Fundamentals of Signals, Systems and Filtering

Σχετικά έγγραφα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Ψηφιακή Επεξεργασία Φωνής

LTI Systems (1A) Young Won Lim 3/21/15

Second Order RLC Filters

Spectrum Representation (5A) Young Won Lim 11/3/16

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Contents Introduction to Filter Concepts All-Pole Approximations

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

ECE 468: Digital Image Processing. Lecture 8

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Nachrichtentechnik I WS 2005/2006

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Sampling Basics (1B) Young Won Lim 9/21/13

Ανηικείμενα ποσ καλύπηονηαι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Digital Signal Octave Codes (0B)

D Alembert s Solution to the Wave Equation

10.7 Performance of Second-Order System (Unit Step Response)

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

HMY 220: Σήματα και Συστήματα Ι

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Ανάλυση ΓΧΑ Συστημάτων

Ψηφιακή Επεξεργασία Φωνής

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math221: HW# 1 solutions

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

Trigonometric Formula Sheet

Αθανάσιος Σκόδρας /

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΣΤΗΑ ΨΕΣ /5/2013 2:27 µµ. Θυµηθείτε τον ορισµό του Περιοδικού Σήµατος ιακριτού Χρόνου: την ακολουθία σηµάτων: jk n N ( ) sagri@di.uoa.

HMY 220: Σήματα και Συστήματα Ι

CRASH COURSE IN PRECALCULUS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Fundamentals of Probability: A First Course. Anirban DasGupta

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Assignment 1 Solutions Complex Sinusoids

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Section 9.2 Polar Equations and Graphs

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Numerical Analysis FMN011

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Lecture 21: Scattering and FGR

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

6.003: Signals and Systems. Modulation

Hadronic Tau Decays at BaBar

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CT Correlation (2B) Young Won Lim 8/15/14

3 Frequency Domain Representation of Continuous Signals and Systems

Metal thin film chip resistor networks

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

w o = R 1 p. (1) R = p =. = 1

Srednicki Chapter 55

Signal Processing. Magnus Danielsen. An Introduction. NVDRit 2007:

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Stationary Stochastic Processes Table of Formulas, 2017

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Reminders: linear functions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

0 Τα ηλεκτρικά κυκλώματα ως συστήματα Παράδειγμα Ηλεκτρ. Συστήματος πρώτης τάξης: κύκλωμα «RC» με Εξοδο

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Space-Time Symmetries

[1] P Q. Fig. 3.1

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Modelling the Furuta Pendulum

Ψηφιακή Επεξεργασία Φωνής

Wavelet based matrix compression for boundary integral equations on complex geometries

Introduction to Time Series Analysis. Lecture 16.

Section 8.3 Trigonometric Equations

Magnetically Coupled Circuits

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

HMY 220: Σήματα και Συστήματα Ι

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

Παρουσίαση του μαθήματος

Finite difference method for 2-D heat equation

Transcript:

Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia.

2 c Brett Ninness

Contents 1 Introduction 7 2 Signal Types and Operations 9 2.1 Types of Signals..................................... 9 2.1.1 Constant Signal................................. 10 2.1.2 Unit Step Signal................................ 10 2.1.3 Ramp Signal.................................. 11 2.1.4 Pulse Signal................................... 12 2.1.5 (Dirac) Delta Function............................. 13 2.1.6 Periodic Signal................................. 16 2.1.7 Even and Odd Signals............................. 16 2.1.8 Exponential Signals.............................. 17 2.1.9 Exponential Signals: Complex Representations................ 17 2.2 Operations on Signals.................................. 21 2.2.1 Magnitude Scaling............................... 21 2.2.2 Time Shifting (Translation)........................... 21 2.2.3 Time Reversal (Flipping)............................ 23 2.2.4 Time Scaling.................................. 24 2.3 Concluding Summary.................................. 25 2.4 Exercises........................................ 27 2.A Some Mathematical Background............................ 29 2.A.1 The limit of a function............................. 29 2.A.2 Continuous Functions............................. 29 3 Modelling, Differential Equations and System Properties 31 3.1 Electrical Circuit Modelling Examples......................... 31 3.2 Mechanical System Modelling Examples....................... 33 3.3 General Differential Equation Models......................... 39 3.3.1 Effect of constants............................... 39 3.4 Solution of First Order Differential Equations..................... 40 3.5 State Space Descriptions................................ 43 3.5.1 A 2nd Order Case................................ 43 3.5.2 The General Case................................ 45 3.5.3 State Transformations and Canonical Forms.................. 47 3.5.4 The presence of a Feed-through term..................... 49 3.5.5 Direct State-Space Modelling......................... 51 3

4 c Brett Ninness 3.6 Differential Equation Solution via State-Space Formulation.............. 52 3.7 Initial Conditions.................................... 57 3.7.1 Observability.................................. 59 3.7.2 Controllability................................. 61 3.8 Forced and Natural Response.............................. 63 3.9 Impulse Response.................................... 65 3.10 Invariance of Impulse Response............................ 67 3.11 Convolution....................................... 68 3.11.1 Properties of Convolution........................... 69 3.11.2 Signal Convolution Examples......................... 74 3.12 System Properties.................................... 81 3.12.1 Linearity/Non-linearity............................. 81 3.12.2 Causality.................................... 82 3.12.3 Memory..................................... 83 3.12.4 Time Invariance................................. 84 3.12.5 System Dimension............................... 84 3.12.6 Stability..................................... 85 3.13 Concluding Summary.................................. 89 3.14 Exercises........................................ 92 3.A Some Mathematical Background............................ 97 3.A.1 Fundamental Results of Calculus....................... 97 3.A.2 Eigen-analysis and Matrix Decomposition................... 100 4 Laplace Transform Analysis 103 4.1 Laplace Transform Definition and Interpretation.................... 103 4.2 Geometric Interpretation................................ 104 4.3 Computation of Laplace Transforms.......................... 106 4.3.1 Dirac Delta δ(t)................................ 107 4.3.2 Step 1(t).................................... 108 4.3.3 Ramp r(t)................................... 108 4.3.4 Exponential e αt................................. 109 4.3.5 Polynomial times Exponential t n e αt...................... 109 4.3.6 Cosine cos ωt.................................. 110 4.3.7 Sinusoid sin ωt................................. 110 4.3.8 Exponentially Damped Cosine e αt cos ωt and Sine e αt sin ωt......... 111 4.4 Properties of Laplace Transforms............................ 114 4.4.1 Linearity.................................... 114 4.4.2 Time Shifting.................................. 115 4.4.3 Time Scaling.................................. 115 4.4.4 Convolution................................... 116 4.4.5 Differentiation................................. 117 4.4.6 Integration................................... 120 4.4.7 Transform of a Product............................. 121 4.4.8 Multiplication by e αt.............................. 121 4.4.9 Multiplication by t............................... 122 4.4.10 Initial Value Theorem............................. 123 4.4.11 Final Value Theorem.............................. 124

DRAFT & INCOMPLETE Version 5 4.4.12 Summary of Properties............................. 125 4.5 Inversion of Laplace Transforms............................ 127 4.5.1 Contour Integral Formulation......................... 128 4.5.2 Evaluation by Residue Calculation....................... 129 4.5.3 The Case of Isolated Poles........................... 130 4.5.4 The Case of Repeated Poles.......................... 133 4.5.5 Dealing with the Bi-proper Proper Case.................... 133 4.5.6 Causality of the Inverse Transform....................... 134 4.5.7 Dealing with Time Translations........................ 138 4.5.8 Inversion by Partial Fraction Expansion.................... 139 4.6 Differential Equation Solution by Laplace Transform Methods............ 145 4.6.1 More on Initial Conditions........................... 151 4.7 The System Transfer Function............................. 156 4.8 Stability and the Transfer Function........................... 160 4.9 Transfer Function and Impulse Response Relationship................ 161 4.10 Direct Transform Modelling of Electrical Circuits................... 162 4.10.1 Kirchoff s Laws................................ 163 4.10.2 Parallel and Series Combinations....................... 164 4.10.3 Voltage Division................................ 165 4.10.4 Examples of Direct Laplace Transform Modelling.............. 165 4.11 Concluding Summary.................................. 170 4.12 Exercises........................................ 172 5 Frequency Response, Fourier Analysis and Filter Design 177 5.1 System Frequency Response and System Transfer function.............. 177 5.2 The Fourier Transform................................. 180 5.2.1 Inverse Fourier Transform........................... 184 5.2.2 Properties of the Fourier Transform...................... 188 5.3 Fourier Series...................................... 200 5.3.1 Relationship between Fourier Series and the Fourier Transform....... 205 5.3.2 Properties of Fourier Series Co-efficients................... 208 5.4 Bode Frequency Response Diagrams.......................... 215 5.4.1 Straight line approximation of Bode magnitude................ 215 5.4.2 Straight Line Approximation of Bode Phase.................. 228 5.5 Filter Design...................................... 240 5.5.1 Constraints on Achievable Performance.................... 240 5.5.2 Filter Types and Brick Wall Specification................... 243 5.5.3 Butterworth Low-Pass Approximation..................... 248 5.5.4 Chebychev Low-pass Approximation..................... 255 5.5.5 High-pass Filter Approximation........................ 260 5.5.6 Band-Pass and Band-Stop filter design..................... 263 5.6 Concluding Summary.................................. 267 5.7 Exercises........................................ 271 5.A Mathematical Background............................... 276 5.A.1 Dirac Delta Interpretation of Integrated Exponential............. 276 5.A.2 Spectral Factorisation for Chebychev Filter.................. 277 5.A.3 The Law of Sines................................ 279

6 c Brett Ninness 6 Sampling, Reconstruction and the Discrete Time Fourier Transform 281 6.1 Sampling........................................ 281 6.2 Spectral relationship between a signal and its sampled version............ 283 6.3 The Nyquist Sampling Criterion............................ 286 6.4 Reconstruction..................................... 288 6.5 Aliasing......................................... 292 6.6 The Discrete Time Fourier Transform......................... 296 6.7 The Inverse Discrete Time Fourier Transform..................... 300 6.8 Normalised Frequency................................. 302 6.9 Properties of the Discrete Time Fourier Transform................... 303 6.9.1 Properties inherited from the continous time Fourier Transform....... 304 6.9.2 Further Properties................................ 306 6.10 The Discrete Fourier Transform (DFT)......................... 310 6.11 The Inverse Discrete Fourier Transform (IDFT).................... 312 6.12 Relationship between DFT and DTFT......................... 313 6.13 Properties of the DFT.................................. 314 6.13.1 Properties equivalent to those of DTFT.................... 314 6.13.2 Relationship of DFT to Fourier Transform - Data Windowing........ 314 6.14 The Fast Fourier Transform (FFT)........................... 316 6.15 Exercises........................................ 317 6.A Mathematical Background............................... 319 6.A.1 Summation of a Geometric Series....................... 319 6.A.2 Inverse of Ω N.................................. 319 7 Z Transforms 321 7.1 Introduction....................................... 321 7.2 Relationship between Z Transforms and Laplace Transforms............. 321 7.3 Calculation of Z-Transforms.............................. 325 7.4 Properties of ZTransforms............................... 330 7.5 Inverting ZTransforms Using Contour Integration................... 340