Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Σχετικά έγγραφα
Latent variable models Variational approximations.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Latent variable models Variational approximations.

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

LAPLACE TRANSFORM TABLE

Note: Please use the actual date you accessed this material in your citation.


Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

The one-dimensional periodic Schrödinger equation

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

EN40: Dynamics and Vibrations

FORMULAE SHEET for STATISTICS II

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

Υπόδειγµα Προεξόφλησης

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

arxiv: v1 [math.pr] 13 Jul 2010

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ

Estimators when the Correlation Coefficient. is Negative

ΓΙΟΡΤΗ ΚΟΛΥΜΒΗΤΗ 13/8/ Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ


Chapter 3 Diode and Thyristor Rectifiers

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

On Quasi - f -Power Increasing Sequences

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Degenerate Perturbation Theory

Το άτομο του Υδρογόνου

Variational Wavefunction for the Helium Atom


6.003: Signals and Systems. Modulation

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

ITU-R P (2009/10)

Riemann Hypothesis: a GGC representation

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

Lecture 12 Modulation and Sampling

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Αγαπητοί συνεργάτες,

6.003: Signals and Systems

Fourier Series. Fourier Series

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.


DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

On Zero-Sum Stochastic Differential Games

High order interpolation function for surface contact problem

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

( , ,

COMPLICITY COLLECTION autumn / winter

d 1 d 1

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Tridiagonal matrices. Gérard MEURANT. October, 2008

ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOLAR TRANSISTOR FRAMEWORK THE AMPLIFIER

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

Module 5. February 14, h 0min

ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΕΡΓΑΣΙΩΝ ΓΙΑ ΠΑΡΑΓΩΓΕΣ ΜΙΚΡΟΥ ΜΕΓΕΘΟΥΣ

Plantronics Explorer 10. Εγχειρίδιο χρήσης

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

is the home less foreign interest rate differential (expressed as it

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Solve the difference equation

3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων

4.6 Autoregressive Moving Average Model ARMA(1,1)

'( ( ) ) ( )) !"!##$%!& *+,-, #&!- *+, !/0- # #! &!#" /!!# #$$/.,&! # &#1! $/! : $/ +!$0# # *!!".., *! /"..

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Japanese Fuzzy String Matching in Cooking Recipes

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

α & β spatial orbitals in

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ

BẢNG GIÁ HỆ THỐNG ĐÈN CHIẾU SÁNG TỦ BẾP & TỦ ÁO

MACCHINE A FLUIDO 2 CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)

Transcript:

Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c && Fgure. where m Ma c vcou ampg coeffce k Sffe x abolue placeme of he ma bae pu placeme A free-bo agram how Fgure. &&x m k(-x) c(& x& ) Fgure.

Summao of force he vercal reco Le F mx && () mx && c(& x& ) k ( x) () u x u& x& & && u && x && && x && u && Subug he relave placeme erm o equao () el m(u & && ) cu& ku () m & u cu& ku m & () Dvg hrough b ma el & u (c / m)u& (k / m)u & (5) B coveo, ( c / m) ξ (6) ( k / m) (7) where he aural frequec (raa/ec), a ξ he ampg rao. Subue he coveo erm o equao (5). & u ξ u & u & (8)

Equao (8) oe o have a cloe-form oluo for he geeral cae whch & & a arbrar fuco. A covoluo egral approach mu be ue o olve he equao. Noe ha he mpule repoe fuco embee he covoluo egral. Dplaceme he ampe aural frequec - ξ (9) he placeme equao va a covoluo egral u() ( τ) 0 [ { ξ - τ) }][ ( - τ) ] τ ( (0) he correpog mpule repoe fuco for he placeme ĥ () [ ( ξ )][ ] () Furher eal regarg h ervao are gve Referece. he correpog Laplace raform H () () ξ he Z-raform for he ramp vara mulao Ĥ () ( ) Z L ( ) ξ where he me ep ()

Evaluae he vere Laplace raform. ( ) [ ] ( ) [ ] ( ) ξ ξ ξ ξ co L () he Z-raform become ( ) ( ) [ ] ( ) [ ] ( ) ξ ξ ξ ξ co Z () Ĥ (5) Le [ ] ξ α (6) β ξ (7)

Evaluae he Z-raform. Ĥ () - β ( ) ( ) ( ) ( ) β{ [ ξ ]} { [ ]} co { [ ξ ] }{ co[ ] } { [ ξ ] } ( ) α{ [ ξ ]} { [ ]} { [ ξ ] }{ co[ ] } [ ξ ] { } (8) Ĥ () ( β) ( ) β{ [ ξ ]} { [ ]} co { [ ξ ] }{ co[ ] } { [ ξ ] } ( ) α{ [ ξ ]} { [ ]} { [ ξ ] }{ co[ ] } [ ξ ] { } (9) 5

Ĥ () ( β) ( ) β{ [ ξ ]} { [ ]} α{ [ ξ ]} { [ ]} { [ ]} { [ ]} { [ ]} co ξ co ξ (0) Ĥ () β β β ( ξ ) { α( ) βco( ) } [( ) ] { ( ξ ) }{ co( ) } ( ξ ) { } () Le ψ ( ξ ) { α( ) βco( ) } () { ( ξ ) }{ co( ) } ρ λ ( ξ ) () () η β (5) B ubuo, [ ] β ψ Ĥ () [ β η] ( ) ρ λ (6) ρ λ [ β η ] [ ] β ψ Ĥ () ρ λ ρ λ (7) 6

7 [ ] [ ] [ ] [ ] ρ λ ψ β ρ λ ψ β ρ λ ψ β ρ λ ρ λ η ρ λ ρ λ β () Ĥ (8) ρ λ ψ β ρ λ ψ β ρ λ ψ β ρ λ ηλ ηρ η ρ λ βλ βρ β () Ĥ (9) ( ) ρ λ ψ β ψ β ψ ηλ β ηρ η βλ βρ β () Ĥ (0)

( βρ ψ η β) ( βλ ηρ ψ β) ( ηλ ψ) ( ρ λ) Ĥ () () Solve for he fler coeffce ug he meho Referece. b 0 b b a a [( βρ ψ η β) ( βλ ηρ ψ β) ( ηλ ψ) ] ρ λ / m () Solve for a. ( ξ ) co( ) a ρ () Solve for a. ( ) a λ ξ () Noe ha he a a a coeffce are commo for placeme, veloc a accelerao. Solve for b 0. [ βρ ψ η β ] b / 0 (5) [ ψ η β ( ρ )] b / 0 (6) b0 ( ξ ) [ α ( ) βco( ) ] β β[ ( ξ ) co( ) ] (7) 8

b0 ( ξ ) [ α ( ) β co( ) ] β β[ ( ξ ) co( ) ] (8) b0 ( ξ ) [ ξ ] ( ) ξ co( ) ξ ξ [ ( ξ ) co( ) ] (9) b0 [ ] ( ξ ) [ ξ ] ( ) ξ ( ξ ) co( ) (0) b0 [ ] ( ξ ) [ ξ ] ( ) ξ ( ξ ) co( ) () 9

b0 ξ [ ( ξ ) co( ) ] ( ξ ) [ ξ ] ( ) () Solve for b. b b βλ ηρ ψ β ηρ ψ β ( λ) () () b β ( ξ ) co( ) ( ξ ) [ α( ) βco( ) ] β [ ( ξ ) ] (5) b ( ξ ) co( ) ( ξ ) α ( ) β[ ( ξ ) ] (6) b ( ξ ) co( ) ( ξ ) α ( ) β[ ( ξ ) ] (7) 0

b ( ξ ) co( ) [ ξ ] ( ξ ) ( ) ξ [ ( ξ ) ] (8) b ( ξ ) co( ) ξ ( ξ ) Solve for b. [ ] [ ξ ] ( ξ ) ( ) (9) b ηλ ψ (50) b β ( ξ ) ( ξ ) { α( ) βco( ) } (5) b ξ ( ξ ) ( ξ ) [ ξ ] ( ) ξ co( )

(5) ( ) ( ) [ ] ( ) ( ) co b ξ ξ ξ ξ ξ (5) he gal recurve flerg relaohp for he relave placeme 0 b b b u a u a u && && && (5)

he gal recurve relaohp for he relave placeme hu [ ] [ ] [ ] ( ) ( ) [ ] ( ) [ ] ( ) ( ) ( ) ( ) [ ] [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) co co co u u co u ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ && && && (55)

Relave Veloc he mpule repoe fuco for he relave veloc repoe ξ ĥ ξ v () (- ) co (56) he correpog Laplace raform Hv () ξ (57) he Z-raform for he ramp vara mulao ( ) ( ) Ĥ v () Z L (58) ξ ( ) ( ) Ĥ v () Z L (59) ξ Evaluae he vere Laplace raform per Referece a. L ( ξ ) ( ξ ) co( ) ( ) ξ (60) he Z-raform for he ramp vara mulao ( ) ξ Ĥ () Z ( ξ ) co( ) v ( ) (6)

( ) ξ Ĥ v () Z ( ξ ) co( ) ( ) (6) he Z-raform evaluae ug he meho Referece 5. Ĥv () ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (6) Ĥv () ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (6) Ĥv () ( ) ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (65) 5

Ĥv () ( ) ( ) ξ ( ξ ) co( ) ( ξ) co( ) ( ) ( ξ ) (66) Le ξ ψ ( ξ ) co( ) ( ) (67) { ( ξ ) }{ co( ) } ρ (68) λ ( ξ ) (69) ψ Ĥ v () ( ) ( ) ρ λ (70) ψ Ĥ v () ρ λ (7) ( ) ( ) ( ) ( ) ψ( ) Ĥ v () ρ λ (7) ( ) ( ψ ψ ψ) Ĥ v () ρ λ (7) ψ ψ ψ Ĥ v () ( ) ρ λ (7) 6

( ψ) ( ψ) ψ Ĥ v () ( ) ρ λ (75) ( ψ) ( ψ) ψ Ĥ v () ( ) ρ λ (76) ( ψ) ( ψ) ρ λ ψ Ĥ v () ( ) ρ λ ρ λ (77) ( ψ) ( ψ) ρ λ ρ λ ψ Ĥ v () ρ λ ρ λ (78) ( ρ ) ( λ ρ) λ ( ψ) ( ψ) ψ Ĥ v () ρ λ ρ λ (79) ( ψ ρ ) ( λ ρ ψ) ψ λ Ĥ v () ρ λ (80) ( ψ ρ ) ( λ ρ ψ ) ψ λ Ĥ v () ρ λ (8) 7

( ψ ρ ) ( λ ρ ψ ) ψ λ Ĥ v () ρ λ (8) Solve for he fler coeffce ug he meho Referece. c 0 c c a a ( ψ ρ ) ( λ ρ ψ ) ρ λ ψ λ (8) Solve for a. ( ξ ) co( ) a ρ (8) Solve for a. ( ) a λ ξ (85) Solve for c 0. c0 ψ ρ (86) c0 ξ ( ξ ) co( ) ( ) ( ξ ) co( ) (87) c0 ξ ( ξ ) co( ) ( ) (88) 8

Solve for c. λ ρ ψ c (89) ( ξ ) ( ξ ) co( ) ( ξ ) co( ) ( ) c ξ (90) ( ξ ) ( ξ ) ( ) c ξ (9) Solve for c. c ψ λ (9) c ξ ( ξ ) co( ) ( ) ( ξ ) (9) 9

0 he gal recurve flerg relaohp for he relave veloc 0 c c c u a u a u && && && & & & (9) [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ) co( ) ( ) ( ) co( ) ( u u co u ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ && && && & & & (95)

Abolue Accelerao he mpule repoe fuco for he abolue accelerao repoe ( ) ( ) ( ) ( ) ξ ξ ξ co () ĥ a (96) he correpog Laplace raform ξ ξ a () H (97) he Z-raform ( ) ξ ξ a L Z () Ĥ (98) ξ ξ ξ L L (99) ( ) ξ ξ ξ L L (00)

ξ L L ( ξ ) ξ ( ) (0) Evaluae he Z-raform. ( ) Ĥa () Z ( ξ )( ) (0) [ ] [ ] ( ) ξ Ĥ a () (0) ( ) { [ ξ] co[ ] } { [ ξ ] } Ĥa () ( ) [ ξ ] [ ] { [ ξ ] co[ ] } { [ ξ ] } (0) Ĥa () ( ) [ ξ ] [ ] { [ ξ ] co[ ] } { [ ξ ] } (05) Ĥa () [ ξ ] co[ ] [ ξ ] ( ) [ ξ ] [ ] [ ξ ] co[ ] [ ξ ] (06)

Ĥa () [ ξ ] co[ ] [ ξ ] ( ) [ ξ ] [ ] [ ξ ] co[ ] [ ξ ] (07) Ĥa () ( ξ ) ( ) [ ξ ] co( ) [ ξ ] ( ξ ) co( ) ( ) ( ξ ) co( ) ( ξ ) ( ξ ) ( ξ ) ( ) ( ξ ) co( ) ( ξ ) (08)

c 0 c c a a ( ξ ) ( ) [ ξ ] co( ) [ ξ ] ( ξ ) co( ) ( ) ( ξ ) co( ) ( ξ ) ( ξ ) ( ξ ) ( ) ( ξ ) co( ) ( ξ ) (09) Solve for a. Solve for a. ( ξ ) co( ) a ( ) a ξ (0) () Solve for c 0. c0 ( ξ) ( ) () Solve for c. ( ) c ξ ( ) ( ) co ()

Solve for c. c ( ξ) ( ξ) ( ) () he gal recurve flerg relaohp for abolue accelerao && x a&& x a && x c0&& c && c&& (5) && x [ ξ ] co[ ] && x [ ξ ] && x ( ξ ) ( ) && ( ξ ) co( ) ( ) && ( ξ) ( ξ) ( ) && (6) Relave Accelerao he mpule repoe fuco for he relave accelerao repoe 5

ĥ () δ() ( ξ ) ξ co( ) ( ξ ra ) ( ) (7) he correpog Laplace raform Hra ( ) (8) ξ he Z-raform ( ) Ĥ a () Z L (9) ξ ( ) Ĥ a () Z L (0) ξ Evaluae he vere Laplace raform. ( ) L L () ξ ξ L ξ ( ξ ) ( ) () he Z-raform for he ramp vara mulao ( ) Ĥ ( ξ ) ra () Z () 6

( ) Ĥ ( ξ ) ra () Z () he Z-raform evaluae a. ( ) [ ( ξ ) ( ) ] ( ) Ĥ () ra (5) ( ξ) co( ) ξ ( ) [ ( ξ ) ( ) ] ( ) Ĥ () ra (6) ( ξ) co( ) ξ ( ξ ) ( ) ( ) ( ) Ĥ () ra (7) ( ξ) co( ) ξ ( ξ ) ( ) ( ) Ĥ () ra (8) ( ξ) co( ) ξ Solve for he fler coeffce. 0 a a ( ξ ) ( ) ( ) ( ξ) co( ) ξ (9) 7

Solve for a. ( ξ ) co( ) a ρ (0) Solve for a. ( ) a λ ξ () Solve for 0. 0 ( ξ ) ( ) () Solve for. 0 () Solve for. 0 () he gal recurve flerg relaohp for he relave accelerao && u a&& u a && u 0&& && & (5) && u [ ξ ] co[ ] && u [ ξ ] && u ( ξ) ( ) { && && && } (6) 8

Referece. Dav O. Smallwoo, A Improve Recurve Formula for Calculag Shock Repoe Specra, Shock a Vbrao Bulle, No. 5, Ma 98... Irve, he Impule Repoe Fuco for Bae Excao, Vbraoaa, 0... Irve, able of Laplace raform, Revo J, Vbraoaa, 0... Irve, Paral Fraco Shock a Vbrao Aal, Revo I, Vbraoaa, 0. 5. R. Dorf, Moer Corol Sem, Ao-Wele, Reag, Maachue, 980. 9