FV(n,r) PV = (1+r) n/365

Σχετικά έγγραφα
PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

AD AB và M là một điểm trên cạnh DD ' sao cho DM = a 1 +.

Kinh tế học vĩ mô Bài đọc

là: A. 253 B. 300 C. 276 D. 231 Câu 2: Điểm M 3; 4 khi đó a b c

Câu 2 (1,0 điểm). Giải phương trình: 1 sin x sin cos x π x x = + +.

Tự tương quan (Autocorrelation)

Tự tương quan (Autoregression)

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

O 2 I = 1 suy ra II 2 O 1 B.

Batigoal_mathscope.org ñược tính theo công thức

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

5. Phương trình vi phân

Mô hình Input/Output của hệ tuyếntính Đáp ứng thời gian. Output. (t) x 2. Mass-Spring-Damper, Thermocouple, Strain Gauge... (t) A x 1.

Năm Chứng minh Y N

HỒI QUI VÀ TƯƠNG QUAN

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan

Chuỗi Fourier và tích phân Fourier

Chương 12: Chu trình máy lạnh và bơm nhiệt

A A i j, i i. Ta kiểm chứng lại rằng giá trị này không phụ thuộc vào cách biểu diễn hàm f thành tổ hợp tuyền tính những hàm ñặc trưng. =, = j A B.

BIÊN SOẠN : TS. MAI VĂN NAM

ĐỀ THI VÀ LỜI GIẢI ĐỀ CHỌN ĐỘI TUYỂN QUỐC GIA DỰ THI OLYMPIC TOÁN QUỐC TẾ CỦA VIỆT NAM TỪ NĂM 2005 ĐẾN NĂM 2010

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

Chương 2: Đại cương về transistor

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Năm 2017 Q 1 Q 2 P 2 P P 1

O C I O. I a. I b P P. 2 Chứng minh

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

LỜI NÓI ĐẦU Lý thuyết điều khiển tự động là môn học dành cho sinh viên ngành Điện tử - Tự động. Giáo trình Lý thuyết điều khiển tự động gồm có chín

Dữ liệu bảng (Panel Data)

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC

Μετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên?

SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Ngày 26 tháng 12 năm 2015

Gi i tých c c hµm nhiòu biõn

CHƯƠNG 1: HÀM NHIỀU BIẾN

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm

(2.2) (2.3) - Mômen xoắn là tổng các mômen của các ứng suất tiếp ñối với trục z. Hình 2.3. Các thành phần nội lực P 6. Q x II.

MỘT SỐ LỚP BÀI TOÁN VỀ DÃY SỐ

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.

KỸ THUẬT ĐIỆN CHƯƠNG IV

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

Vn 1: NHC LI MT S KIN TH C LP 10

TOÁN CAO CẤP (A2) BÀI GIẢNG HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG Biên soạn : Ts. LÊ BÁ LONG Ths.

Bài tập quản trị xuất nhập khẩu

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

HỒI QUI VÀ TƯƠNG QUAN

SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A1) Ths. ĐỖ PHI NGA

KIẾN THỨC CÓ LIÊN QUAN

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

KỸ THUẬT ĐIỆN CHƯƠNG II

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

ĐỀ 56

LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN

Viết phương trình dao động điều hòa. Xác định các đặc trưng của DĐĐH.

Tài liệu dạy học Môn Hóa: Este và chất béo Bi m Sơn Lời nói đầu

GIÁO TRÌNH PHƯƠNG PHÁP TÍNH

PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC. Phạm Văn Huấn

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NINH HOÀI ANH NGHIÊN CỨU VÀ XÂY DỰNG ỨNG DỤNG PHÂN TÍCH DỮ LIỆU KINH DOANH THIẾT BỊ ĐIỆN TỬ

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ===== ===== SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A2) (Dùng cho sinh viên hệ đào tạo đại học từ xa)

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng

QCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater

Sử dụngụ Minitab trong thống kê môi trường

Các ph n ng peri hóa

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

9.2. Lựa chọn thiết bị và các tham số theo điều kiện làm việc lâu dài Kiểm tra các thiết bị điện Lựa chọn các phần tử của

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.

1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình...

Бизнес Заказ. Заказ - Размещение. Официально, проба

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

gặp của Học viên Học viên sử dụng khái niệm tích phân để tính.

Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS

CƠ HỌC LÝ THUYẾT: TĨNH HỌC

Chương 2: Mô hình hồi quy đơn

BÀI TOÁN ĐẲNG CHU RỜI RẠC TRONG MỘT GÓC

Transcript:

HỆ THỐNG CÁC CÔNG THỨC PHỤC VỤ ÔN TẬP HỌC PHẦN PHÂN TÍCH ---------o0o---------. Giá rị hời gia của iề Tíh FV FV của $ Tíh lãi heo hág Tíh lãi heo gày Tíh PV PV FV(,r) (+r) /365 2. Mức sih lời và rủi ro C«g høc Ýh møc sih lêi g èi: R (P - P - ) + D P - Møc sih lêi rog mé kho g hêi gia R (+R) x (+ R2) x (+R3) x...x (+R-)x (+R) - Vµ møc sih lêi b h qu luü kõ hµg m sï lµ:

R bq (+ R) x ( + R2) x ( + R3) x...x ( + R -)x ( + R) Møc sih lêi m R (+R m ) 2/m - Møc sih lêi hùc Õ vµ møc sih lêi dah ghüa R r + h Møc sih lêi b h qu R + R 2 + R 3 +...+ R Rủi ro R Var (R) (R - R) 2 + (R 2 - R ) 2 + (R 3 - R) 2...+ (R - R) 2 T Sih lời dự kiế của chứg khoá E (R) p R + p 2 R 2 +...... + p R Sih lời dự kiế của dah mục Rủi ro dự kiế của chứg khoá Rủi ro dự kiế của dah mục 2

Rủi ro dự kiế của dah mục gồm 2 chứg khoá 3. Phâ ích ài chíh HÖ sè hah kho a. HÖ sè hah o hiö ¹i: Thah o hiö ¹i b. HÖ sè vè l u ég rßg Tæg µi s l u ég Tæg î g¾ h¹ Vè l u ég rßg Tæg TSL - Tæg î g¾ h¹. c. HÖ sè kh g hah o hah (hö AxÝ). Kh g hah o hah (Tæg TSL - Tå kho) Tæg î g¾ h¹ d. HÖ sè l u chuyó iò Ö: LCTT Lîi huë rßg (hay lç) + KhÊu hao. e. HÖ sè iò Ö: (TiÒ mæ + Chøg kho kh m¹i) HÖ sè iò Ö Nî g¾ h¹ HÖ sè ho¹ ég a. Kú hu håi î rug b h: Kú hu håi î rug b h Kho ph i hu 3

Doah sè b chþu hµg m/360 gµy b. Thah o rug b h: Kho ph i r Thah o rug b h Doah sè b chþu rog m/360 gµy c. HÖ sè hµg l u kho: Gi rþ hµg b (gi mua) Hµg l u kho Gi rþ hµg l u kho rug b h d. HÖ sè lu chuyó hµg ho (vßg quay hµg å kho): Doah hu huç Vßg quay hµg å kho Tå kho HÖ sè hu hëp r l i Þh kú: HÖ sè hu hëp r l i Þh kú EBIT Chi phý r l i HÖ sè rag r i a. HÖ sè rag r i chug: Trag r i chug C c guå hu iò mæ Tæg ph i r b. HÖ sè hah o l i r i phiõu: Thah o EBIT l i r i phiõu Tæg r i øc hµg m c. HÖ sè hah o cæ øc u i: Thah o cæ øc u i Lîi huë rßg Cæ øc u i d. HÖ sè hoµ vè cæ phiõu h êg: Lîi huë rßg - Cæ øc u Hoµ vè cæ phiõu h êg i Vè cæ «g 4

Kh g sih lêi: a. HÖ sè æg lîi huë: Tæg lîi huë Doah sè b - TrÞ gi hµg b Doah sè b b. HÖ sè lîi huë ho¹ ég: Lîi huë ho¹ ég EBIT Doah hu c. Møc l i rßg: Møc l i rßg Lîi huë rßg Doah sè d. Lîi huë rª vè cæ phç (ROE): ROE Lîi huë rßg Vè cæ phç e. Lîi huë rª µi s (ROA): ROA EBIT Tæg µi s g. Lîi huë rª Çu (ROI): ROI Lîi huë rßg Tæg µi s Lîi huë rßg Doah sè hùc x Doah sè hùc Tæg µi s h. Lîi huë mçi cæ phiõu (EPS): EPS Lîi huë rßg - Tæg cæ øc u i Tæg cæ phiõu h êg i. EPS gi m bí: Lîi huë rßg EPS gi m bí (kh«g ph i r l i TP chuyó æi) Tæg r i phiõu chuyó æi / Gi chuyó æi k. Gi rª lîi huë (P/E): ThÞ gi P/E EPS 5

a. Tû lö r i phiõu: Tæg möh gi c c r i phiõu Tû lö r i phiõu Tæg vè dµi h¹ b. Tû lö cæ phiðu u i: Tû lö cè phiõu u Tæg möh gi cña cæ phiõu u i i Tæg vè dµi h¹ c. Tû lö cæ phiðu h êg: Vè cæ «g Tû lö cæ phiõu h êg Tæg vè dµi h¹ d. Tû sè î rª vè cæ phç (D/E). Tr i phiõu + Cæ phiõu u i D/E Vè cæ phç Tû lö µy ph h mèi g qua gi a î dµi h¹ vµ vè cæ phç. Nã îc sö dôg Ó h gi møc é i cëy cña c«g y. C c c«g y cã hu hëp phô huéc vµo chu kú kih Õ h êg cã hö sè D/E hêp. e. HÖ sè Nî dµi h¹ rª Tæg µi s : g. Tû sè î: Tæg î Tû s«î Tæg guå vè * h gi hu hëp: a. HÖ sè chi r cæ øc: HÖ sè chi r cæ øc Cæ øc b. HÖ s«lîi øc hiö hêi: Cæ øc Lîi øc hiö hêi ThÞ gi cæ phiõu 4. Địh giá cổ phiếu M«h h chiõ khêu cæ øc TH: Cæ øc g rëg hµg m heo mé û lö g kh«g æi DIV(+) DIV() x ( + g) DIV(0 )( + P (0 ) k g g) + g + k T 6

Víi gi Þh ->, rog khi r >g>0, gi cæ phiõu sï lµ: DIV k g TH2: M«h h g r ëg cæ øc 2 giai o¹ P( 0 ) P D ( 0 )( + g ) + g k g + k 0 T + g + + k T D( 0 )( + g 2 ) k g 2 Tỷ số giá/lợi huậ: P/E - Trailig P/E (Giá hị rườg của mộ cổ phiếu)/ EPS của 2 hág rước) P0 0 0 railig P/E E k g 0 ( D / E ) ( + g) ( b)(. + g) k g - Leadig P/E (Giá hị rườg mộ cổ phiếu / (EPS dự báo của 2 hág ới) P0 leadig P/E E k g ( D / E ) ( b) k g PEG (P/E)/(G EPS ) (+ g) (Tû lö chi r cæ øc)(+ g) - ( + k e,hg ) (Tû löchi r cæ øc )(+ g) (+ g ) PEG + g(k g) g(k g )(+ k ) e,hg e,s e,hg Ước lượg g g ROE x ( Tû lö chi r cæ øc) TNST - Cổ ức TNST Doah hu Tài sả g TNST x x x Doah hu Tài sả VCSH 7

Ước lượg ỷ lệ chiế khấu (k) Tû lö chiõ khêu LS phi rñi ro + (HÖ sè bªa x PhÇ bï rñi ro hþ rưêg) E(R i ) R f + [E(R M ) - R f ] β i NÕu c«g y ph hµh c cæ phiõu lé r i phiõu h k cç îc x c Þh heo ph g ph p chi phý vè b h qu gia quyò (WACC) h sau: k E ke + k D+ E d D ( ) D+ E 5. Địh giá rái phiếu ) Coupo Nếu ăm rả lãi 2 lầ: PV PV( L i) + PV( MÖh gi ) L i MÖh gi + ( + r) ( + r) PV PV( L i) + PV( MÖh gi ) L i MÖh gi + ( + ) ( + ) r r 2 2 2) Tr i phiõu Zero Coupo PV PV( MÖh gi ) MÖh gi ( + r ) 3) Tr i phiõu cã l i suê biõ æi 8

PV Dßg iò ¹i hêi dióm r + 2 4. Cosols PV Dßg iò ¹i hêi dióm ( + r) Dßg iò ¹i hêi dióm r Giá rị của rái phiếu giữa hai gày rả coupo P C M + ( + r) ( + r) ( + r) ( + r) w w L i huéc vò g êi b L i huéc vò g êi mua Ngµy r coupo r íc Ngµy hùc hiö mua b TP Ngµy r coupo s¾p íi HÖ sè giai o¹ (w) Sè gµy õ hêi ióm chuyó h îg TP Õ gµy r coupo s¾p íi Sè gµy rog 2 kú r coupo Gi rþ hiö ¹i ¹i hêi ióm Dßg iò dù Ýh (+i) - + w 9

Par Discou Coupo Rae Curre Yield YTM Coupo Rae < Curre Yield < YTM Coupo Rae > Curre Yield > YTM Premium Thời gia đáo hạ bìh quâ % Thay æi gi - HÖ sè Macaulay % Thay l i suê 00 + y Thời gia đáo hạ bìh quâ điều chỉh dp P ( + y) C ( + y) C () D PV( C ) PV.. C. VN + dy ( 0) ( + y) ( + y) ( + y) ( 0) P( 0) ( 0 )/ dy Du P( 0) ( + y) dp - Modified duraio Thời hạ hoà rả rug bìh điều chỉh Thời hạ hoà rả rug bìh của Macaulay / (+y) - Đối với Coupo MD C M ( + y ) + + y 2 0 P C y + ( y)

Độ lồi 2 P CF + 2 2 y + y + y ( ) 2 ( ) ( ) ( + ) ( + ) 2 + + 2 + 2 dy P ( + y) ( + y) P 2 d P C M % hay æi gi /2 ( é låi) x hay æi l i suê 6. Quả lý dah mục đầu ư Tíh độ gại rủi ro Mèi ư g qua gi a møc g¹i rñi ro, lîi suê ưíc Ýh (doah lîi) víi møc é rñi ro: U E ( r ) 0,5 A σ 2 Ph lo¹i c c hµ Çu : Trug dug víi rñi ro: A 0 ThÝch rñi ro: A < 0 Đáh giá dah mục