X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας"

Transcript

1 Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής μεταβλητής, : A όπου A { } e P, διακριτη ( Ω) e e f d, συνεχης Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας συνάρτησης, είναι η ύπαρξη όλων των ροπών µ της εφόσον e!!! µ Αυτό σημαίνει ότι δεν υπάρχει για όλες τις κατανομές η ροπογεννήτρια συνάρτηση Για παράδειγμα η sude με βαθμούς ελευθερίας, δεν έχει ροπογεννήτρια για κανένα πεπερασμένο Όμως για παίρνουμε την κανονική κατανομή, που όλες τις οι ροπές συγκλίνουν και η αντίστοιχη ροπογεννήτρια υπάρχει Επίσης έχουμε ότι ( ) ( ) e, όπου ( ) ( ) η τάξης παράγωγος ως προς της Η χαρακτηριστική συνάρτηση της τμ πραγματικής μεταβλητής, ϕ : είναι η μιγαδική συνάρτηση μίας ϕ { } i e P, διακριτη i ( Ω) e i e f d, συνεχης Η χαρακτηριστική συνάρτηση πάντα υπάρχει Για παράδειγμα εάν ~ f ( ) Chrcerisic fucio (cf) Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

2 ϕ i i, e f d e f d f d Για παράδειγμα, αν και η Cuchy Lorez δεν έχει καμία ροπή, που σημαίνει ότι δεν υπάρχει η αντίστοιχη ροπογεννήτρια συνάρτηση, η χαρακτηριστική της συνάρτηση υπάρχει Εάν ~ C(,), δηλαδή η ακολουθεί την τυπική Cuchy Lorez έχουμε: f C(, ), ϕ e, π ( + ) Όταν υπάρχει και η αντίστοιχη ροπογεννήτρια συνάρτηση, τότε ισχύουν οι σχέσεις: ϕ ϕ i i O μετασχηματισμός Fourier της πυκνότητας f είναι * ( ) ϕ i i e f d e f d Εάν γνωρίζουμε τον μετασχηματισμό Fourier της f, μπορούμε να καταλήξουμε πάλι στην f με τον αντίστροφο μετασχηματισμό Fourier * i i * i f e d e ϕ d e ϕ d π π π Όμως f έτσι παίρνοντας το συζυγές της προηγούμενης ισότητας έχουμε i f e ϕ d π Δηλαδή εάν γνωρίζουμε μόνο την χαρακτηριστική συνάρτηση ( ) μπορούμε να βρούμε την αντίστοιχη πυκνότητα * ϕ της Η πιθανογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής μεταβλητής, G : A όπου A και Sude wih degree of freedom Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

3 { } P, διακριτη ( Ω) G f d, συνεχης Το πεδίο σύγκλισης A της G είναι γενικά μη κενό εφόσον,, G f d f d f d δηλαδή [,] A Η τάξης παράγωγος ως προς της G ( z ) στο είναι η -- τάξης παραγοντική ροπή γ + Πράγματι η -- τάξης παράγωγος ως προς είναι ( ) ( ) G + G + Παράδειγμα: Εάν για μία κατανομή είναι γνωστές οι 3 πρώτες παραγοντικές ροπές π, π, π3, να υπολογιστούν οι 3 πρώτες ροπές µ, µ, µ 3 ( ) [ ] γ G µ ( ) [ ] γ G µ µ ( 3 ) 3 [ ] γ 3 G 3 + µ 3 3µ + µ από όπου παίρνουμε: µ γ µ γ + γ µ γ + 3 γ + γ γ γ + 3γ + γ Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 3

4 Παράδειγμα Να υπολογιστούν οι ροπογεννήτριες της Weibull και της Εκθετικής Η πυκνότητα της Weibull είναι b b Wei (, b) e, > b, και d ( d) u b b b τ/ b τ/ b τ/ b bu u b τ / b u b τ e du u e du, τ Γ + b τ τ b b τ b b b e e, Έτσι η ροπογεννήτρια αναπαρίσταται συμβολικά (δεν ξέρουμε ακόμα για ποία συγκλίνει και εάν συγκλίνει) σαν b / b µ Γ +!! b b / b Θέτουμε u Γ +, τότε από το κριτήριο του λόγου, για την απόλυτη! b σύγκλιση της σειράς u, έχουμε: / b Γ / b u b + + b b Γ b b b u + + Γ + Γ + b b / b / b / b / b b b + + b b / b / b / b Όπου χρησιμοποιήσαμε για τη gmm συνάρτηση την ασυμπτοτική προσέγγιση ( ) Γ + lim, Γ / b Όταν b >, έχουμε, όταν, και η σειρά είναι συγκλίνουσα για / b κάθε πραγματικό Για b <, έχουμε όταν,, και η σειρά είναι u + αποκλίνουσα για κάθε πραγματικό Όταν b έχουμε < < u Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 4

5 Στη ειδική περίπτωση που οικογένεια με παράμετρο Τότε b έχουμε Wei (,) E Γ ( + )!, που είναι η εκθετική που δίνει! µ, < <!! Εναλλακτικά, για να υπολογίσουμε τις ροπές της εκθετικής χωρίς την χρήση της Γ συνάρτησης θα είχαμε: { } e e e e d d d e d Ισχύει λοιπόν η αναδρομική εξίσωση για κάθε! Ανακυκλώνοντας την προηγούμενη σχέση βρίσκουμε ξανά Παράδειγμα Να υπολογιστεί οι η ροπογεννήτρια της Gmm κατανομής Υπολογίζοντας το ολοκλήρωμα ροπές e και στη συνέχεια τις Υπολογίζοντας πρώτα τις ροπές µ και μετά αθροίζοντας τους όρους u! µ για Εάν ~ (, ) G b έχουμε: b b Γ Γ, για b > b ( b ) e e e d e d Θέτοντας u b παίρνουμε: u u b u d b b e u e d, < b Γ b b Γ b ( b ) Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 5

6 + b b! b ( + ) ( + ) ( + ) ( + ), που δίνει µ! b b Εμφανώς από το διωνυμικό ανάπτυγμα βλέπουμε ότι < < b b b b b τ τ + τ b e d e d, u b Γ Γ u e d Γ ( + τ) ( + ) ( + τ ) Γ b Γ + τ u + τ b τ τ b b, για <, όταν b µ!! b! b + b! b b b b συγκλίνει για b b < < Η Στη ειδική περίπτωση που G, b E b, που είναι η εκθετική οικογένεια με παράμετρο b Σε αυτήν τη περίπτωση έχουμε: b, < < b b b έχουμε Άσκηση Να υπολογιστεί οι η πιθανογεννήτρια συνάρτηση της Διωνυμικής κατανομής και στην συνέχεια η ροπογεννήτρια, χρησιμοποιώντας την μεταξύ τους σχέση Χρησιμοποιώντας την ροπογεννήτρια συνάρτηση της Διωνυμικής δείξτε ότι το άθροισμα ανεξάρτητων Beroulli έχει διωνυμική κατανομή Εάν Y ~ (, ) Bi τότε GY y y y y y y y Y y y ( ) ( ) ( + ) Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 6

7 Γνωρίζουμε ότι Y GY ( e ) GY Y ( log ) Y Y ( ) G e e+, έτσι παίρνουμε: iid Έστω i ~ Beroulli Bi,, i και τότε i i i e+ i i e e e i i i i ( e ) ( e ) Y + + i Δείξαμε λοιπόν ότι, που δίνει Y d Y, ή ότι ~ Bi(, ) Άσκηση Να δειχθεί ότι: Η κατανομή του αριθμού των ανεξάρτητων δοκιμών Beroulli έως την οστή επιτυχία και του αριθμού Y των αποτυχιών έως την -οστή ~, Y ~ NB, ϑ, όπου ϑ η επιτυχία είναι αντίστοιχα Nb( ϑ ) και πιθανότητα επιτυχίας σε κάθε δοκιμή Beroulli ενώ για παίρνουμε τις ~ Y ~ Geo ϑ, αντίστοιχες Γεωμετρικές παραμετροποιήσεις geo( ϑ ) και όπου, ϑ Nb, ϑ ϑ ϑ, i Nb(, ϑ) ϑ ( ϑ) ( ) ii geo y+ y iii NB( y, ϑ) ϑ ( ϑ) ( y ) iv Geo( ϑ) NB (, ϑ) ϑ( ϑ) y ( y ) Δείξτε ότι PY { y} y 3 Βρείτε την πιθανογεννήτρια και την ροπογεννήτρια συνάρτηση της Y ~ NB, ϑ id 4 Δείξτε ότι εάν i ~ Geo ϑ, για i τότε ~ NB(, ϑ ) Παραμετροποίηση # των ανεξάρτητων δοκιμών Beroulli έως τη οστή επιτυχία i i, Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 7

8 P { } P{ επιτυχίες στις πρώτες δοκιμές, επιτυχία στην δοκιμή} P({ επιτυχίες στις πρώτες δοκιμές} { επιτυχία στην δοκιμή}) P{ επιτυχίες στις πρώτες δοκιμές} P{ επιτυχία στην δοκιμή} (, ϑ) (, ϑ) Bi Bi ϑ ϑ ϑ ϑ ϑ + + και έτσι Παραμετροποίηση ( ) ( ) ( ), {,,, } Nb(, ϑ) ϑ ( ϑ) ( ) Y # των αποτυχιών έως τη οστή επιτυχία PY { y} P{ y+ } y+ Nb y + y και έτσι y (, ϑ) ϑ ( ϑ), {,,, } y+, y (, ϑ) ϑ ( ϑ) ( y ) NB y, Οι δύο συναρτήσεις μάζας πιθανότητας για γίνονται geo( ϑ ) και Geo( ϑ ) αντιστοίχως ϑ + ϑ ϑ ϑ Επειδή y y y, και y ( ) ( ( )) y y y + + y y y! y! (! ) ( + ) ( + y ) ( + y! ) y+ (! ) y! (! ), y! παίρνουμε Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 8

9 y+ y y+ y ϑ ( ϑ) ϑ ( ϑ) NB( y, ϑ) y y y σημειώστε ότι θέτοντας y+ παίρνουμε την ταυτότητα ϑ ( ϑ) 3 Η πιθανογεννήτρια της Y ~ NB(, ) ϑ είναι y+ GY y y y ϑ y+ y { ( )} ( ) y y ϑ ϑ y ϑ Y y y NB(, ϑ) ϑ ( ϑ) ϑ ϑ { ( ϑ) } ( ϑ ) Θέτοντας u u e, έχουμε: Y ( u) GY ( e ) u { } για ϑ < < ϑ e ( ϑ ) y y ϑ 4 G ( i ) + + G ( ) i i ϑ G ( ) ( ) i Geo ϑ ϑ ϑ έτσι ( ϑ ) ϑ GY G ~ (, ) i i NB ϑ ( ϑ ) Παράδειγμα ( ~ N µσ, ) Εάν να υπολογιστεί η ροπογεννήτρια συνάρτηση συνέχεια, χρησιμοποιώντας την ροπογεννήτρια συνάρτηση δείξτε ότι [ ] και [ ] Vr σ i Στη µ (, ) e σ π σ e ( µ σ ) µ d σ π + + σ e µ σ µ σ µ µ σ d σ π σ e e N µσ d µ σ d Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 9

10 ( ( µ σ )) µ ( µ σ ) e d σ π σ e e ( ) µ µ σ µ σ σ σ π σ + + d ( µ σ ) N ( µ σ σ ) d e ( µ + σ / ) e + / +, Έτσι έχουμε e µ + σ ( ) ( ) [ ] ( + ) µ + σ µ µ σ + µ + σ µ µ + σ Vr µ µ µ σ µ σ Άσκηση Να αποδειχτούν οι παρακάτω προτάσεις για χαρακτηριστικές συναρτήσεις: Συμμετρικές γύρω από το μηδέν τυχαίες μεταβλητές έχουν πραγματικές και άρτιες χαρακτηριστικές συναρτήσεις Εάν και Y ανεξάρτητες και ισόνομες τμ, τότε η χαρακτηριστική συνάρτηση της τμ Z Y είναι πραγματική Εάν η είναι συμμετρική γύρω από το μηδέν τμ τότε f f δηλ η πυκνότητα της είναι άρτια ϕ * * i i e f d e f d κάνοντας τον μετασχηματισμό u παίρνουμε: d ή ισοδύναμα * iu iu e f ( u) du e f ( u) du { } ϕ ϕ Im ϕ Η ( ) ϕ είναι και άρτια εφόσον iu * ( ) e f ( u) du ϕ ϕ ϕ Επειδή και Y είναι ταυτοτικά κατανεμημένες, έχουν την ίδια χαρακτηριστική ϕ συνάρτηση, που συμβολίζουμε με Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

11 * i( Y) i iy i iy * Z e e e e e ϕ ϕ ϕ ϕ Άσκηση Δίνεται ότι η χαρακτηριστική συνάρτηση της τμ είναι ϕ, βρεθεί η πυκνότητα της τμ f e d π, αντικαθιστώντας έχουμε: Γνωρίζουμε ότι i ϕ ( ) ( ) { } i i i f + e e d e d e d π π + ( ) i ( + i) e e π i i + + π i + i C(,) π + Άσκηση Δίνεται ότι η χαρακτηριστική συνάρτηση της τμ είναι ϕ ( ) e ( iα β ), Να βρεθεί η πυκνότητα της τμ β [Απάντηση: f C( αβ, ) ] π β + α e Να Άσκηση Δίνονται ανεξάρτητες τμ,,, πραγματικοί αριθμοί,,, και ότι Y + + Δείξτε ότι η χαρακτηριστική συνάρτηση της Y είναι ϕy i ϕ i i Εάν,, είναι και ισόνομες, με χαρακτηριστική συνάρτηση, τότε ϕy ϕ ( ) e( i ) e( i ) ϕ Y i i i i i i e( i ) i i i ϕ i i i Προφανές από την Παράδειγμα (ΕΚΤΟΣ) Να βρεθεί η χαρακτηριστική συνάρτηση της τυπικής Cuchy Lorez κατανομής ϕ και Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

12 f C,, π Έστω ~ C (,) τότε iz Θέτουμε ( + z ) ( + ) iz e g z ; e f z, z και υπολογίζουμε το μιγαδικό π ολοκλήρωμα της g( z ; ) ως προς z πάνω στη C + iz iz iz e e e g ( z; ) dz dz dz dz πi z i πi z+ i πi z i C C C C Θέτοντας g( z ; ) iz e z i έχουμε g zdz g zdz i s g z z i ( ; ) ( ; ) π Re { ( ; ); } πi C πi ( z i) g( z) e C + + lim ; lim e iz z i z i Επειδή C + AB BA θα έχουμε: ( ; ) ( ; ) + ( ; ) ( ; ) ( ; ) + C AB BA z BA Όμως g z dz g z dz g z dz g z dz e g z dz dz g z; dz g z; dz, z + BA BA BA Όπου στην τελευταία ανισότητα χρησιμοποιήσαμε ότι Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

13 ( ϑ + ϑ ) ( ( ϑ) ) ( ( ϑ) ) ( z ( ϑ )) ( ) e iz e i z cos isi e z si e i z cos e si ϑ π ( ϑ) ( ϑ) zsi( ϑ) iϑ z re BA si z si e Έτσι έχουμε g ( z; ) dz m dz π m, z + z + BA z BA BA z Επειδή όμως z BA z έχουμε z ( z + ) z + + z z + z + z π g ( z; ) dz, BA Παίρνοντας λοιπόν το όριο της εξίσωσης ( ; ) ( ; ) έχουμε ότι g z dz e g z dz z όταν BA g z; dz e, z Επαναλαμβάνουμε την διαδικασία υπολογισμού του μιγαδικού ολοκληρώματος g z ; ως προς z πάνω στη C της iz iz iz e e e g ( z; ) dz dz dz dz πi z i πi z+ i πi z+ i C C C C Θέτοντας g( z ; ) iz e + z + i έχουμε g zdz g zdz i s g z z i ( ; ) ( ; ) π Re { ( ; ); } πi C πi ( z i) g( z) e C + + lim + ; lim e iz + z i z i Επειδή C BA AB θα έχουμε: ( ; ) ( ; ) + ( ; ) ( ; ) ( ; ) g z dz g z dz g z dz g z dz e g z dz C BA AB z AB Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 3

14 ( ; ) ( ; ) g z dz e + g z dz Όμως z AB dz g z; dz g z; dz, z + AB AB AB Όπου στην τελευταία ανισότητα χρησιμοποιήσαμε ότι ( ϑ ϑ ) ( ( ϑ) ) ( ( ϑ) ) ( + ) ( z ( ϑ )) iϑ π ϑ ( ϑ) ( ϑ) e iz e i z cos isi e z si e i z cos e si zsi( ϑ) z re AB si z si e Έτσι έχουμε g ( z; ) dz m dz π m, z + z + AB z AB BA z Επειδή όμως z AB z έχουμε z ( z + ) z + + z z + z + z π g ( z; ) dz, AB Παίρνοντας λοιπόν το όριο της εξίσωσης ( ; ) + ( ; ) έχουμε ότι Τελικά έχουμε: g z dz e g z dz z όταν AB g z; dz e, z e, g ( z; ) dz e( ) z e, Άσκηση Δείξτε ότι η τυπική Cuchy Lorez κατανομή δεν έχει ροπογεννήτρια Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 4

15 Θέτουμε g f Τότε [ ] όπου g + m{, g} και g m {, g } mi {, g } + f > g f ( > ) g f < f < + g d g d g d d d π + + [ ] (απροσδιόριστο), επειδή d log ( + ) +, u d d du u d d d ( π ) π + π + π d π π drc π + Εναλλακτικά [ ] d lim d lim d, τ π > + π + π τ + + lim log log ( τ), τ > (απροσδιόριστο udefied) π + τ π Πολυδιάστατες ροπογεννήτριες, πιθανογεννήτριες και χαρακτηριστικές συναρτήσεις Η,, T ή από κοινού ροπογεννήτρια των τμ,,, είναι η πραγματική συνάρτηση στις ροπογεννήτρια συνάρτηση 3 της τμ ( ) πραγματικές μεταβλητές, με 3 ome geerig fucio (mgf), Πιο συγκεκριμένα :,,,, A και Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 5

16 T,, (,, ) e e e,, T ή από κοινού χαρακτηριστική των τμ,,, είναι η μιγαδική συνάρτηση ϕ,, στις πραγματικές μεταβλητές,, Πιο συγκεκριμένα ϕ και Η χαρακτηριστική συνάρτηση 4 της τμ ( ) i i T,, (,, ) e e e( i ) :,, ϕ ϕ Μπορεί να αποδειχθεί ότι η από κοινού χαρακτηριστική συνάρτηση ϕ,,,, ορίζει με μοναδικό τρόπο την από κοινού κατανομή της τμ (,, T ) Χρησιμοποιώντας αυτό το αποτέλεσμα έχουμε ότι: Οι τμ,, είναι ανεξάρτητες εάν και μόνον εάν η από κοινού χαρακτηριστική συνάρτηση παραγοντοποιείται στις αντίστοιχες περιθώριες χαρακτηριστική συναρτήσεις (,, ) ( ) ( ) ϕ ϕ ϕ,, οι τμ και Y έχουν την ίδια κατανομή (είναι ισόνομες) όταν έχουν ίσες χαρακτηριστικές συναρτήσεις 5 ϕ ϕ Y Y F F y Y Όταν υπάρχει η ροπογεννήτρια συνάρτηση, τότε τα προηγούμενα συμπεράσματα μπορούν να εξαχθούν και από την ροπογεννήτρια συνάρτηση d Η πιθανογεννήτρια συνάρτηση 6 της τμ ( ),, T ή από κοινού πιθανογεννήτρια των τμ,,, είναι πραγματική συνάρτηση G στις πραγματικές μεταβλητές, έτσι ώστε G,,,,, G G :,,,, A όπου A και 4 Chrcerisic fucio (cf) 5 Δηλαδή υπάρχει μια ένα προς ένα και επί σχέση (bijecio) μεταξύ κατανομών και χαρακτηριστικών συναρτήσεων 6 Probbiliy geerig fucio (gf) Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 6

17 Το πεδίο σύγκλισης A της G ( ) είναι γενικά μη κενό, γιατί [ ],,,, Για να το δούμε ας υποθέσουμε ότι [ ],,,, τότε: (,, ),, G f d d,,,, (,, ),, f d d f,, d d < Εφαρμογή Δείξτε ότι η συνθήκη,,,,,, για κάθε ( ) συνθήκη Θα το δείξουμε για Αρκεί να δείξουμε ότι l l Y, s, Y s Y Y Πράγματι l l sy sy Y, ( s, ) e e! l l! l l l sy s l Y l l!! l l!!, A είναι ισοδύναμη με την, για κάθε l, εάν ισχύει ότι σχέση δίνει: l l για κάθε Y Y l,, η προηγούμενη Y, ( s, ) l l l l s Y s Y l!!! l! l l l l sy sy e e Y ( s)! l! l Παρατήρηση: Δύο τμ και Y είναι ανεξάρτητες εάν και μόνον εάν l l Y Y για κάθε ( l, ) Αυτός είναι ο λόγος που γενικά Y Y ) δεν είναι γραμμικά ασυσχέτιστες τμ και Y (δηλαδή [ ] [ ] [ ] γενικά και ανεξάρτητες Άσκηση Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 7

18 Εάν η Y ακολουθεί την λογαριθμοκανονική (logorml disribuio) κατανομή Y e ~ LN µσ, ~ N µσ, Να βρεθούν οι ροπές, η μέση τιμή και η όπου διασπορά της Y / Y e e µ + σ όπου κατανομής [ Y] e µ + σ /, και [ ] µ + σ µ + σ / µ + σ Vr Y e e e σ e η ροπογεννήτρια της κανονικής Τα επόμενα έως το τέλος του PDF είναι εκτός Τι πληροφορία μα δίνουν οι ροπογεννήτριες συναρτήσεις για την κατανομή? Εάν η ροπογεννήτρια συνάρτηση είναι πεπερασμένη στα «σωστά σημεία», τότε για κάθε > (όχι αναγκαστικά ακέραιος), οι απόλυτες ροπές < θα είναι πεπερασμένες Εμφανώς τότε και f d f d < < εφόσον Πρόταση: Έστω ότι υπάρχουν < Τότε η ροπογεννήτρια είναι πεπερασμένη για κάθε σημείο του διαστήματος,, [ ] Δηλαδή ( ) < για όλα τα [ ] < τέτοια ώστε, ( ) < και Για κάθε [, ] υπάρχει λ [,] τέτοιο ώστε λ ( λ) συνάρτηση g e είναι κυρτή, δηλαδή + Επειδή η g e >, θα έχουμε ότι και Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 8

19 ( λ ( λ) ) λ ( λ) g g + g + g Παίρνοντας μέσες τιμές έχουμε ( λ ( λ) ) λ ( λ) + +, και επειδή ( ) < και ( ) < θα έχουμε και Ορίζουμε το χώρο πυκνοτήτων { f Τότε μπορεί να αποδειχθεί ότι εάν q τότε q < < Θα δείξουμε τώρα ότι εάν και οι ροπές όλων των τάξεων, δηλαδή ότι Θέτουμε mi {, } τότε [, ] ( ± ) < και παρατηρούμε ότι e ( l) < πυκνότητα: <} για q, δηλαδή < < και ( ) <, l l + e για κάθε l,,!! παίρνοντας μέσες τιμές έχουμε l l > + ( )!! <, τότε υπάρχουν < για κάθε,,, ± και από την προηγούμενη πρόταση ( l) l Έτσι < που δίνει l l < < για κάθε l, Δηλαδή < για κάθε Εάν όμως υπάρχουν όλες οι ροπές αυτό δεν μας εγγυάται την ύπαρξη της ροπογεννήτριας σε διάστημα [, ] με < < Παράδειγμα Εάν Y ~ LN (,) (τυπική logorml), δείξτε ότι υπάρχουν όλες οι ροπές, δηλαδή Y <, αλλά Y όταν > ενώ για έχουμε Y ( ) < (δηλαδή Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 9

20 δεν υπάρχει διάστημα [, ] [, ] ) με < < τέτοιο ώστε / Y e e < όπου τυπική κανονικής κατανομής e Γενικά εάν Y ( ω) για κάθε ω Ω (ισοδύναμα PY { } της Y συγκλίνει για Πράγματι Y Y Y < e < e Τώρα για > log e Y e y LN y y Y, dy e y y y π e dy < για κάθε Y / η ροπογεννήτρια της ), η ροπογεννήτρια Θέτοντας y u e έχουμε: ( u u e u u Y ) e e ( e du ) e e u du u u u e π π 3 Παρατηρούμε ότι στην περίπτωση που u >, έχουμε e u + u+ u + u και έτσι 6 3 e u u u u * * + u + + u Ζητάμε u τέτοιο ώστε όταν u > u να ισχύει η 6 3 u u u ανισότητα e u + u Αρκεί τότε να ισχύει + u + + u + u 6 * που είναι ισοδύναμο με το να ζητήσουμε u 3 ( ) u Θέτοντας K m, u *, παίρνουμε ότι για > : { } u Y e e u du u π u + u e e u du e du u K u K π π Δηλαδή στην περίπτωση της Logorml κατανομής, η ροπογεννήτρια δεν παράγει τις ροπές, εφόσον για να γίνει αυτό θα πρέπει να υπάρχει σε Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

21 κάποιο διάστημα που να περιέχει το μηδέν Το «παράδοξο» είναι ότι όλες οι ροπές υπάρχουν Η ροπογεννήτρια συνάρτηση είναι πεπερασμένη σε κάποιο ανοικτό διάστημα που περιέχει το μηδέν, εάν και μόνον εάν, η ουρές της κατανομής (he ils of he disribuio) είναι εκθετικά φραγμένες, δηλαδή υπάρχουν θετικοί πραγματικοί b αριθμοί Κ και b, τέτοιοι ώστε, P{ > } Κ e (Ικανό) Αποδεικνύουμε ότι εάν b P{ > } Κ e Εάν τ > με τ (, ), τότε < για κάθε (, ) τ < και τ e P P e e e τ e τ τ τ { > } { > } ( τ ) Εάν τ > με τ (, ), τότε τ < και τ e P P e e e e τ τ τ { < } { > } ( τ ) τ Προσθέτοντας κατά μέλη τις δύο ανισότητες, έχουμε { } τότε και τ τ ( τ + τ ) τ P > e τ + e τ e τ τ + e Κe b Με b τ > και ( τ + τ ) ( τ ) ( τ ) Κ + > e b (Αναγκαίο) Αποδεικνύουμε ότι εάν P{ > } Κ e τότε υπάρχει διάστημα (, ) τέτοιο ώστε για κάθε (, ) να έχουμε > > Κ Έστω >, τότε b Έχουμε P{ } P{ } e { > } + { > } e P e y dy P e y dy y y ( y) log ( y) log + P > dy + e b dy Κ y y < Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

22 b / y dy b +Κ Κ +Κ, εφόσον b y b > b Έχουμε P{ } P{ } e < > Κ Έστω <, τότε { > } + { > } e P e y dy P e y dy y y ( y) log b + P < dy + e log ( y) dy Κ y y b/ b +Κ y dy Κ +Κ, εφόσον b y b > Παρατηρούμε ότι P e b b b { > } Κ +Κ +Κ, > P e b b { < } Κ +Κ, < b Δηλαδή όταν P{ } e Άσκηση > Κ έχουμε +Κ b για < b Δείξτε ότι οι ροπές της τυπικής Cuchy είναι πεπερασμένες για < < d d d π + π + π + π π d d d π < + + π 4 π 4 Αρκεί να δείξουμε ότι π d < + 4 Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις

23 Πράγματι η συνάρτηση g( ) g ( ) log είναι g για < <, εφόσον <, και έτσι για < < έχουμε > >, που δίνει π d d rc rc Σπυρίδων Ι Χατζησπύρος Πιθανότητες ΙI Ροπογεννήτριες συναρτήσεις 3

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών 3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ), που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες:. P ( Ω ). 2. Η πιθανότητα της αριθμήσιμης

Διαβάστε περισσότερα

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem Leberg Levy Εάν ~ f (, με [ ] µ, Var [ ] σ < και S τότε η τμ S ( S S µ συγκίνει ως προς κατανομή (coverges strbuto στη Var S σ ( N ( 0,, δηαδή N( 0, ή ισοδύναμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1) Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ~ ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Μια συνάρτηση f ( ) u( x, y) iv( x, y ) έχει παράγωγο σε ένα σημείο x iy αν ικανοποιούνται

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2 ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγματικό μέρος uxy (, ) = ycosxκαι φανταστικό μέρος vxy (, ) = y sinx, όπου = x+ iy

Διαβάστε περισσότερα

2. Η πιθανότητα της ένωσης δύο ξένων μεταξύ τους (ασυμβίβαστων) ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της ένωσης δύο ξένων μεταξύ τους (ασυμβίβαστων) ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P, που αντιστοιχεί σε υποσύνολα του Ω έναν αριθμό στο [ 0, ] και έχει τις εξής ιδιότητες:. P ( Ω ).. Η πιθανότητα της ένωσης δύο ξένων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Ιανουαρίου 009 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 009. Πριν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ

Διαβάστε περισσότερα

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές. Ορισμός

Τυχαίες Μεταβλητές. Ορισμός Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Μαρτίου 7 Ημερομηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n) ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό

Διαβάστε περισσότερα

E [X ν ] = E [X (X 1) (X ν + 1)]

E [X ν ] = E [X (X 1) (X ν + 1)] Πιθανότητες και Αρχές Στατιστικής (6η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 (

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις τέταρτου φυλλαδίου ασκήσεων. ( n(n+1) e 1 ( . Αποδείξτε ότι: Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις τέταρτου φυλλαδίου ασκήσεων. +) 7 +) +), 5 +7 5 5, +log ) 7 log 4, +, ++ + + ) +4+4 + +4, + si +, +) +), + [ ], + + 0, + +, ) +,,

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι Ασκήσεις

Απειροστικός Λογισμός Ι Ασκήσεις Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

2πσ 2 e (x µ)2 /2σ 2 dx = 1. (13.1) e x2 dx. e y2 dy, I = 2. e (y2 +z 2) dy dz.

2πσ 2 e (x µ)2 /2σ 2 dx = 1. (13.1) e x2 dx. e y2 dy, I = 2. e (y2 +z 2) dy dz. Κεφάλαιο 3 Κ.Ο.Θ.: Λίγη θεωρία και αποδείξεις Σε αυτό το κεφάλαιο θα δούμε τέσσερις αποδείξεις αποτελεσμάτων που σχετίζονται με την κανονική κατανομή και το Κ.Ο.Θ., οι οποίες είναι αρκετά πιο απαιτητικές,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) Δίνεται η εξίσωση z-=z-3i,zc α) Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του z είναι η ευθεία ε: -3y+4= β) Να βρείτε την εικόνα του μιγαδικού z, για τον οποίο το

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Θέμα 1. που. . Δηλαδή ο υπόχωρος V είναι το. Απάντηση 1α) ii)παρατηρούμε οτι

Θέμα 1. που. . Δηλαδή ο υπόχωρος V είναι το. Απάντηση 1α) ii)παρατηρούμε οτι Θέμα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουνίου (οποιεσδήποτε άλλες ορθές απαντήσεις είναι αποδεκτές)

Διαβάστε περισσότερα

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L] c Σειρές Fourier-Μετασχηματισμός Fourier Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( ) [ ] για την οποία ξέρουμε ότι f() = f( ) =. Μια τέτοια συνάρτηση μπορούμε πάντα να τη γράψουμε : π f( ) = A

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές. Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες Σειρές Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 9 εκδόσεις Καλό

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές. Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες, Σειρές, Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 7 εκδόσεις Καλό

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης 6 Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης ΘΕΜΑ Έστω η συνεχής συνάρτηση f : (, ) R τέτοια ώστε για κάθε να ισχύει: t f ( ) dt. f () t te ( ) α) Να αποδείξετε ότι για κάθε ισχύει: β) Να αποδείξετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z) ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα

2.1 Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Σειρές Fourier. Σειρές Fourier. Περιοδικές συναρτήσεις και τριγωνομετρικά αναπτύγματα Μία συνάρτηση f() είναι περιοδική με περίοδο όταν ισχύει f(+)=f(). Η ελάχιστη δυνατή περίοδος λέγεται και θεμελιώδης

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2 AΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Βλ σχολ βιβλίο σελ 5 Α Βλ σχολ βιβλίο σελ Α Σ Σ Σ 4 Σ 5 - Λ ΘΕΜΑ Β Β Η εξίσωση () z ισοδυναμεί με την z z που είναι τριώνυμο με διακρίνουσα 4 διότι 4 Άρα οι ρίζες είναι συζυγείς μιγαδικές

Διαβάστε περισσότερα

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3)

4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3) 4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Η εκθετική συνάρτηση Η εκθετική συνάρτηση την σχέση e, ή exp( ) όπως εναλλακτικά συμβολίζεται, ορίζεται από x e = e (os y+ isin y) (0.) όπου = x + iy. Όταν = iy τότε ο ανωτέρω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1] ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

κυρτές συναρτήσεις. Αν η g είναι γνησίως αύξουσα τότε η gof : είναι κυρτή. . Θα δείξουμε ότι η h είναι γνησίως αύξουσα.

κυρτές συναρτήσεις. Αν η g είναι γνησίως αύξουσα τότε η gof : είναι κυρτή. . Θα δείξουμε ότι η h είναι γνησίως αύξουσα. Άσκηση Έστω f, g: κυρτές συναρτήσεις Αν η g είναι γνησίως αύξουσα τότε η gof : είναι κυρτή Λύση Θα δείξουμε ότι η h ( ) Θέτουμε h( ) gof ( ) g f ( ) είναι γνησίως αύξουσα h( ) g f ( ) f ( ) Έχουμε ότι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου Θέμα Δίδονται οι πίνακες K= 5, L=, M=. 9 7 A) (8 μονάδες) Για κάθε ένα

Διαβάστε περισσότερα