Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Fourier Series. Fourier Series

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

Homework for 1/27 Due 2/5

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

Approximation of the Lerch zeta-function

Solve the difference equation

Solutions: Homework 3

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates


On Quasi - f -Power Increasing Sequences

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

Υπόδειγµα Προεξόφλησης

Presentation of complex number in Cartesian and polar coordinate system

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y

F19MC2 Solutions 9 Complex Analysis

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

The one-dimensional periodic Schrödinger equation

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

8. The Normalized Least-Squares Estimator with Exponential Forgetting

Differential equations

Homework 4.1 Solutions Math 5110/6830

Inverse trigonometric functions & General Solution of Trigonometric Equations

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

IIT JEE (2013) (Trigonomtery 1) Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Math221: HW# 1 solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻

Homework 8 Model Solution Section

Solutions to Exercise Sheet 5

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet).

Example Sheet 3 Solutions

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

4. ELECTROCHEMISTRY - II

p n r

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Το άτομο του Υδρογόνου

Bessel function for complex variable

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

2 Composition. Invertible Mappings

Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

COMPLEX NUMBERS. 1. A number of the form.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6. MAXIMUM LIKELIHOOD ESTIMATION

Degenerate Perturbation Theory

Solutions - Chapter 4

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

Appendix A. Stability of the logistic semi-discrete model.

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Lecture 12 Modulation and Sampling

Chapter 1 Complex numbers

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Differentiation exercise show differential equation

ST5224: Advanced Statistical Theory II

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Trigonometric Formula Sheet

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

The ε-pseudospectrum of a Matrix

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

α β

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Transcript:

. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y + 6 e co y 6 u aifie Laplace equaio u i Harmoic. If i a eve ieger he ice, m (m + )!, we have J () ( ) m ( / ) m m m!(m )! m m ( ) ( ) J () m mm!(m )! If i eve, (m + ) i eve & () m+ m+ J () ( ) m ( / ) m J () m m!(m )! Hece, J () i eve. Agai, if i odd he (m + ) i odd & hece, () m+ ( m ) Vidyalakar J () Hece, J () i odd ( ) m ( ) ( / ) m m m!(m )! ( ) m ( / ) m m m!(m )! J () 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Vidyalakar : S.E. Mah III. (d) We have, u a + b y + cy + d y u a3 +by + d u y b y + cy 3 y v 3 y ey 3 + y v y ey 3 + y v y 3 3ey + f(z) i aalyic. I aifie auchy Riema equaio. u v y a 3 + by + d 3 3ey + omparig boh ide, we ge a a b 3e d d Alo u y v b y + cy 3 y y + ey 3 y omparig boh ide, we ge b b 6 c e From (), we ge b 3e 3e e From (), we have c e c c a, b 6, c, d, e a a f() d d f() co d co d () (). (a) Vidyalakar 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio i co ( ) ( ), ifiodd, if ieve The Half Rage coie erie i give by a f() a co ( ) co. (b) The curve i he boudary of he riagle i oy plae a z. F y ˆi ˆj (z) k ˆ where z y ˆi ˆj k ˆ ˆi ˆj kˆ F y z A y ˆi ˆj ( ) ( y) k ˆ ˆj(y) k ˆ ( F ). ˆ ˆ j ( y) k ˆ. ˆk a ˆ ˆk. ( y) We have by Soke heorem. F. dr ( F). d ˆ S S ( ) ( y) d ( y) d dy y ( y) dy d y d R (,, ) z O (,, ) y O (, ) (,, ) B B (, ) Vidyalakar y A (, ) y 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol 3

Vidyalakar : S.E. Mah III. () (i) d 3 3 3 LH e 3 d 3 LiH e Li e Lco H( a) e a a Lf()H( a) e Lf( a) e 3 3 LiH H LiH LH e 3 e d (ii) Sice, J J + () d d J d d J d + J () J d + () Pu i equaio (), J3 d J () + () Puig i equaio (), J d J () + (3) Now, J 3 d ( ) J () + J d + J J 3 d J () + Vidyalakar 3. (a) Fid he Fourier erie for f() i (, ). Hece deduce ha 8... 3 5 7 a f() d d d 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio 3. (b) a f() co d co d i co () ( ) f() i eve fucio b. a f() aco co d co ( ) ( ) co co co 3 co 5... 3 5 co co3 co5... 3 5 Puig, we ge... 3 5 8... 3 5 re coi e ij i.e. e co ; y e i d e (co i ) d, dy e (i + co ) d dr [e (coi) i e ico) j ] d + y e (co + i ) e ( + y ) 3/ (e ) 3/ e 3 F.dr e(coi ij). e [ (co i ) i + (i + co ) j ] d 3 e e 3 {co (co i ) i (i co )} d e e d - Vidyalakar e F.dr e d e e e F.dr e 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol 5

Vidyalakar : S.E. Mah III 3. (c) a f () aco bi a f()d π π a π π f() co d π - π π πd π π π π d co d i i co co () b π f() i d π - π i d co co i () co d i d co co co co co Vidyalakar Puig hee value i (), we ge f () co co co3 co5... 3 5 i 3 i i3... i () 6 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio. (a) Now f() i dicoiuou a. A a poi of dicoiuiy c f () lim f() lim f() c c f () Hece ubiuig i equaio (), we ge... 3 5 8... 3 5 3 L{i 3u} 9 L{u i 3u} d 3 d 9 3() 9 6 9 Lui u du Le ui3udu 6 9 6 9 6 L f() Lf() 6 (ii) L{co } L{} L{co } co L 85 d 9 6 869 d d () L f(u)du Vidyalakar f() L log log ()d log log 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol 7

Vidyalakar : S.E. Mah III. (b). (c) log log log log Le u 3 y + y 3 y u 6y + u y 3 3y y We kow ha dv v v u u d dy d dy y y 3 3y y d 6y dy 3 3y y d 6y dy Iegraig, we ge v 3 + 3y + y log orhogoal rajecory of family of curve i give by 3 + 3y + y 3 3y y whe (i) We kow ha +iy z () iy z () From () ad () we ge i z z, y (zz) y i z z y i z z We kow ha z y i z y z y Vidyalakar i (3) y z y i z y z y i () y 8 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio 5. (a) From (3) ad () we ge zz z z i i y y i i y y y y z z y (ii) Noe ha, log f'(z) log f' (z) log [f'(z). f'(z) logf'(z) log [f'(z)] L.H.S. log f'(z) y By Gree Thm. Now pdqdy R logf'(z) logf'(z) z z logf'(z) logf'(z) z z z z () () ( z, z are idepede) z z Q P d dy y f dr yi y j didy ydy dy By compario P y, Q y Q y, P y f dr y ddy R pu r co, y r i, d dy r dr d ra(co ) r rdrd r y r a(+co) Vidyalakar 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol 9

Vidyalakar : S.E. Mah III 5. (b) Pu a( co ) r d a co d a ( co ) d 8 8a co d, d d & uig reducio formula, f dr 8a / 8 co d 7 5 3 6a 8 6 35 a 6 5 z Sice w z 3 We have wz 3w 5 z z(w + ) 5 + 3w z 5 3w (w ) whe z, 5 3w (w ) 53(uiv) (u iv ) 53ui3v uiv 5 3u 9v 6 u v 5 + 3u + 9u + 9v 6(u + u + + v ) 6u 9u + 3u 3u + 6 5 + 6v 9v 7u + u 9 + 7v 7u + u + 7v + 9 u uv 7 9 7 u u v 9 7 9 7 9 u v 6 7 9 cere,, radiu 8 7 7 Vidyalakar 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio 5. (c) 6. (a) i i roo of J () Le he Beel fourier erie be, f() ij ( i) Muliplyig by J () o boh ide ad iegraig from o. J () i J ( ) J ( i) d i J ( ) 3 J( )d J( ) d d J () J () J () 3 J( )d J ()d 3 J ( ) J( ) J( ) J( ) i J 3 ( i) J( ) oider L f() i i i J( ) f () co co 3 3 d J ( ) 3 log ( ) log ( 3 ) log 3 log () By defiiio of Laplace Traform The equaio () mea coco3 3 e d log Puig co co 3 3 3 d log log Vidyalakar 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Vidyalakar : S.E. Mah III 6. (b) 6. (c) 3z + + i Le u + iv ad z + iy u + iv 3 ( + iy) + + i 3 + 3iy + + i u + iv (3 + ) + i (3y + ) u 3 + ad v 3y + Now z k i.e. y k + y k Thi i a circle wih cere (, ) ad radiu k. k y k if y (k, ) if y k (, k) u 3k + ad v 3k + ad u ad v u 3k + ad v ad u ad v 3k + are he image of (k, ) ad (, k) for z k. a a b f() d 3 3 d 3 f() co d co d 6 3 ( ) 3 i co i ( )( ) 3 co [ co ] Vidyalakar f() i d ( ) id co i co ( )( ) 3 co co 3 3 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol

Prelim Queio Paper Soluio b 3 3 a Now, f() acob i z Pu, we ge co co co co 3... 3... 3 6... 3 Vidyalakar 3/Egg/SE/Pre Pap/3/BIOM/Mah III_Sol 3