6
7 ΘΕΜΑ 85 Αν x,y,z Z και αν x y z 0, να αποδείξετε ότι ο αριθμός: x y z 4 4 4, είναι τέλειο τετράγωνο ακεραίου. ΘΕΜΑ 86 Να βρεθούν οι ακέραιες λύσεις (x,y)της εξίσωσης x 1 y 1 x 1 y 1. ΘΕΜΑ 87 Να λυθεί στο Rτο σύστημα ΘΕΜΑ 88 1 x (y z) 1 y (z x) 1 z (x y) Να προσδιορίσετε όλους τους θετικούς ακεραίους x,y N* τέτοιους ώστε ο αριθμός x y xy 8x να διαιρείται από τον xy y. ΘΕΜΑ 89 Να λυθεί η εξίσωση n k 5 3 m, με m,n Z. ΘΕΜΑ 830 Να προσδιορίσετε όλους τους τετραψήφιους θετικούς ακεραίους n abcd, που είναι ίσοι με το γινόμενο τριών διαδοχικών θετικών ακεραίων δύο εκ των οποίων είναι πρώτοι και οι αριθμοί cd, ab είναι διαδοχικοί. Επιμέλεια:xr.tsif Σελίδα 7
8 ΘΕΜΑ 831 Να προσδιορίσετε όλους τους θετικούς ακεραίους nτέτοιους ώστε ο 17 1 n αριθμός 17 να είναι τέλειο τετράγωνο. ΘΕΜΑ 83 Έστω n ένας ακέραιος και x 1,x,...,x μη μηδενικοί πραγματικοί n αριθμοί τέτοιοι ώστε x1 x... xn 0. Να δείξετε ότι υπάρχουν 1 xi ακέραιοι 1 i, j n, διαφορετικοί μεταξύ τους, τέτοιοι ώστε. x j ΘΕΜΑ 833 Θέλουμε να βρούμε σύνολα A 1,A,...,A n {1,,...,100} τριών στοιχείων τέτοια ώστε για κάθε 1 a b 100 να υπάρχει ακριβώς ένα σύνολο A με {a,b} A Είναι αυτό δυνατό; i i ΘΕΜΑ 834 (ΘΑΝΟΣ ΜΑΓΚΟΣ) Να αποδείξετε ότι ο αριθμός είναι πολλαπλάσιο του ΘΕΜΑ 835 Έστω a,b,c,d και u ακέραιοι τέτοιοι ώστε οι αριθμοί ac,bc ad,bd είναι πολλαπλάσια του u. Να αποδείξετε ότι οι bc και ad είναι πολλαπλάσια του u. ΘΕΜΑ 836 Να αποδείξετε ότι ο αριθμός είναι το γινόμενο δύο διαδοχικών φυσικών αριθμών Επιμέλεια:xr.tsif Σελίδα 8
9 ΘΕΜΑ 837 Δίνεται τρίγωνο ABC και έστω AD η διχοτόμος του. Αν ισχύει ότι AB CD AC BD, να αποδείξετε ότι το τρίγωνο ABC είναι ισοσκελές. ΘΕΜΑ 838 Δίνεται τετράγωνο ABCD και πάνω στην πλευρά BC, παίρνουμε σημείο E ενώ πάνω στην πλευρά DC, ένα σημείο H, ώστε να είναι BE DH AB. Αν οι ευθείες BC και AH τέμνονται στο P, να αποδειχθεί ότι οι ευθείες EH και DP τέμνονται καθέτως. Στη συνέχεια, να διατυπώσετε και να αποδείξετε και το αντίστροφο. ΘΕΜΑ 839 Αν x,y,z 0, να βρείτε την ελάχιστη τιμή της παράστασης x y z xy yz ΘΕΜΑ 840. Αν xy x + y = zu z + u με x = a + b + c + d, y = a + b - c - d, z = a - b + c - d, u = a - b - c + d να αποδείξετε ότι ab a + b = cd c + d. Επιμέλεια:xr.tsif Σελίδα 9
10 ΘΕΜΑ 841 Έστω f(x) 3 x x x 1 x(x 1) x A f(1)f()f(3)...f(013).. Να βρεθεί ο αριθμός: ΘΕΜΑ 84 Αν a,b,c,d 0 να αποδείξετε ότι: a b c d 1. b c d c d a d a b a b c ΘΕΜΑ 843 Αν a,b 0, να αποδείξετε ότι: a b a b b a ab Πότε ισχύει η ισότητα; ΘΕΜΑ 844 Έστω a,b,c,dακέραιοι με τον d να μην είναι πολλαπλάσιο του 5. Ο m 3 είναι ένας ακέραιος για τον οποίο ο am bm cm d είναι πολλαπλάσιο του 5. Να αποδείξετε ότι υπάρχει ακέραιος n ώστε ο 3 dn cn bn a να είναι επίσης πολλαπλάσιο του 5. ΘΕΜΑ 845 Αν x,y,z 0 και x,y,z 1, να αποδείξετε ότι: x y y z z x x y z. x y y z z x Επιμέλεια:xr.tsif Σελίδα 10
11 ΘΕΜΑ 846 Οι 1,, 3, 1,, είναι πραγματικοί αριθμοί για τους οποίους 3 ισχύουν οι σχέσεις: , Να αποδείξετε ότι και ΘΕΜΑ 847 Αν x,y,z 0 να αποδείξετε ότι: x y z ( ). x yz y zx z xy x y z ΘΕΜΑ 848 Για τους αριθμούς x,y,z,t γνωρίζουμε ότι είναι με κάποια σειρά οι αριθμοί 1,14,37,65. Μπορεί ποτέ να ισχύει xy xz yt 18 ; ΘΕΜΑ 849 Αν x y 0 να αποδείξετε ότι 4 x 3. x y y 1 ΘΕΜΑ 850 Έστω x,y είναι πραγματικοί αριθμοί με x yκαι xy 1. Να αποδείξετε ότι x y x y. Πότε ισχύει η ισότητα; ΘΕΜΑ 851 Να λυθεί στο σύνολο των φυσικών αριθμών η εξίσωση x y z Επιμέλεια:xr.tsif Σελίδα 11
12 ΘΕΜΑ 85 Οι πραγματικοί αριθμοί x,y,z ικανοποιούν τις σχέσεις y z x, για το z. x y z, z x y. Να βρεθεί η ελάχιστη και η μέγιστη δυνατή τιμή ΘΕΜΑ 853 Αν xy 1και x,y 0, να αποδείξετε ότι: x 16y y 16x 5. ΘΕΜΑ 854 Να λυθεί στους ακεραίους η εξίσωση 5 3 a b 4a b. ΘΕΜΑ 855 Αν a,b,c 0 να αποδείξετε ότι 6 a b c a b b a a c c a b c c b. ΘΕΜΑ 856 Για κάθε a,b 0, να αποδείξετε ότι: (a b) a b a b b a. 4 ΘΕΜΑ 857 Έστω οι ακέραιοι 1 a1 a... a19 00 και 1 b1 b... b1 00. Να αποδείξετε ότι μεταξύ τους υπάρχουν a i,a j,b p,b ώστε q aj ai bq bp 0. ΘΕΜΑ 858 Να βρεθεί το ψηφίο των δεκάδων του αριθμού a 11 όπου 13 a 1. Επιμέλεια:xr.tsif Σελίδα 1
13 ΘΕΜΑ 859 Υπάρχουν θετικοί ακέραιοι a,b,c ώστε a b c 6 ; ΘΕΜΑ Να αποδειχθεί ότι: S ΘΕΜΑ 861 (ΧΡΗΣΤΟΣ ΤΣΙΦΑΚΗΣ) Να βρείτε όλες τις δυνατές τριάδες πρώτων φυσικών αριθμών που ικανοποιούν την εξίσωση 3x y 4z και είναι μικρότεροι του 30. ΘΕΜΑ 86 (ΧΡΗΣΤΟΣ ΤΣΙΦΑΚΗΣ) Να δείξετε ότι ο αριθμός είναι τέλειο τετράγωνο A δεν ΘΕΜΑ 863 Αν οι a,b,c είναι πραγματικοί αριθμοί με a b και ax bx c 0 για κάθε x R, να βρεθεί η ελάχιστη τιμή της παράστασης a b c. b a ΘΕΜΑ 864 Βρείτε όλους τους θετικούς ακεραίους nγια τους οποίους ο αριθμός n n 3 είναι ακέραιος. n n 3 ΘΕΜΑ 865 Αν οι αριθμοί ab,bc7,ca8 είναι τριψήφιοι και αν (ab,bc7,ca8) 3, να αποδείξετε ότι ο αριθμός A a b c είναι άρρητος. Επιμέλεια:xr.tsif Σελίδα 13
14 ΘΕΜΑ 866 (ΧΡΗΣΤΟΣ ΤΣΙΦΑΚΗΣ) Να βρείτε το τελευταίο ψηφίο του αριθμού ΘΕΜΑ 867 Να λυθεί στο σύνολο Zτων ακεραίων αριθμών, η εξίσωση: x y z 013. ΘΕΜΑ 868 Δείξτε ότι η εξίσωση: σύνολο Z x y z είναι αδύνατη στο ΘΕΜΑ 869 Έστω a,b,cτρεις ακέραιοι αριθμοί με a 0 ώστε η εξίσωση ax bx c 0 να έχει δύο άνισες λύσεις στο διάστημα βρεθεί η ελάχιστη τιμή του a. 0,1. Να ΘΕΜΑ 870 Να αποδείξετε ότι υπάρχουν άπειρες τριάδες (x,y,z) φυσικών αριθμών, οι οποίες επαληθεύουν την εξίσωση: 3 4 x 1y z. ΘΕΜΑ 871 Έστω Mτο σύνολο όλων των θετικών ακεραίων που είναι πολλαπλάσια του 36, στη δεκαδική τους αναπαράσταση αποτελούνται μόνο από τα ψηφία 4, 6 και 9 και δεν υπερβαίνουν το Πόσα στοιχεία έχει το M; Επιμέλεια:xr.tsif Σελίδα 14
15 ΘΕΜΑ 87 Να λυθεί στο 3 Z η εξίσωση a b c ΘΕΜΑ 873 Έστω a,b,c,dπραγματικοί αριθμοί τέτοιοι ώστε a b c d 6. Να b c d a βρείτε τη μέγιστη τιμή της παράστασης a b c d. c d a b ΘΕΜΑ 874 Βρείτε τους πρώτους p,q,r ώστε p p q q r 4q 1. ΘΕΜΑ 875 Να λυθεί το σύστημα a b c a b c a b. c a b c ΘΕΜΑ Έστω a 0, a Q ώστε ( a a) Q. Να δείξετε ότι 6 a Q. ΘΕΜΑ 877 Αν a,b,c 0 να δείξετε ότι a b 3c a 3b c 3a b c 15. 3a 3b c 3a b 3c a 3b 3c 8 Επιμέλεια:xr.tsif Σελίδα 15
16 ΘΕΜΑ 878 Έστω x ένας μη μηδενικός πραγματικός αριθμός τέτοιος ώστε οι αριθμοί x και x να είναι ρητοί. Να δείξετε ότι ο αριθμός x είναι 4 5 x x x επίσης ρητός. ΘΕΜΑ 879 Δείξτε ότι δεν υπάρχουν θετικοί ακέραιοι xκαι yμε x 1, τέτοιοι ώστε 7 x 1 y 5 1 x 1. ΘΕΜΑ 880 Έστω a,b,c θετικοί πραγματικοί αριθμοί τέτοιοι ώστε δείξετε ότι 3 b ac ab(a c). f#p a bc. Να ΘΕΜΑ 881 Βρείτε όλες τις τετράδες θετικών ακεραίων (a,b,c,d) με a b c ώστε d a! b! c! 3. ΘΕΜΑ 88 (ΜΙΧΑΛΗΣ ΛΑΜΠΡΟΥ) Να βρεθεί το σημείο εντός τριγώνου που το γινόμενο των αποστάσεών του από τις πλευρές του τριγώνου είναι μέγιστο. (Αν το δει κανείς από την σωστή σκοπιά, λύνεται σε δυο-τρεις γραμμές το πολύ). Επιμέλεια:xr.tsif Σελίδα 16
17 ΘΕΜΑ 883 Να βρεθεί ο ελάχιστος θετικός ακέραιος nμε την ιδιότητα να μπορεί να γραφτεί τουλάχιστον με τρεις διαφορετικούς τρόπους στη μορφή n 19a 53b όπου οι a,bείναι μη αρνητικοί ακέραιοι. ΘΕΜΑ 884 Να δείξετε ότι a,b,c R. a 10b 100c ab 0bc 16ca, για κάθε ΘΕΜΑ 885 Να βρεθούν οι τιμές του φυσικού αριθμού n, για τις οποίες ο αριθμός n n n a είναι τέλειο τετράγωνο. ΘΕΜΑ 886 Αν για τους θετικούς πραγματικούς αριθμούς a,b,c ισχύει ότι: a b c 1, να αποδείξετε ότι: 1 a 1 b 1 c 1. b c c a a b abc ΘΕΜΑ 887 Αν a 1,a,a 3,...,a 014 * N με a1 a... a014, να αποδείξετε ότι: ΘΕΜΑ [a,a ] [a,a ] [a,a ] a a Αν a,b R και 0 a,b 1 και n N, να αποδείξετε ότι: a n b n n n b 1 a 1 1. Επιμέλεια:xr.tsif Σελίδα 17
18 ΘΕΜΑ 889 Αν x,y,z N* και αν x 3y 4z 3y 4z, να βρεθούν οι 4z x x 3y ελάχιστες τιμές που μπορούν να πάρουν οι αριθμοί x,y,z, ώστε ο αριθμός: A, να είναι ρητός x y z ΘΕΜΑ 890 Να βρεθούν οι πρώτοι αριθμοί x,y,z αν ισχύει ότι: y z 40 x. 1 yz 7 ΘΕΜΑ 891 Αν 0 a b c, να αποδείξετε ότι: c 1 ab b a ac ab c. ΘΕΜΑ 89 Αν a,b,c είναι τα μήκη των πλευρών ενός τριγώνου, να αποδείξετε ότι: 9 10 a b c a b b c c a a b c. ΘΕΜΑ 893 (ΜΙΧΑΛΗΣ ΛΑΜΠΡΟΥ) Αν a b c 1000, πόση είναι η τιμή της παράστασης a b b c c a b c a a b b c c a. Επιμέλεια:xr.tsif Σελίδα 18
19 ΘΕΜΑ 894 Δίνεται ορθογώνιο και ισοσκελές τρίγωνο o ABC με Â 90. Θεωρούμε το συμμετρικό Mτου σημείου Aως προς την υποτείνουσα καθώς και ένα τυχαίο σημείο P πάνω στην υποτείνουσα. Αν K και L είναι οι (ορθές) προβολές του P πάνω στις πλευρές AB και AC αντιστοίχως, να αποδείξετε ότι οι ευθείες MP και KLτέμνονται καθέτως. ΘΕΜΑ 895 Να βρεθούν όλοι οι ακέραιοι x,y,zπου ικανοποιούν την εξίσωση: x y 5 z. ΘΕΜΑ Αν S n..., όπου n 4n 1 n N *, να βρεθεί η μέγιστη τιμή του n, για την οποία έχουμε Sn 5. ΘΕΜΑ 897 (Μια παρόμοια με το τέταρτο θέμα του διαγωνισμού "ΕΥΚΛΕΙΔΗΣ" για την Α ΛΥΚΕΙΟΥ) Αν a,b R, να βρεθεί η ελάχιστη και η μέγιστη τιμή του a b, ώστε να είναι: 4a b 3ab a. Επιμέλεια:xr.tsif Σελίδα 19
20 ΘΕΜΑ 898 Αν x,y,z,w 0, να αποδείξετε ότι: x y z w. y z w z w x w x y x y z ΘΕΜΑ 899 Να αποδείξετε ότι αν x,y,z 0 και x y z 1, τότε: 1 x 1 y 1 z 1. y z x z x y xyz ΘΕΜΑ 900 Αν a * N και b,c R με a b c και αν ισχύει ότι: a b c a 4b 4 ac(a c), να αποδείξετε ότι b c 4ab 7. Επιμέλεια:xr.tsif Σελίδα 0
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 4ο ΑΣΚΗΣΕΙΣ 301-400 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις
Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική
Επιμέλεια: xr.tsif Σελίδα 1 «Επειδή πολλοί μαθητές του Γυμνασίου ενδιαφέρονται για τους διαγωνισμούς που γίνονται κάθε χρόνο, αλλά δεν έχουν αποκτήσει την εμπειρία σχετικά με τα θέματα που μπαίνουν, προτείνω
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Ορισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
Τηλ 10 361653-103617784 - Fax: 10 364105 Tel 10 361653-103617784 - Fax: 10 364105 ΣΒΒΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 B τάξη υμνασίου Να υπολογίσετε την τιμή της αριθμητικής παράστασης ( 00 :8 1 100) 00 : ( 8 ) 76
Στις ΗΠΑ διεξάγονται κάθε χρόνο διάφοροι µαθηµατικοί διαγωνισµοί από τους οποίους ο USAMO, που αποτελεί την εθνική µαθηµατική ολυµπιάδα της χώρας, έχε
Στις ΗΠΑ διεξάγονται κάθε χρόνο διάφοροι µαθηµατικοί διαγωνισµοί από τους οποίους ο USAMO, που αποτελεί την εθνική µαθηµατική ολυµπιάδα της χώρας, έχει τα δυσκολότερα θέµατα. Άλλοι διαγωνισµοί µε σειρά
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
f(x - 2) + f(x + 2) = 3 f(x).
Θαλής Γ' Λυκείου 1995-1996 1. Να βρεθεί η μέγιστη τιμή της παράστασης: με x 1, y 1. Π x, y = xy x 1 y y 1 x 1 x 1 y. Έστω η συνάρτηση f: R R τέτοια ώστε για κάθε x R να ισχύει ότι: Να δείξετε ότι η f είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
B τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 7ο ΑΣΚΗΣΕΙΣ 601-700 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008
Τηλ. 3616532-3617784 - Fax: 3641025 Tel. 3616532-3617784 - Fax: 3641025 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙΔΗΣ ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 3ο ΑΣΚΗΣΕΙΣ 201-300 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Να αποδείξετε ότι αυτή η τοποθέτηση των ακεραίων είναι δυνατή αν και μόνο αν οι ευθείες δεν είναι όλες παράλληλες.
η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Μάιος 004, Πλέβεν Βουλγαρία Επιμέλεια: Ανδρέας Φιλίππου Ανδρέας Σαββίδης Πρόβλημα. Η ακολουθία πραγματικών αριθμών a0, a, a, ικανοποιεί την σχέση am+ n+ am n m+
Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.
Άσκηση 1η Αν η εξίσωση είναι αόριστη, τότε: α) Να δειχθεί ότι η εξίσωση είναι αδύνατη β) Να λυθεί η ανίσωση γ) Αν ισχύει ότι να βρεθεί ο αριθμός Α Άσκηση 2η Αν η εξίσωση έχει λύση μεγαλύτερη του και η
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 17 Ιανουαρίου 2015 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
Tel. 10 361653-103617784 - Fax: 10 364105 B ΓΥΜΝΑΣΙΟΥ 1. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3 5 ) 49 10 4. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΣΑΒΒΑΤΟ,14 ΝΟΕΜΒΡΙΟΥ 2015 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές. 2.
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου
Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /
Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο
Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ
1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε
Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας
Τηλ 6165-617784 - Fax: 64105 Tel 6165-617784 - Fax: 64105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η
ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ Δίνεται η εξίσωση fx x 4x Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η εξίσωση f x 0 έχει: α) ρίζα το β) δύο ρίζες πραγματικές και άνισες γ) ρίζες ετερόσημες δ) Αν 3,
Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;
Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 21/01/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
Τηλ. 0 36653-0367784 - Fax: 0 36405 Tel. 0 36653-0367784 - Fax: 0 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε
σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.
ΚΕΦΑΛΑΙΟ 5ο ΑΡΙΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σε μια αριθμητική πρόοδο είναι 6 και 9. Να βρείτε α) τη διαφορά και β) τον 0 ο όρο της προόδου.. Σε μια αριθμητική πρόοδο είναι 3 και 7.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; αx + βy = γ
ΣΥΣΤΗΜΑΤΑ Γραμμικη εξισωση με δυο αγνωστους λεγεται καθε εξισωση της μορφης: 3. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; α + β = γ Λυση της πιο. Aν πανω α, β εξισωσης θετικοι, να ειναι συγκρινεται καθε
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
Β ΓΥΜΝΑΣΙΟΥ. Να βρείτε την τιμή της παράστασης: 2 β + α 500 11 18 α β Α= β 3 β, α αν δίνεται ότι: 10 β =.. Ποιος είναι ο ελάχιστος αριθμός στοιχείων που πρέπει να αφαιρεθούν από το σύνολο Α= { 2, 4, 6,8,10,12,14,16,18,
Θαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC STAGE II ΑΠΡΙΛΗΣ 08 Χρόνος Εξέτασης: ώρες Ημερομηνία: 5/04/08 Ώρα εξέτασης: 5:45-7:45 Να απαντήσετε τα θέματα και αιτιολογώντας πλήρως τις απαντήσεις
ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=
Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 3 3 ( 0) ( 5) 3 ( 8) Α= + 3 3 ( ) +. ( 3) 4 Στο διπλανό σχήμα τα τρίγωνα ΑΒΓ και ΑΒΟ είναι ισοσκελή με βάση την πλευρά ΑΒ. Η προέκταση της
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014
Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά
2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127
Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2018
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2018 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 08/12/2018 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 017 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ