PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN
|
|
- Πανδώρα Κουβέλης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 9//6 CHƯƠNG Đạo hàm ại mộ điểm PHÉP TÍNH VI PHÂN HÀM MỘT BIẾN Địh ghĩa: Đạo hàm của hàm f ại điểm a, ký hiệ f (a) là: f ' a lim a f f a (ế giới hạ à ồ ại hữ hạ). Chú ý: đặ h=-a, a có: f ' a a f a h f a lim h h Tìm đạo hàm của hàm: ại a= ho địh ghĩa. Ta é giới hạ sa: f f h f lim h h h h h h lim lim 4 h h h h Đạo hàm phải rái Đạo hàm rái của f() ại a là: f f a f a h f a f ' a lim lim a a h h Đạo hàm phải của f() ại a là: f f a f a h f a f ' a lim lim a a h h Vậ: f ' 4 Địh lý Địh lý: Hàm số f() có đạo hàm ại điểm a khi và chỉ khi ó có đạo hàm rái; đạo hàm phải ại a và hai đạo hàm à bằg ha. f ' a L f ' a f ' a L Cho hàm số: f Ta có: /, Tìm, f ' ; f ' Địh lý: Nế hàm số f() có đạo hàm ại a hì hàm số liê ục ại a. Chiề gược lại có hể khôg đúg. f ' a L lim f f a a f h f / h f ' lim lim lim h h h h f h f / h f ' lim lim h h h Vậ khôg ồ ại đạo hàm của hàm số ại. h
2 9//6 Với a cố địh a có: Tha a bằg a có: Hàm số đạo hàm f ' a f a h f a lim h h f h f f ' lim h h Với mỗi giá rị khác ha của a íh được f () ế giới hạ ồ ại hữ hạ. Như vậ giá rị của f () phụ hộc vào biế độc lập ê có hể m f là mộ hàm ho và gọi là đạo hàm của hàm f. Hàm số đạo hàm Hàm số đạo hàm của hàm =f(). Ký hiệ: df d d f '; '; ; ; f d d d Tập ác địh của hàm f là ập các giá rị của sao cho f () ồ ại. Nó có hể hỏ hơ TXĐ của hàm số f(). Tìm hàm số đạo hàm của hàm =. f h f h lim lim h h h h Giới hạ à ồ ại hữ hạ với mọi hộc TXĐ. Vậ đạo hàm của hàm số: ' Tìm đạo hàm của hàm: f h f h f ' lim lim h h h h Vậ: f f '. TXD : ; Chú ý: ập ác địh của hàm f() là: [; ) Qi ắc íh đạo hàm Cho, v là hai hàm ho. Khi đó đạo hàm ho của các hàm sa là: i. v ' ' v ' ii. k ' k. ' '. v. v ' iii.. v ' '. v. v ' iv. v v Đạo hàm dạg: v v v ' v '.l v. Cách íh: lấ logari Nêp hai vế hàm số: v Qi ắc íh đạo hàm Đạo hàm của hàm hợp: : Hàm Vậ: f g f. g g l cos là hàm hợp của hàm: f l ; g cos f. g. si a g cos
3 9//6 Côg hức íh đạo hàm. C l 5. si cos 6. cos si 7. a cos 8. co si Đạo hàm hàm hợp.. ' 4. l. ' 5. si '.cos 6. cos '. si 7. a. ' cos 8. co. ' si Côg hức íh đạo hàm 9. a a.la. log a. arcsi. arccos. arca 4. arc co.la Đạo hàm hàm hợp 9. a. log a. arcsi. arccos. arca 4. arc co Tìm f () biế: f l cos l cos si si ' cos cos Tìm f () biế: Vậ: f.si ' 4 7 cos l l l 7 l si si '..si 4 7 i 4 7 cos s Hàm số cho bởi ham số Hàm số=f() hỏa điề kiệ: Khi đó hàm số đã cho gọi là hàm cho bởi phươg rìh ham số. l : Cho hàm Đặ: a có dạg ham số sa: Côg hức đạo hàm ham số Cho hàm =f() dạg ham số: Khi đó: : l d d / d d d / d l
4 9//6 Hàm số Khi đó: Đạo hàm của hàm gược có hàm gược là: f : Hàm =arca có hàm gược =a f a Đạo hàm của hàm gược : Hàm =arcsi có hàm gược =si cos si do : Hàm =arccos có hàm gược =cos si cos do Hàm ẩ Hàm =f() với (a;b) là hàm ẩ cho bởi phươg rìh F(,)= ế ha =f() vào a được đẳg hức đúg. Nghĩa là: F(, f())= với (a;b). : Phươg rìh: ác địh hai hàm ẩ: F,, ;, ; Đạo hàm hàm ẩ Cho phươg rìh: F(;)= Để íh: B. Lấ đạo hàm hai vế phươg rìh ho. Chú ý là hàm ho. B. Giải phươg rìh ìm. B. Để íh (a) a ha =a vào phươg rìh. : Cho phươg rìh: l Tíh đạo hàm của ho. B. Lấ đạo hàm ho Đạo hàm hàm ẩ l '.. '. * B. Giải ìm * '.. '. ' '. Đạo hàm hàm ẩ B. Tíh (). l l '. Tha = và ()= vào a có:..... '.. 4
5 9//6 Đạo hàm cấp cao Cho f là hàm khả vi. Đạo hàm (ế có) của f gọi là đạo hàm cấp của hàm số f(). Ký hiệ: d df d f f f d d d Đạo hàm cấp của hàm f là đạo hàm của đạo hàm cấp. f f d d f d f d d d Đạo hàm cấp cao Đạo hàm cấp của hàm f là đạo hàm của đạo hàm cấp (-). f f d d f d f d d : Cho hàm: f. Tìm đạo hàm cấp của hàm số. Giải: f... d Tươg ự: Tổg qá: Đạo hàm cấp cao f f ; f 4 f 4 Đạo hàm cấp cao hườg gặp i) a... a ii)! a a iii) a. iv) l a a! v) si a a.si a vi) cos a a.cos a Chú ý i) a b... a b. a! iv) l a b. a a b v) si a b a.si a b vi) cos a b a.cos a b Tíh đạo hàm cấp của: a) f b) g 5
6 9//6 Đạo hàm cấp cao hàm ẩ 4 4 Biế: CM: 7 Đạo hàm vế ho : 4 4. ' ' Do đó:. ' ' 6 4 Tha vào: Ta đã biế: Đạo hàm cấp cao ham số Tho côg hức đạo hàm hàm hợp: Do đó: ' '.... Tìm biế: Vậ: si cos ; si ; ; cos. cos si. cos si cos cos Dễ hấ: Mở rộg: Côg hức Libiz f. g f. g g. f f. g f. g g. f f. g f g f. g k k k f. g C. f g k Gầ giốg khai riể hị hức Nwo Tíh đạo hàm: f. g f g f. g f. g g f 4 4 f. g f g 4 f. g 6 f. g 4 f. g g f VI PHÂN Vi phâ ại mộ điểm Vi phâ rê mộ khoảg Ứg dụg vi phâ íh gầ đúg f f si??? 6
7 9//6 Vi phâ ại mộ điểm Địh ghĩa. Hàm số f() gọi là khả vi ại ế: f h f Ah. h A: haèg soá höõ haï h h : VCBù baäc cao hô h. lim h h Ngöôøi a coø kù hiä h laø. Địh ghĩa. Hàm số f() gọi là khả vi ại ế: f f A. Vi phâ ại mộ điểm Cho hàm f khả vi ại. Khi đó A.h gọi là vi phâ của hàm số f() ại. Ký hiệ: df A. h ha df A. Địh lý: Hàm = f() khả vi ại khi và chỉ khi ồ ại f ( ). Ta chứg mih được: A f ' Vi phâ ại mộ điểm Vi phâ của hàm số f() ại. df f '. h ha df f '. Tíh chấ: i) d C ii) d f df iii) d f g df dg iv) d fg gdf fdg f gdf fdg vd ) g g Cho hàm hợp: Vi phâ: Vi phâ của hàm hợp f ha f df f. d f. ' d f '. d Hai côg hức à có dạg giốg ha Vậ vi phâ cấp có íh bấ biế. f f Ứg dụg vi phâ f f f f '. Ứg dụg vi phâ íh gầ đúg Cho hàm f() khả vi rog lâ cậ của. Ta có: f f f '. Ha côg hức: f f f '. f f '. khi 7
8 9//6 Cho hàm số: f a) Tíh vi phâ cấp của hàm số ại = b) Tíh gầ đúg: Giải: f df d 4, df d 4 d 4 Cho hàm số: f a) Tíh vi phâ cấp của hàm số ại = b) Tíh gầ đúg: Giải: 4, f f 4, 4, f, f,, Nế íh bằg má íh: 4,, Vi phâ cấp cao Vi phâ cấp : df f d Là mộ hàm ho. Nế hàm số à có vi phâ hì vi phâ à gọi là vi phâ cấp của hàm f(). Vậ: d f d df d f ' d d. d f ' d. f d f. d Tươg ự vi phâ cấp là vi phâ của vi phâ cấp (- ). d f d d f f. d Vi phâ cấp cao của hàm hợp Cho hàm hợp: f(g()). Vi phâ cấp : d f d df d f ' d d f f d d f '. d f '. d d f d f d CÁC ĐỊNH LÝ HÀM KHẢ VI Địh lý về giá rị rg bìh (ham khảo) Côg hức Talor Qi ắc L Hospial Địh lý Frma Cho hàm số =f() ác địh rog lâ cậ. Nế f() đạ cực đại ại và có đạo hàm ại hì: f ' 8
9 9//6 Địh lý Roll Địh lý Lagrag Nế hàm f() liê ục rê [a,b], khả vi rê (a,b) và f(a)=f(b) hị ồ ại điểm c hộc (a,b) sao cho f (c)= Đặc biệ ế f(a)=f(b)= hì địh lý Roll có ghĩa giữa hai ghiệm của hàm số có í hấ mộ ghiệm của đạo hàm. Nế f() liê ục rê [a,b], khả vi rog (a,b) hì ồ ại c hộc (a,b) sao cho: f b b f a a f ' c Địh lý Cach Nế f(), g() liê ục rê [a,b], khả vi rog (a,b) và g() khác rê (a,b) hì ồ ại c hộc (a,b) sao cho: f b f a f ' c g b g a g ' c Côg hức Talor Khai riể mộ hàm số phức ạp hàh dạg đơ giả Khai riể hàm phức ạp hàh hàm đa hức. : khai riể Talor ại = 5 arca !!! Côg hức Talor Cho hàm số f(): Liê ục rê [a,b] Có đạo hàm đế cấp + rê (a,b) Xé (a,b). Khi đó rê [a,b] a có: Phầ dư rog côg hức Talor Dạg Lagrag: f c R! f ' f " f f!! f f c...!! Dạg Pao: (hườg dùg hơ) R lim R 9
10 9//6 Côg hức Maclari Cho hàm số f(): Liê ục rê [a,b] Có đạo hàm đế cấp + rê (a,b) Xé = (a,b). Khi đó rê [a,b] a có: f f ' f " f f...!!! Côg hức L Hospial Áp dùg ìm giới hạ dạg: ; f Ñòh lù: Cho giôùi haï: lim coù daïg ; a g f f Ná lim L hì lim a g a g f f lim lim a g a g L L ỨNG DỤNG ĐẠO HÀM. Ý ghĩa của đạo hàm. Giá rị cậ biê. Hệ số co dã 4. Lựa chọ ối ư rog kih ế. Ý ghĩa của đạo hàm Cho hàm số =f() Tại khi ha đổi mộ lượg Δ Thì ha đổi: Δ = f( + Δ)-f( ) f f f ' lim Tốc độ ha đổi của ho ại điểm chíh là đạo hàm f ( ) f ' khi ra ho. Ý ghĩa của đạo hàm. Hàm cầ của mộ loại hàg hóa là p=5-q Tìm ốc độ ha đổi giá khi lượg cầ ha đổi Giá sẽ ha đổi hế ào khi Q=. Ý ghĩa của đạo hàm. Hàm cầ của mộ loại hàg hóa là p = 45 Q Tìm ốc độ ha đổi giá khi lượg cầ ha đổi Giá sẽ ha đổi hế ào khi Q=4
11 9//6. Giá rị cậ biê Giá rị cậ biê của chi phí Đo ốc độ ha đổi của ho, ký hiệ M() M f ' Ta hườg chọ ấp ỉ M() ức là M() gầ bằg lượg ha đổi của khi ha đổi mộ đơ vị = Cho hàm chi phí C=C(Q) Hàm cậ biê của chi phí: MC(Q)=C (Q) Lượg ha đổi của chi phí khi Q ăg lê đơ vị Giả sử chi phí rg bìh để sả ấ mộ sả phẩm là: 5 C, Q, Q 5 Q A) Xác địh hàm ổg chi phí để sả ấ ra Q sả phẩm. B) Tìm giá rị cậ biê của hàm chi phí. Nê ý ghĩa khi Q=5. Giá rị cậ biê của doah h Cho hàm doah h R=R(Q) Hàm cậ biê của doah h: MR(Q)=R (Q) Lượg ha đổi của doah h khi Q ăg lê đơ vị Số vé bá được Q và giá vé p của mộ hãg bs được cho bởi côg hức: Q 5p A) Xác địh hàm ổg doah h B) Xác địh doah h cậ biê khi p= và p= Độ ha đổi ệ đối và ươg đối Địh ghĩa: khi đại lượg ha đổi mộ lượg Δ hì a ói: Δ là độ ha đổi ệ đối của Tỷ số. % gọi là độ ha đổi ươg đối của
12 9//6 Hệ số co dã Hệ số co dã của ho là ỷ số giữa độ ha đổi ươg đối của và của ha đổi mộ lượg Δ. Ký hiệ: / f '.. / f Cho hàm cầ Q=-4p-p. Tìm hệ số co dã khi p= Thể hiệ % ha đổi của khi ha đổi %. Lựa chọ ối ư rog kih ế Trog kih ế a qa âm các bài oá sa: + Tìm p để sả lượg Q đạ ối đa + Tìm p hoặc Q để doah h R đạ ối đa + Tìm Q để chi phí C đạ ối hiể (cực iể) Cho hàm cầ Q=-p, hàm chi phí C=Q - 9Q +Q+ Tìm Q để lợi hậ lớ hấ. Ta đưa các bài oá rê về dạg ìm cực rị của hàm mộ biế số đã học. Cho hàm cầ Q=-p, hàm chi phí C=Q - 5Q +84Q+5 Tìm Q để lợi hậ lớ hấ.
Câu 2 (1,0 điểm). Giải phương trình: 1 sin x sin cos x π x x = + +.
SỞ GD&ĐT VĨNH PHÚC ĐỀ KTCL ÔN THI ĐẠI HỌC LẦN NĂM HỌC 0-0 Mô: TOÁN; Khối D Thời gia làm bài: 80 phút, khôg kể thời gia phát đề I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu (,0 điểm) Cho hàm số y
Διαβάστε περισσότεραChương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
Διαβάστε περισσότεραCHƯƠNG 1: HÀM NHIỀU BIẾN
Bài tập Toá A Hồ Ngọc Kỳ, ĐH Nôg Lâm TpHM reated: 5/5/ Last modified: 5/5/ Tập tài liệu à do tôi biê soạ cho các SV của mìh, chỉ lưu hàh ội bộ và khôg có mục đích thươg mại Ngoài các bài tập tôi biê soạ,
Διαβάστε περισσότεραHÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:
. Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm
Διαβάστε περισσότερα1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n
Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma
Διαβάστε περισσότεραAD AB và M là một điểm trên cạnh DD ' sao cho DM = a 1 +.
SỞ GD - ĐT THANH HOÁ KỲ THI HỌC SINH GIỎI PTTH NĂM HỌC 000-00 ĐỀ CHO BẢNG A VÀ BẢNG B Bài : 4 4 Cho phươg trìh: si + ( si ) = m. Giải phươg trìh với m = 8. Với hữg giá trị ào của m thì phươg trìh đã cho
Διαβάστε περισσότερα5. Phương trình vi phân
5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài
Διαβάστε περισσότεραlà: A. 253 B. 300 C. 276 D. 231 Câu 2: Điểm M 3; 4 khi đó a b c
TRƯỜNG THPT BẾN TRE ĐỀ THI KSCL ÔN THI THPT LẦN, NĂM HỌC 7-8 MÔN: TOÁN LỚP Thời gi làm ài: 9 phút, khôg kể thời gi gio đề (Đề thi có trg) MÃ ĐỀ: Họ, tê thí sih:... SBD:...Lớp:... Câu : Tổg tất cả các giá
Διαβάστε περισσότεραChuỗi Fourier và tích phân Fourier
Chươg 8 Chuỗi Fourier và tích phâ Fourier 8 Chuỗi Fourier 75 8 Phươg pháp trug bìh cộg trog chuỗi Fourier 76 8 Tíh đầy đủ của các hệ đa thức 79 83 Tíh chất của các hệ số Fourier 8 84 Đạo hàm, tích phâ
Διαβάστε περισσότεραMô hình Input/Output của hệ tuyếntính Đáp ứng thời gian. Output. (t) x 2. Mass-Spring-Damper, Thermocouple, Strain Gauge... (t) A x 1.
Đáp ứg độg lựchọc Mô hìh Ipu/Oupu của hệ uyếíh Đáp ứg hời gia Giảihệ phươg rìh vi phâ Đáp ứg quá độ và đáp ứg ổ địh Đáp ứg ầsố háiiệsố phức Hàđáp ứg ầ số Đặc íh Phase và độ lợi(gai) Hệ hốg ích hợp Slide
Διαβάστε περισσότερα(2.2) (2.3) - Mômen xoắn là tổng các mômen của các ứng suất tiếp ñối với trục z. Hình 2.3. Các thành phần nội lực P 6. Q x II.
Chươg LÝ THUYẾT NỘI LỰC I. KHÁI NIỆ VỀ NỘI LỰC Xét một vật thể chịu tác dụg của một hệ lực và ở trạg thái câ bằg hư trê H... Trước khi tác dụg lực, giữa các phâ tử của vật thể luô tồ tại các lực tươg tác
Διαβάστε περισσότεραTRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)
TÌ TỰ TÍ TOÁ TIẾT Ế BỘ TUYỀ BÁ ĂG TỤ (TẲG, GIÊG Thôg số đầu à: côg suất P, kw (hặc môme xắ T, mm; số òg quy, g/ph; tỷ số truyề u Chọ ật lệu chế tạ báh răg, phươg pháp hệt luyệ, tr cơ tíh ật lệu hư: gớ
Διαβάστε περισσότεραTruy cập website: hoc360.net để tải tài liệu đề thi miễn phí
Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân
Διαβάστε περισσότεραNăm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b
huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,
Διαβάστε περισσότεραGi i tých c c hµm nhiòu biõn
bé s ch to häc cao cêp - viö to häc ih ThÕ Lôc Ph¹m Huy ió T¹ Duy Ph îg Gi i tých c c hµm hiòu biõ Nh g guyª lý c b vµ týh to thùc hµh hµ uêt b ¹i häc quèc gia hµ éi Héi åg biª tëp Hµ Huy Kho i (Chñ tþch)
Διαβάστε περισσότεραSuy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA
ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác
Διαβάστε περισσότεραQ B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3
ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung
Διαβάστε περισσότεραHỒI QUI VÀ TƯƠNG QUAN
19/10/017 CHƯƠNG 5C HỒI QUI VÀ TƯƠNG QUAN Tươg qua Ha bế được ó là có tươg qua ếu chúg có qua hệ vớ hau, chíh xác hơ, sự tha đổ của bế à có ảh hưởg đế tha đổ của bế cò lạ. Ký hệu (x,) là cặp gá trị qua
Διαβάστε περισσότεραM c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).
ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng
Διαβάστε περισσότεραO 2 I = 1 suy ra II 2 O 1 B.
ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến
Διαβάστε περισσότεραKinh tế học vĩ mô Bài đọc
Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng
Διαβάστε περισσότεραI 2 Z I 1 Y O 2 I A O 1 T Q Z N
ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện
Διαβάστε περισσότεραĐỀ THI VÀ LỜI GIẢI ĐỀ CHỌN ĐỘI TUYỂN QUỐC GIA DỰ THI OLYMPIC TOÁN QUỐC TẾ CỦA VIỆT NAM TỪ NĂM 2005 ĐẾN NĂM 2010
ĐỀ THI VÀ LỜI GIẢI ĐỀ CHỌN ĐỘI TUYỂN QUỐC GI DỰ THI OLYMPIC TOÁN QUỐC TẾ CỦ VIỆT NM TỪ NĂM 005 ĐẾN NĂM 00 PHẦN I ***** ĐỀ BÀI ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GI DỰ THI IMO 005 *Ngày thi thứ hất Bài Cho tam
Διαβάστε περισσότεραChương 12: Chu trình máy lạnh và bơm nhiệt
/009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng
Διαβάστε περισσότεραCHƯƠNG 1: HÀM GIẢI TÍCH
CHƯƠNG : HÀM GIẢI TÍCH. SỐ PHỨC VÀ CÁC PHÉP TÍNH. Dạg đại số của số phức: Ta gọi số phức là mộ biểu hức dạg ( j) rg đó và là các số hực và j là đơ vị ả. Các số và là phầ hực và phầ ả của số phức. Ta hườg
Διαβάστε περισσότεραTự tương quan (Autocorrelation)
Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?
Διαβάστε περισσότεραLecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace
Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...
Διαβάστε περισσότεραCÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU
Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì
Διαβάστε περισσότεραSỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1
SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ
Διαβάστε περισσότεραBatigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
Διαβάστε περισσότεραTự tương quan (Autoregression)
Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan
Διαβάστε περισσότεραLỜI NÓI ĐẦU Lý thuyết điều khiển tự động là môn học dành cho sinh viên ngành Điện tử - Tự động. Giáo trình Lý thuyết điều khiển tự động gồm có chín
MỤ LỤ Lời ói đầu hƣơg : ĐẠI ƢƠN VỀ HỆ HỐN Ự ĐỘN... hƣơg : MÔ Ả OÁN HỌ PHẦN Ử VÀ HỆ HỐN ĐIỀU HIỂN... hƣơg : ĐẶ ÍNH ĐỘN HỌ ỦA HỆ HỐN... 55 hƣơg 4: HẢO SÁ ÍNH ỔN ĐỊNH HỆ HỐN ĐIỀU HIỂN... 7 hƣơg 5: ĐÁNH IÁ
Διαβάστε περισσότεραMỘT SỐ LỚP BÀI TOÁN VỀ DÃY SỐ
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN PHẠM VĂN NHÂM MỘT SỐ LỚP BÀI TOÁN VỀ DÃY SỐ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 0 Mục lục LỜI NÓI ĐẦU............................................
Διαβάστε περισσότεραHỒI QUI VÀ TƯƠNG QUAN
9/5/7 CHƯƠNG 5c HỒI QUI VÀ TƯƠNG QUAN PHÂN TÍCH TƯƠNG QUAN Correlato Aalyss Dùg để đo độ mạh của mố qua hệ tuyế tíh gữa ha bế gẫu hê Hệp phươg sa (Covarace) Cho ha bế gẫu hê X và. Hệp phươg sa của X và,
Διαβάστε περισσότεραNăm Chứng minh Y N
Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.
Διαβάστε περισσότεραHỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG GIẢI TÍCH Dùg cho sih viê hệ đào tạo đại học từ gàh QTKD Lưu hàh ội ộ HÀ NỘI - 7 HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG GIẢI TÍCH Biê soạ : TS. VŨ GIA TÊ LỜI NÓI
Διαβάστε περισσότεραBỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết
Διαβάστε περισσότεραGIÁO TRÌNH PHƯƠNG PHÁP TÍNH
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC ĐÔNG Á ThS.PHẠM THỊ NGỌC MINH GIÁO TRÌNH PHƯƠNG PHÁP TÍNH LƯU HÀNH NỘI BỘ Đà Nẵg, 3 Mô: Phươg pháp tíh CHƯƠNG.. SAI SỐ.. NHẬP MÔN PHƯƠNG PHÁP TÍNH... Gớ thệu mô phươg
Διαβάστε περισσότεραNăm 2017 Q 1 Q 2 P 2 P P 1
Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động
Διαβάστε περισσότεραhttps://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56
TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ
Διαβάστε περισσότεραHOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.
HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau
Διαβάστε περισσότεραChương 2: Đại cương về transistor
Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG IV
KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính
Διαβάστε περισσότεραc) y = c) y = arctan(sin x) d) y = arctan(e x ).
Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết
Διαβάστε περισσότεραTuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.
wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân
Διαβάστε περισσότεραBài Tập Môn: NGÔN NGỮ LẬP TRÌNH
Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn
Διαβάστε περισσότεραNăm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.
Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không
Διαβάστε περισσότεραSử dụngụ Minitab trong thống kê môi trường
Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều
Διαβάστε περισσότεραHỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG SÁCH HƯỚNG DẪN HỌC TẬP GIẢI TÍCH Dùg cho sh vê hệ đào tạo đạ học từ a Lưu hàh ộ bộ HÀ NỘI - 6 HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG SÁCH HƯỚNG DẪN HỌC TẬP GIẢI
Διαβάστε περισσότεραTối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.
Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)
Διαβάστε περισσότεραĐường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
Διαβάστε περισσότεραBÀI TOÁN ĐẲNG CHU RỜI RẠC TRONG MỘT GÓC
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA TOÁN - CƠ - TIN HỌC Bùi Mai Lih BÀI TOÁN ĐẲNG CHU RỜI RẠC TRONG MỘT GÓC KHÓA LUẬN TỐT NGHIỆP HỆ ĐẠI HỌC CHÍNH QUY Ngàh: Toá - Ti ứg dụg Giáo
Διαβάστε περισσότεραA A i j, i i. Ta kiểm chứng lại rằng giá trị này không phụ thuộc vào cách biểu diễn hàm f thành tổ hợp tuyền tính những hàm ñặc trưng. =, = j A B.
Produced wth a Tral Verso o PDF otator - www.pdfotator.com Chươg 2. Tích phâ Lebesgue ê soạ: Nguyễ Trug Hếu CHƯƠNG 2. TÍCH PHÂN LEESGUE 2.. ðịh ghĩa tích phâ Lebesgue 2... Tích phâ cho hàm ñơ gả hôg âm
Διαβάστε περισσότεραBÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.
BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.
Διαβάστε περισσότεραTính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)
Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )
Διαβάστε περισσότεραChứng minh. Cách 1. EO EB = EA. hay OC = AE
ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các
Διαβάστε περισσότεραcó thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]
1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán
Διαβάστε περισσότεραBIÊN SOẠN : TS. MAI VĂN NAM
BIÊN SOẠN : TS. MAI VĂN NAM NHÀ XUẤT BẢN VĂN HÓA THÔNG TIN MỤC LỤC Mục lục Trag PHẦN I PHẦN II CHƯƠNG I CHƯƠNG II GIỚI THIỆU MÔN HỌC I. NGUỒN GỐC MÔN HỌC II. THỐNG KÊ LÀ GÌ?. Địh ghĩa. Chức ăg của thốg
Διαβάστε περισσότεραNăm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).
Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí
Διαβάστε περισσότερα1.6 Công thức tính theo t = tan x 2
TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos
Διαβάστε περισσότερα1.1.3 Toán tử Volterra Công thức Taylor Bài toán Cauchy... 15
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐÀO NGUYỄN VÂN ANH PHƯƠNG TRÌNH VI PHÂN VỚI TOÁN TỬ KHẢ NGHỊCH PHẢI VÀ ÁP DỤNG LUẬN VĂN THẠC SĨ KHOA HỌC HÀ NỘI - NĂM 215 ĐẠI HỌC QUỐC GIA HÀ NỘI
Διαβάστε περισσότεραNgày 26 tháng 12 năm 2015
Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ
Διαβάστε περισσότεραKIẾN THỨC CÓ LIÊN QUAN
KIẾN THỨC CÓ LIÊN QUAN ĐẠO HÀM CỦA HÀM SỐ A. TÓM TẮT GIÁO KHOA 1) Ñònh nghóa ñaïo haøm cuûa haøm soá taïi moät ñieåm: Cho haøm soá =f() aùc ñònh treân khoaûng (a;b) vaø (a; b). Ñaïo haøm cuûa haøm soá
Διαβάστε περισσότεραO C I O. I a. I b P P. 2 Chứng minh
ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường
Διαβάστε περισσότεραBÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY
Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình
Διαβάστε περισσότεραKỸ THUẬT ĐIỆN CHƯƠNG II
KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở
Διαβάστε περισσότεραĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2
ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH
Διαβάστε περισσότεραCƠ HỌC LÝ THUYẾT: TĨNH HỌC
2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại
Διαβάστε περισσότεραFV(n,r) PV = (1+r) n/365
HỆ THỐNG CÁC CÔNG THỨC PHỤC VỤ ÔN TẬP HỌC PHẦN PHÂN TÍCH ---------o0o---------. Giá rị hời gia của iề Tíh FV FV của $ Tíh lãi heo hág Tíh lãi heo gày Tíh PV PV FV(,r) (+r) /365 2. Mức sih lời và rủi ro
Διαβάστε περισσότεραĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011)
Đề cương chi tiết Toán cao cấp 2 1 TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập Tự do Hạnh phúc 1. Thông tin chung về môn học ĐỀ CƯƠNG CHI TIẾT HỌC
Διαβάστε περισσότεραCÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG
CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng
Διαβάστε περισσότεραPHƯƠNG PHÁP THỐNG KÊ TRONG HẢI DƯƠNG HỌC. Phạm Văn Huấn
PHƯƠNG PHÁP THỐNG KÊ TRONG HẢI ƯƠNG HỌC Phạ Vă Huấ Từ hó: Đạ lượg gẫu hê luật phâ bố phâ bố thốg ê là trơ phâ bố têu chuẩ phù hợp ước lượg th số ác suất t cậ hoảg t câ hệ các đạ lượg gẫu hê quá trìh gẫu
Διαβάστε περισσότεραMôn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)
Διαβάστε περισσότεραNội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan
CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành
Διαβάστε περισσότεραĐường dây dài (Mạch thông số rải) Cơ sở lý thuyết mạch điện
Đường dây dài Mạh hông số rải Cơ sở lý hyế mạh điện . Khái niệm. Chế độ á lậ điề hoà 3. Qá rình qá độ Nội dng Đường dây dài Sáh ham khảo Chiman R. A. Thory and roblms of ransmission lins. MGraw Hill Ngyễn
Διαβάστε περισσότεραx y y
ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng
Διαβάστε περισσότεραPhụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm
Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn
Διαβάστε περισσότεραHỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ===== ===== SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A2) (Dùng cho sinh viên hệ đào tạo đại học từ xa)
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A) (Dùg cho sih viê hệ đào tạo đại học từ ) Lưu hàh ội bộ HÀ NỘI - Giới thiệu ô học GIỚI THIỆU MÔN HỌC GIỚI THIỆU CHUNG: Toá
Διαβάστε περισσότεραSÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A1) Ths. ĐỖ PHI NGA
SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP A Biê soạ: TS. VŨ GIA TÊ Ths. ĐỖ PHI NGA Giới thiệu ô học GIỚI THIỆU MÔN HỌC. GIỚI THIỆU CHUNG: Toá co cấp A là học phầ đầu tiê củ chươg trìh toá dàh cho sih viê các
Διαβάστε περισσότεραĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)
ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp
Διαβάστε περισσότεραViết phương trình dao động điều hòa. Xác định các đặc trưng của DĐĐH.
Viết phương trình dao động điều hòa Xác định các đặc trưng của DĐĐH I Phương pháp 1:(Phương pháp truyền thống) * Chọn hệ quy chiếu: - Trục Ox - Gốc tọa độ tại VTCB - Chiều dương - Gốc thời gian * Phương
Διαβάστε περισσότεραTứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên
MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn
Διαβάστε περισσότεραTài liệu dạy học Môn Hóa: Este và chất béo Bi m Sơn Lời nói đầu
Tài liệu dạy học Mô Hóa: Este và chất béo Bi m Sơ 009 Lời ói đầu Lời đầu tiê mìh muố ói là cám ơ các bạ đã qua tâm và sử dụg các bài viết của mìh. Mìh hi vọg hữg bài viết đó sẽ giúp ích cho các bạ trog
Διαβάστε περισσότεραx i x k = e = x j x k x i = x j (luật giản ước).
1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG
Διαβάστε περισσότεραChữ ký CB coi thi MSSV:... Thứ nhất Thứ hai Lớp:... Số BD:... Phòng thi:..
ĐH SƯ PHẠM KỸ THUẬT TP.HCM TUNG TÂM: VỆT ĐỨC BỘ MÔN: Điệ Điệ tử ĐÁP ÁN CUỐ KỲ: ĐO LƯỜNG ĐỆN & TBĐ Mã mô học: EMN3044 Học kỳ - ăm học 05-06 ĐỀ SỐ 0 Đề thi có phầ - 06 trag Thời gia: 60 phút Khôg được phép
Διαβάστε περισσότεραCh : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:
Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó
Διαβάστε περισσότεραĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NINH HOÀI ANH NGHIÊN CỨU VÀ XÂY DỰNG ỨNG DỤNG PHÂN TÍCH DỮ LIỆU KINH DOANH THIẾT BỊ ĐIỆN TỬ
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NINH HOÀI ANH NGHIÊN CỨU VÀ XÂY DỰNG ỨNG DỤNG PHÂN TÍCH DỮ LIỆU KINH DOANH THIẾT BỊ ĐIỆN TỬ Ngàh: Côg ghệ thôg ti Chuyê gàh: Kỹ thuật phầ mềm Mã số: 60480103
Διαβάστε περισσότεραΜετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε
- Πανεπιστήμιο Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε Tôi muốn ghi danh vào một trường đại học Θα ήθελα να γραφτώ για. Tôi muốn đăng kí khóa học. Για να υποδείξετε
Διαβάστε περισσότερα(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên
Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân
Διαβάστε περισσότεραVectơ và các phép toán
wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu
Διαβάστε περισσότεραA 2 B 1 C 1 C 2 B B 2 A 1
Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng
Διαβάστε περισσότεραPHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG
PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG KIẾN THỨC CẦN NHỚ : 1. Phép tịnh tiến : a. Định nghĩa :Cho cố định. Với mỗi điểm M, ta dựng điểm M sao cho MM ' = T (M) = M sao cho : MM ' = b. Biể thức
Διαβάστε περισσότεραĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
Διαβάστε περισσότεραMÔ HÌNH TOÁN KINH TẾ TRƯỜNG ĐẠI HỌC TÀI CHÍNH MARKETING BỘ MÔN TOÁN KHOA CƠ BẢN. Mathematical Economic Models
TRƯỜNG ĐẠI HỌC TÀI CHÍNH MARKETING BỘ MÔN TOÁN KHOA CƠ BẢN --------------- --------------- MÔ HÌNH TOÁN KINH TẾ Mathematical Economic Models Giảng viên: Th.s Nguyễn Trung Đông E-Mail: nguyentrungdong144@yahoo.com
Διαβάστε περισσότερα* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:
Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:
Διαβάστε περισσότερα1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình...
BÀI TẬP ÔN THI KINH TẾ LƯỢNG Biên Soạn ThS. LÊ TRƯỜNG GIANG Thành phố Hồ Chí Minh, ngày 0, tháng 06, năm 016 Mục lục Trang Chương 1 Tóm tắt lý thuyết 1 1.1 Tổng quan về kinh tế lượng......................
Διαβάστε περισσότεραKHOA TOÁN - CƠ - TIN HỌC (MAT 2036)
KHOA TOÁN - CƠ - TIN HỌC BỘ MÔN GIẢI TÍCH Bài giảng Phương trình đạo hàm riêng nâng cao (MAT 2036) Dư Đức Thắng Hà Nội, ngày 11 tháng 9 năm 2017 Mục lục Chu. o. ng 1 Mở đầu 1 Mở đầu 1 1.1 Một số khái
Διαβάστε περισσότεραÝ NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS
Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS CẦN KÍ TÊN Ý NGHĨA XEM HIỆU 1 Dependent Variable Tên biến phụ thuộc Y Phương pháp bình Method: Least phương tối thiểu (nhỏ OLS Squares nhất) Date - Time
Διαβάστε περισσότεραBÀI GIẢNG TOÁN CAO CẤP (A1) Ths. ĐỖ PHI NGA
BÀI GIẢNG TOÁN CAO CẤP A Bê soạ: TS. VŨ GIA TÊ Ths. ĐỖ PHI NGA Chươg : Gớ hạ củ dã số CHƯƠNG I: GIỚI HẠN CỦA DÃY SỐ.. SỐ THỰC.... Các tíh chất cơ ả củ tập số thực. A. Sự cầ thết ở rộg tập số hữu tỉ Q.
Διαβάστε περισσότεραCÁC DẠNG BÀI TẬP VẬT LÝ 12
Á DẠNG BÀI ẬP VẬ Ý huyên đề : Hạ nhân nguyên ử Dạng : ính năng lượng phản ứng + B + D * W = ( c * W = Wlksau - W lkr * W = Wđsau Wđr Dạng : Độ phóng xạ,693,693 * H = N.. N (Bq * H = N.. N (Bq * H = H e
Διαβάστε περισσότερα