CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

v w = v = pr w v = v cos(v,w) = v w

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

2 SFI

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

Ανώτερα Μαθηματικά ΙI

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Delta Inconel 718 δ» ¼

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Blowup of regular solutions for radial relativistic Euler equations with damping

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ , º 4(195).. 935Ä956. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

p din,j = p tot,j p stat = ρ 2 v2 j,

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ανώτερα Μαθηματικά ΙI

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

arxiv: v1 [math.dg] 3 Sep 2007

Editorís Talk. Advisor. Editorial team. Thank

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Transcript:

44 1 Vol.44 No.1 8 1 149 1444 ACTA METALLURGICA SINICA Dec. 8 pp.149 1444 X7 µ CO ß ¹Ü ½ ¼»º ¾ («ÓËÐ ÅËË, «ÛÓÜ»«ÛÐ, «18) ³ ± Ó ¼ÄÞ ÏÑ ÀÔ Ë Ü (SSRT) ± CO Ý X7 Æ ¾ĐÄ Ì Î ¼ (SCC) ¹ É, Ê ÄÞ CO Ó ÛÜ Ö. Ð: CO ½ FeCO, Ͻ Fe Ñ Fe(CO ), Û X7 Æ ; CO H O ½ H CO À HCO, ¹ ¹ H. X7 Æ ¾ CO Ì SCC ǹ Ã Þ Ç, µ CO Ó Û, ÃÓ Ì. Û Æ, CO, Î ¼, ÐĐÆ TG17.7 Ø A 411961(8)11496 CORROSION BEHAVIOR OF X7 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO ZHANG Liang, LI Xiaogang, DU Cuiwei, LIU Zhiyong, LIANG Ping Corrosion and Protection Center, University of Science and Technology Beijing, and Key Lab of Corrosion, Erosion and Surface Technique Beijing, Beijing 18 Correspondent: ZHANG Liang, Tel: (1)691, E-mail: zhl 815@sina.com.cn Supported by National Science and Technology Infrastructure Platforms Construction Projects (No.5DKA14) and Major Fund of National Tenth Five Project (No.5499 8) Manuscript received 8 1, in revised form 8 9 1 ABSTRACT The effect of CO on the stress corrosion cracking (SCC) behavior of X7 pipeline steel in simulated Ku erle soil solution was investigated by polarization curve, EIS and slow strain rate testing (SSRT). The morphologies of fracture surface of X7 pipeline steel in the solution with the different partial pressures of CO were analyzed by SEM. The results show that the dissolved CO reacted with the corrosion product of FeCO and a dissolved complex (Fe(CO ) ) is formed. The cathodic regime representing evolution of hydrogen is also affected by the presence of dissolved CO. The SCC of X7 pipeline steel in dissolved CO solution follows the mechanism of hydrogen facilitated dissolution. As the increase of the pressure of CO in the solution, the effect of hydrogen induced cracking is enhanced. KEY WORDS pipeline steel, CO, stress corrosion cracking, cathode reaction Û Ï ½ (stress corrosion cracking, SCC) Ï Æ, ÏÁ Ê» Ô ¹ Ï Á Ï,, ½ ÙÅ, º À» [14]. CO Æ¾Ü Ç, Á ± Ö. º Ð, CO Æ Ý Á, [5]. Þ Ð CO Ï È [6,7], ÈÈÐ ß ÌÔ, * Ú Ô Æ ÊË 5DKA14 À Ú Ì Ë 5499-8 Ô ± : 8 1, Ô ± : 8 9 1 Ó :, Å, 198 Ï, Ï CO ± ph Á, ÅÐ CO ÆÔ±. CO Þ SCC Ô È º [815]. Ø Á ± Đ² X7 Ç. Ç Å Õ, ß, Õ Å [16]. ÇÓ ÅÍ, ͵ Å Ð Â ¹ CO ( ½² CO ), Ç «Ï. Æ Ø² X7 Ç ½ Ï Đ. ² Å Å º, Ç, Ø ² X7 Ç CO ÆÔ Å Í º Ï ½ ÁÜ È. 1 ² Ý º ¹ X7 Ç, Ò¾Æ (Ê Æ

144 Ú Å 44 ß,%) º: C.55, Si., Mn 1.6, P.1, S., V., Ti.9, Nb.7, Fe. ѾÏÒ Æº: Ù 675 MPa, Ù 59 MPa, ÙÌ 6%. Ð ÒÝ Ó Çº 1 mm 1 mm mm. Ó Ý Cu Ç, ÐÝ Ó µ Í. ݳ ÔÐ 6 1 SiC ÆÅ ÒÊ, É º, Æ º É Ï. Õ ÌÝ (SSRT) Ó º Î ÌÓ, Ó Çº GB/T 1597. Ó ÌÚ Ç Ì (ÑÓ Ìº Ç Ì), Ì Ó Ï Ì± Ï Ì Æ. Ó Ý² ÍÙ SiC ÆÅ À ÌÁ Ì Ê, ÆÅº 8, Ê ÌºÓ Ì, Å Ú Æ. Ê É, Æ º É Ï. ߯ Þ Û Ê Í, Ý º Æ NaCl, Na SO 4, NaHCO, KNO Á Æ È, Á ÑÆ ph Á. phb 4H ÙÖµÓ ph Áº 9.1. Í Æ ( Æß,%) º: Cl.17, SO 4.85, HCO.16, NO.1. Í Ù Í 99.5% N Ð, ÑÆ N Á CO ÌÀ È CO ÆÔ. Ý CO ± ÔÏ 5%, 1%, 15%, % Á 1%. Ôн Ç EG&G Model 7A Ð Òµ µó ¾. ² ÂÐ, X7 Ç Ó º Ô Ð, Pt º Ð, Á ºÐ (SCE) º Ð, º.5 L. µó Ö ÔÐ 1. V min, Å Ó Ý ±Í ¾Ð ; É ÔÐ Í Ã 15 min ÉÅ.5 mv/s Åß Ôн, Åßн º 1..5 V(vs SCE); ÎÀ Þ Ç Ð (i corr ) Ã. Ð Ò µó Princepton Applied Research Paratat 7 Ç ¾. µ н (E corr ), ÔÐÔ Áº 1 mv, µ º 1 5 1 Hz, ² ZSimpWin V. Æ À Þ ß Ã. SSRT WDML KN µ ÈÈ Ó Ý Ç. SSRT ³, ܼ N ÅÍ Ù Þ ; ³, Ó º Í 4 h. ±ÍÁ CO ÆÔ Ѿ Ì Ý, Ì º 1 1 6 s 1, µ µ Ð ½ E corr. ³Ë ÅßÐ (SEM) ÜÝ. нÁºÈÞ È Á ºÐ (SCE). ² ÜÝÕ«(ψ) À SCC, NACE TM 198, É º ψ = (S i S f )/S i ( Í, S f Á S i Æ ºÜ Æ ÝÁ Æ ÝÝ ). Å ².1 Ý ± CO ÆÔ, CO Þ X7 Ç Å ÍÐ Ò º Ê 1, Ð Ò ß Ã 1 Í. 1, CO ƾ À X7 Ç Å Í Ð½, CO ÆÔ Í, Ð (R p ) Ï, Ð i Í, Ü. ß ½Ñ Û, ÆÐ Ü. ß Ð½ E Ü, Ð i Ü Í, Ð Â ÄÁ. CO ÆÔ Í ph Á 1. 1 Đ, Í CO ph ÁÏ, CO ÆÔ Í, ph Á. ß ½¼ Û ÝĐ ¾ß, ß Ð Ü ß ¾. X7 Ç Å Í CO ÆÔ Á Ð CO Nyquist Þ. a Đ, CO ÆÔ Nyquist ÈĐ, ½ ³ ÊÁ ½ ³ Warburg, EIS ³ Þºß, Ð Ð Í ÊÐ Ý Ð Ð½ E ³ ³. CO ÆÔ Í, Ê Ï, Ð E(vs SCE), mv 8 4-4 -8-1 5% 1% 15% % 1% -7-6 -5-4 - - -1 lg(i, A/cm ) 1 X7 Æ ¾ Ì CO Ó Ó ¼ Ï¾Æ Fig.1 Potentiodynamic polarization curves of X7 pipeline steel in simulated Ku erle soil solution with different partial pressures of CO (total pressure consists of N and CO pressures) Ù 1 ¾ Ì CO Ó Ó ¼ Ï¾Æ Â ³ÞÀ ph À Table 1 Fitting parameters of potentiodynamic polarization curves and ph values in simulated Ku erle soil solution with different partial pressures of CO Partial pressure, % R p, Ω i corr, µa/cm ph 171. 11.51 8.9 5 145..78 5.7 1 1. 1.94 5.55 15 881.1 4.64 5.46 69.5 4.49 5.9 1 9.5 74. 5.5

, 1 : X7 Å ½ CO Ã Đ Ë 1441 Z im, /cm 1 8 6 4 (a) 5% 1% 15% 1% Stress, MPa 75 6 45 15 5% 1% 15% % 1% In air - 5 1 15 5 5 4 Z re, /cm 1 4 Strain, % Z im, /cm 1 8 6 4 - (b) 5 1 15 Z re, /cm CO Ý X7 Æ ¾ Ì Nyquist É Fig. Nyquist curves of X7 pipeline steel in simulated Ku erle soil solution with different partial pressures of CO (a) and without CO (b) Ð R t Ï, CO ÆÜ, CO ÆÔ ÜÐ Í. ½  Warburg ± à Þ., X7 Ç CO Í Ð Ò Ê Ø Ã È. Ð CO ͵ EIS ÇÄ ³ Ê, ³ Þºß ( b). Æ CO Ô ÆÐ º ph Á. È ±µ CO Þß Ð Ü Ô À CO Þ Ý Ô.. SSRT X7 Ç ±ÍÐ Å Í CO ÆÔ SSRT Ï, ß 4. Đ, ± (in air) È, X7 Ç Å Í Ù À, Å Ï ½. Í CO ÆÔ Í, ÜÝÕ«ψ Ü Ï, Ï ½ Ü. 4 Đ, Í CO ÆÔ Ç %, ψ Đ Ç ; Ð CO ÆÔ % Ç 1%, ψ Á Í, Ð ÆÔ, Í CO Þ X7 Ç Å Í Æ Ê Í. 5 CO ÆÔ X7 Ç Å Í SSRT н Þ (E corr t) ÅÐ Ï Þ (σ t). 5, CO ÜÆ¾ X7 Æ ¾ Ì ĐÄ Ì CO Ó SSRT ¾Æ Fig. SSRT curves of X7 pipeline steel in simulated 5 48 46 44 4 4 8 Ku erle soil solution with different partial pressures of CO and in air 4 6 8 1 Partial pressure of CO, % 4 CO ÓÝ X7 Æ ÛÜÔÅ É Fig.4 Effect of the partial pressure of CO in the solution E corr (vs SCE), mv -66-68 -7-7 -74 on the area reduction of X7 pipeline steel 1 Crack initiation Homogeneous strain Crack growth Heterogeneous strain 1 15%CO SSRT 15%CO %CO 1 t, h 7 6 5 4 1, MPa 5 X7 Æ ¾ Ì SSRT E corr t σ t ¾Æ Fig.5 Curves of E corr t and σ t of X7 pipeline steel in simulated solution under SSRT X7 Ç Í ½ н. X7 Ç º ½, нÖ, Û Ý ¼  (  ٠); 7 h Ò, º ½, н Â, Æ º ½, Û ÏÁÐ Ò ÌÔ,

v k h 44,.'aG, *("a^$ W1, 41eE7, \ f~h6x. N wx.. z CO B O. /, P l ^ P O {! 6 j X7 8O#A M$< D U CO Ol eaf O: ÆpF x> SEM ;. Ca CO Æp f % O (CO % Os Henry nh=p) (5% I 1%) A M$ < D U, X7 8O# x CO (g) = CO (aq) (1) >Æ UZ?7 (! 6a c); [D U CO ÆpU! 1%, x > O? 7as ~ I,? L _K. { O% O (! 6d); D U CO Æp! 6 U, X7 8O# x >as! T L f x `, x > L f. (! CO (aq) H O = H CO () 6e, f). Y j! X7 8O# le. DW, * x >a sv I?7Lg,! 6e I f gasj j_ H CO = H HCO (k = [H ][HCO ]/[H CO ]) () Lf. }* K! 4?8,?YW CO Æp F X7 8O# J < m ~H L f. Æ E, CO Æ HCO = H CO (k = [H ][CO ]/[HCO ]) (4) R X7 8O#A M$< D U SCC f, CO D! Q D U 4 W a f N : N CO, CO Æp 6x, x>lf!~h, SCC 144 " 1 6 X7 7N" CO oebwx SEM `r Fig.6 Fractographs of X7 pipeline steel in simulated Ku erle soil solution with CO partial pressures (a), 5% (b), 1% (c), 15% (d), % (e) and 1% (f) (ductile fracture brittle fracture)

1 : X7 Å ½ CO Ã Đ Ë 144 H CO, HCO Á CO. () Á (4) Í Çº ß k 1 k, Æ Í CO Å. ³ Ý Ð, Đ H O µ. Ð Í CO, H CO, HCO Á CO Ôº Õ «±, ±, Ê. Ü CO, ƾÜ, Æ º ÏÒ Ù¾, ph Á Í, ¹ Í H Í «. H CO Á HCO ¹ É Á ¹Ð½ E [17] : H CO e H HCO (E =.6 V) (5) HCO e H CO (E =.856 V) (6) 7 X7 Ç Ð Í ¹ SEM. 7 ž, Ð Í Æ CO, X7 Ç Æ ¾ ¹. ÝÆ Á ÅÐÐ ¼Ç, X7 Ç Æ ß, ź CO Ô Ù ½². Liu Á Mao [18] Â Æ Fe(OH). Í CO ± Fe(OH) ¹ ¾ FeCO. ÏÒÇ, н FeCO È Ð Ò. CO ± Fe(OH) ¾ FeCO Fe(OH) Ý. Ø ± Û, Ð ± FeCO ¾ ÒÃ. Æ ß Ö ¾ Fe(OH), É º FeCO, ÑÉ ¾ ÒÃ, ³ß : Fe Fe e (7) Fe OH Fe(OH) (8) Fe(OH) CO FeCO H O (9) FeCO HCO Fe(CO ) H (1) à Æ, X7 Ç CO Í ÒÃ Û Ý Ã ²Æ À¹Ò. CO ÆÔ Ü, ¾ H CO Á HCO Ù Í, Æ¾Ü X7 Ç ß, ± 1 Í i corr ¼ È. CO Å Å Í, X7 Ç H O µ Áß ¹ H ¹. ¹ Đ H ĐÀ () Á (1), ³ È H ÌÐ Ý Ã. Ýн, Í CO ÆÔÆ¾Ü () Á (1), Ü H ÌÐ Ý Ã Á ¹, Ð., ³Ð Ò È H ¹ Á H O µð Ò È, Ð ÒÃ Ð Ý²Æ ¹Ò, Ñ (1) ¹ÒÐ Ò. : H O e H OH (11) H e H (1) H CO e H HCO (1) 7 X7 Æ ¾ĐÄ Ì SEM Ö Fig.7 SEM morphologies of corrosion products of X7 pipeline steel in simulated Ku erle soil solution without CO (a) and with partial pressure of % CO (b) H H H (14) ¹ H ³ Ï Í ĐÔ [19]. Ý Ð, ß Fe, Đ ; Đ H O µ Á ¹, ³. ¹ H µ Å Ï Æ : ÆÌÈ Ã ¾ H ; ÆÎ Í ¾ºÆ Õ H µ, Ì ÂÌ Ï ÍÝ Ã, µ Ý ½, Æ H Æ Æ, «²,  Ù., ³ H µ õ Ï ÍÝ. Æ, Ï X7 Ç CO Å Ð Í, CO Á Ï,  ß, ¹ H ƾÂ. Ï ½ Ⱥ¹Ä ß Ã È, Í CO Æ Ô Ü, ¹ÄÔ Í, ± SSRT Æ. OCP(open circuit potential) н, Í Cl Á SO 4 Æ ÅÐ CO Ô, Û Ý ¾, Í ¹ ph Á

1444 Ú Å 44. ¹ H Â Û Àµ, Ë Ý ½,  ٠Á, ÆÄ Ü. ÏÏÒÆ ÁÐ Ò» Ô ¼ºÏÒ Ð ÒÔ, Û ÝÆ ÃÐ Ï Í½² Ô À. CO Í, Û Ý ¾ Ð Ù, Æ Á Õ ( 7b), Æ, Ï Í ÝÚ,. Ï Í, X7 Ç ÏÐ Ò ÏÒ. µ Ô Èº: Û Ý Ð Ò, Ñ ¾ µ ÍÙ», ÉÚ Ý µ, Æ, µ ² Ð Æ, ÂÌ Ý Ô Ü½È, µ Þ ÃÆÀ Á Ô, Àµ Ï, Æ ½È¹Ô,  ÛÜ. Ð Ò ÏÒ, Ý ½ÈÉ Á, Ý ÅÐ Ò Æ, Ý º ¾ µ Ï ½È []. Æ X7 Ç CO Å Í Ï, Ï«Û Ù, Ð ÒÔ, ; ¾ Ï» Ûµ ÃÏ, ½ µã, Æ ÛÜ. 4 (1) X7 Ç Å Ð Í, CO ±, ¾ ÒÃ, Ü X7 Ç. () Ýн, Í CO ÆÔƾÜ, Û, Ü X7 Ç Ï. Ï ½ Ⱥ¹Ä ß Ã È, Í CO ÆÔ Ü, ¹ÄÔ Í. () X7 Ç «Ù Ï, н,, Ï» Ûµ ÃÏ,, ÑÎ Æ ÛÜ. ÚÅ [1] Albarran J L, Aguilar A, Martinez L, Lopez H F. Corrosion, ; 58: 78 [] Koh S U, Kim J S, Yang B Y, Kim K Y. Corrosion, 4; 6: 44 [] Eadie R L, Szklarz K E, Sutherby R L. Corrosion, 5; 61: 167 [4] Zhao M C, Yang K. Scr Mater, 5; 5: 881 [5] Yu F, Gao K W, Su Y J, Li X, Qiao L J, Chu W Y, Lu M X. Mater Lett, 5; 59: 179 [6] Parkins R N, Zhou S. Corros Sci, 1997; 9: 159 [7] Parkins R N, Zhou S. Corros Sci, 1997; 9: 175 [8] Niu L, Cheng Y F. Appl Surf Sci, 7; 5: 866 [9] Li M C, Cheng Y F. Electrochim Acta, 7; 5: 8111 [1] Contreras A, Albiter A, Salazar M, Pérez R. Mater Sci Eng, 5; A47: 45 [11] Parkins R N, Beavers J A. Corrosion, ; 59: 58 [1] Li M C, Cheng Y F. Electrochim Acta, 8; 5: 81 [1] Gu B, Luo J, Mao X. Corrosion, 1999; 55: 96 [14] Gonzalez Rodriguez J G, Casales M, Salinas Bravo V M, Albarran J L, Martinez L. Corrosion, ; 58: 584 [15] Park J J, Pyun S I, Na K H, Lee S M, Kho Y T. Corrosion, ; 58: 9 [16] Li X G, Du C W, Liu Z Y. Corrosion Behavior and Eexpremential Study of X7. Beijing: Science Press, 6: 1 (ÉÎ, ØÅÖ, É. X7 Æ ¹ ÒÜ ±. : Ñ É, 6: 1) [17] Linter B R, Burstein G T. Corros Sci, 1999; 41: 117 [18] Liu X, Mao X. Scr Metall Mater, 1995; : 145 [19] Cheng Y F. J Mater Sci, 7; 4: 71 [] Liu J H, Li D, Liu P Y, Guo B L. J Mater Eng, 5; (): ( ØÍ, É Õ,, Á., 5; (): )