CƠ HỌC LÝ THUYẾT: TĨNH HỌC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CƠ HỌC LÝ THUYẾT: TĨNH HỌC"

Transcript

1 2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại học Đà Nẵng

2 Nội dung chương 1: 1.1 CÁC KHÁI NIỆM CƠ BẢN CỦ TĨNH HỌC 1.2 CÁC TIÊN ĐỀ TĨNH HỌC 1.3 MÔ MEN CỦ LỰC 1.4 LIÊN KẾT VÀ PHẢN LỰC LIÊN KẾT Trang - 2

3 1.1.Các khái niệm cơ bản của Tĩnh học Vật rắn tuyệt đối Là loại vật rắn có hình dáng và thể tích không thay đổi dưới mọi tác động từ bên ngoài Trạng thái cân bằng Trạng thái cơ học của vật rắn tuyệt đối là quy luật chuyển động của vật rắn trong không gian theo thời gian. Trạng thái cân bằng là một trạng thái cơ học đặc biệt của vật rắn sao cho mọi chất điểm thuộc vật đều có gia tốc bằng không. Có hai dạng cân bằng của vật: + Tịnh tiến thẳng đều. + Vật đứng yên (có thêm tính chất vận tốc bằng 0) Lực Trang - 3

4 1.1.Các khái niệm cơ bản của Tĩnh học Trang - 4

5 1.1.Các khái niệm cơ bản của Tĩnh học Trang - 5

6 1.1.Các khái niệm cơ bản của Tĩnh học Các đặc trưng của lực : - Điểm đặt. - Phương và chiều. F - Độ lớn. l Với : l đường tác dụng của lực. Hình 1.1 * Ký hiệu của lực: F 2 N ; 1N 1 kg. m/ s Trang - 6

7 1.1.Các khái niệm cơ bản của Tĩnh học Hệ lực Là một tập hợp nhiều lực đang tác động lên đối tượng khảo sát. + Ký hiệu hệ n lực như sau: Fj, j 1, n Hệ lực tương đương + Hai hệ lực được gọi là tương đương với nhau về cơ học nếu hai hệ lực này cùng gây ra một kết quả cơ học trên một vật. + Ký hiệu: ( F ) ( Q ) j ~ j 1, n k 1, m k Trang - 7

8 1.1.Các khái niệm cơ bản của Tĩnh học Hợp lực a). Định nghĩa: Nếu một hệ nhiều lực tương đương với một hệ mới chỉ có duy nhất một lực, lực duy nhất đó được gọi là hợp lực của hệ nhiều lực. * Ký hiệu của hợp lực như sau: ( F j ) ~ R ; j 1, n b). Tính chất của hợp lực: hợp lực có 2 tính chất. * Vector hợp lực được xác định bằng vector tổng của các vector lực trong hệ. R n Fj j1 Trang- 8

9 1.1.Các khái niệm cơ bản của Tĩnh học y R R R x y z n j1 n j1 n j1 F F F jx jy jz F jx F j.cos F jy O F jy F j Hình 1.2.sin F j F jx + Hình chiếu của một vector lên một trục là một giá trị đại số (hình 1.2). B x Trang- 9

10 1.1.Các khái niệm cơ bản của Tĩnh học R 3 R * Vector hợp lực của hệ lực chỉ nằm trên một đường tác dụng duy nhất trong không gian. - Có những hệ lực luôn có hợp lực và cũng có những hệ lực không bao giờ có hợp lực Hệ lực cân bằng: Là loại hệ lực không làm thay đổi trạng thái cơ học của vật rắn khi vật chịu tác động của loại hệ lực này. Ký hiệu: ~ Phân loại hệ lực Cách 1 ( F ) f ; j 1, n j Ngoại lực: e F j Trang- 10

11 1.1.Các khái niệm cơ bản của Tĩnh học Ngoại lực: là những lực do những đối tượng bên ngoài hệ thống khảo sát sinh ra để tác động vào những vị trí bên trong hệ thống đang xét. Nội lực: i F j Nội lực: là những lực do những đối tượng bên trong hệ thống khảo sát sinh ra để tác động vào những vị trí bên trong hệ thống đang xét. Ví dụ: (hình 1.3) Xét hệ khảo sát gồm chỉ có vật là ngoại lực. P Xét hệ khảo sát gồm : vật + trái đất là nội lực. P Trái Đất C P Hình 1.3 Trang- 11

12 1.1.Các khái niệm cơ bản của Tĩnh học Cách 2 Lực tập trung Là loại lực chỉ tác dụng tại một điểm duy nhất trên vật. Lực phân bố Là loại lực tác động cùng lúc lên nhiều điểm trên vật. Lực phân bố theo đường Là loại lực phân bố có các điểm tác động lên vật tạo thành một loại đường hình học trên vật (đường thẳng, đường tròn, ellipse, ). Đơn vị: N/m. Ví dụ: Bánh xe lu hình trụ tròn tác động lực lên mặt đường. (hình 1.4) Trang- 12

13 1.1.Các khái niệm cơ bản của Tĩnh học P q Hình 1.4 Với q: cường độ của lực phân bố. Đơn vị: N/m. Lực phân bố theo mặt Là loại lực phân bố mà quỹ tích các điểm tác dụng lên vật tạo thành một loại mặt hình học trên vật. Trang- 13

14 1.1.Các khái niệm cơ bản của Tĩnh học Ví dụ: áp lực nước tác dụng lên thành đê. (hình 1.5) p Hình 1.5 Với : áp lực. Đơn vị: N/m 2. p Lực phân bố theo thể tích (lực khối). Là loại lực phân bố mà quỹ tích các điểm tác dụng lên vật tạo thành một loại thể tích hình học. 3 Ký hiệu:. Đơn vị: N/m. Trang- 14

15 1.1.Các khái niệm cơ bản của Tĩnh học Ví dụ: Trọng lực tác dụng lên vật là loại lực phân bố thể tích (hình 1.6). V C Thể tích cực nhỏ. P Hình 1.6 Trọng lực là lực tập trung: khái niệm đúng nhưng không thật! Quy đổi lực phân bố trên đoạn thẳng về lực tập trung tương đương Tổng quát (hình 1.7) Trang- 15

16 1.1.Các khái niệm cơ bản của Tĩnh học Trang- 16

17 1.1.Các khái niệm cơ bản của Tĩnh học Trường hợp riêng a). Lực phân bố đều (hi nh 1.8). l 2 q.l C l B q const ~ l 2 D C Q q. l B a) b) Hình 1.8 Trang- 17

18 1.1.Các khái niệm cơ bản của Tĩnh học b. Lực phân bố tam giác: (hình 1.9). q max C a) l 2l q.l max B ~ 1 Q qmax. l 2 C D 2l 3 B b) Hình 1.9 Trang- 18

19 1.1.Các khái niệm cơ bản của Tĩnh học Ví dụ bằng số: Trang- 19

20 1.2.Các tiên đề tĩnh học Tiên đề 1: Tiên đề về hai lực cân bằng Điền kiện cần và đủ để cho hệ hai lực cân bằng là chúng có cùng đường tác dụng, hướng ngược chiều nhau và có cùng cường độ. (hình 1.10). F B F F B F a) b) Hình 1.10 Trang- 20

21 1.2.Các tiên đề tĩnh học Tiên đề 2: Tiên đề thêm bớt hai lực cân bằng Tác dụng của một hệ lực không thay đổi nếu thêm hoặc bớt hai lực cân bằng. (hình 1.11) Hệ quả 1: Định lý trượt lực B F Tác dụng của lực lên vật rắn tuyệt đối không thay đổi khi trượt lực trên đường tác dụng của nó. F B F B Hình 1.11 Cần chú ý rằng tính chất nêu trên chỉ đúng đối với vật rắn tuyệt đối. Trang- 21

22 1.2.Các tiên đề tĩnh học Tiên đề 3: Tiên đề hình bình hành lực Hệ hai lực cùng đặt tại một điểm tương đương với một lực đặt tại điểm đặt chung và có vector lực bằng vector đường chéo hình bình hành mà hai cạnh là hai vector biểu diễn hai lực thành phần. (hình 1.12) O F 1 F F 2 Hình 1.12 Tiên đề 4: Tiên đề tác dụng và phản tác dụng Lực tác dụng và lực phản tác dụng giữa hai vật có cùng đường tác dụng, hướng ngược chiều nhau và có cùng cường độ. (hình 1.13). Trang- 22

23 1.2.Các tiên đề tĩnh học F F B a) F B F b) Hình 1.13 Chú ý rằng lực tác dụng và phản tác dụng không phải là hai lực cân bằng vì chúng không tác dụng lên cùng một vật rắn. Tiên đề 4 là cơ sơ để mơ rộng các kết quả khảo sát một vật sang khảo sát hệ vật và nó đúng cho hệ quy chiếu quán tính cũng như hệ quy chiếu không quán tính. Trang- 23

24 1.2.Các tiên đề tĩnh học Tiên đề 5: Tiên đề hóa rắn Một vật biến dạng đã cân bằng dưới tác dụng của một hệ lực thì khi hóa rắn lại nó vẫn cân bằng dưới tác động của hệ lực đó (hình 1.14). a) F F b) F F Hình 1.14 Trang- 24

25 1.2.Các tiên đề tĩnh học Tiên đề 6: Tiên đề giải phóng liên kết Vật không tự do (tức vật chịu liên kết) cân bằng có thể được xem là vật tự do cân bằng nếu giải phóng các liên kết, thay thế tác dụng của các liên kết được giải phóng bằng các phản lực liên kết tương ứng (hình 1.16). q q R RB B a) Hình 1.16 b) Trang- 25

26 1.3.Moment của lực Khái niệm Dưới tác động của một lực vật rắn có thể chuyển động tịnh tiến, chuyển động quay, hoặc vừa chuyển động tịnh tiến vừa quay đồng thời. Tác dụng của lực làm vật rắn quay sẽ được đánh giá bơ i đại lượng moment của lực. Trang- 26

27 1.3.Moment của lực Các loại moment của lực: Moment của lực đối với một tâm Khảo sát lực F tác động tại điểm trên vật. Đường tác dụng của lực là đường thẳng l. Giả sử rằng lực có xu hướng làm vật rắn quay quanh tâm O. z H Dựng hệ trục B vuông góc 3 chiều F Oxyʓ có gốc tại d tâm O như hình vẽ: (hình 1.17) O x r Hình 1.17 (l) y Trang- 27

28 1.3.Moment của lực Dựng vectơ r O Gọi α là góc hợp bơ i vectơ r và lực F: d là cánh tay đòn của lực F đối với tâm O. d OH () l d r.sin Khả năng của lực F làm vật rắn quay quanh tâm O sẽ được đánh giá bơ i vector moment của lực F đối với tâm O như sau: (hình 1.18). M ( ) O F r F ( : tích có hướng) Trang- 28

29 1.3.Moment của lực M O ( F) mp( OB) Chiều M O ( F) : RHR M O ( F) r. F.sin Fd. 2. S( OB) Hướng quay của các ngón còn lại của bàn tay phải. F Hướng chỉ của ngón cái bàn tay phải r M O(F) Hình 1.18 Trang- 29

30 1.3.Moment của lực Trang- 30

31 1.3.Moment của lực Trang- 31

32 1.3.Moment của lực Moment của lực đối với một trục Khảo sát lực F tác động tại điểm trên vật. Giả sử rằng lực có xu hướng làm vật rắn quay quanh trục ʓ. Để đo lường khả năng của lực F làm vật rắn quay quanh trục ʓ người ta xác định moment của lực F đối với trục ʓ theo hai bước sau đây: z Hình 1.19 x MZ ( F) O M O d (F) H B r F (l) y B xy F xy xy Trang- 32

33 1.3.Moment của lực Bước 1: xác định hình chiếu vuông góc của lực F lên mặt phẳng vuông góc với trục quay ʓ. F xy hc xy (F) Bước 2: moment của lực F đối với trục ʓ là một đại lượng đại số được định nghĩa bằng (+) hoặc ( ) độ lớn của vector moment lực hình chiếu Fxy đối với tâm O. (xem hình 1.19). Quy ước M (F) M O(F xy) 2.S( O xyb xy) Moment của lực F đối với trục quay ʓ sẽ được quy ước là đại lượng dương (+) nếu nhìn dọc theo trục quay ʓ từ ngọn của trục ấy ta thấy lực hình chiếu Fxy sẽ có xu hướng quay quanh tâm O ngược chiều kim đồng hồ và ngược lại. Trang- 33

34 1.3.Moment của lực Trang- 34

35 1.3.Moment của lực Trang- 35

36 1.3.Moment của lực Trang- 36

37 1.3.Moment của lực Ngẫu lực a). Định nghĩa Ngẫu lực là một hệ hai lực thỏa đồng thời các điều kiện sau đây: Cùng phương, cùng độ lớn, ngược chiều và không cùng đường tác dụng (hình 1.20). Ký hiệu ngẫu lực như sau: ( F, F') : F' F P M ( F, F) F d l F l Hình 1.20 Trang- 37

38 1.3.Moment của lực b). Tính chất của ngẫu lực Ngẫu lực là một hệ lực không cân bằng. Nghĩa là dưới tác động của ngẫu lực, một vật rắn tự do hoàn toàn, đang đứng yên sẽ thực hiện chuyển động quay: Ngẫu lực là loại hệ lực không bao giờ có hợp lực. Nghĩa là ngẫu lực là một dạng tối giản của các hệ lực: c). Moment của ngẫu lực Khả năng làm quay vật của ngẫu lực sẽ phụ thuộc vào 4 yếu tố của ngẫu lực: mặt phẳng tác dụng (P), cánh tay đòn d, độ lớn của các lực và chiều quay của ngẫu lực. ( F, F ') ( F, F') f R Trang- 38

39 1.3.Moment của lực Để đo lường khả năng làm quay vật của ngẫu lực người ta định nghĩa đại lượng vector moment của ngẫu lực như sau: M F, F M F M F Có hai cách ký hiệu ngẫu lực: M F, F Chiều M F, F mp(p) M F,F : RHR Liệt kê 2 lực của ngẫu: F,F Biểu diễn ngẫu bằng vector moment của nó: M F,F F.d Trang- 39

40 1.3.Moment của lực Trang- 40

41 1.3.Moment của lực Trang- 41

42 1.3.Moment của lực d). Các định lý của ngẫu lực Định lý 1: Hai ngẫu lực được xem là tương đương về cơ học nếu và chỉ nếu hai vector moment của chúng bằng nhau. F 1, F ~ 1 F2, F 2 M F1, F 1 M F2, F 2 Định lý 2: Từ một ngẫu đã cho ta có thể tìm được vô số ngẫu khác tương đương với nó. Định lý 3: Tổng hai vector moment của hai lực trong ngẫu lấy đối với một tâm O trong không gian sẽ không phụ thuộc vào vị trí của tâm O đó và bằng vector moment của ngẫu lực. O 3 O M F M F M F,F, O R Trang- 42

43 1.3.Moment của lực Định lý 4: Một hệ nhiều ngẫu lực bao giờ cũng có một ngẫu tương đương với toàn hệ. Vector moment của ngẫu tương đương bằng tổng tất cả các vector moment của các ngẫu thành phần. j j j j F, F ~ Q, Q M Q, Q M F, F, j 1, n n j Ký hiệu moment Có 3 cách ký hiệu Moment: Cách 1: Ký hiệu Moment bằng một vector thẳng hai đầu. (Dùng trong bài toán không gian 3 chiều.). (hình 1.21) Vector càng dài vật rắn quay càng nhanh. P M Hình 1.21 Trang- 43

44 1.3.Moment của lực Cách 2: Ký hiệu moment bằng một ngẫu hai lực nằm trong mặt phẳng tác dụng vuông góc với vector moment của cách 1 sao cho vector moment của ngẫu lực bằng vector moment cần biểu diễn (dùng trong bài toán không gian 2 chiều và 3 chiều) (hình 1.22). Chú ý rằng có rất nhiều ngẫu có thể chọn để biểu diễn một moment. M(F,F ) M P F F Hình 1.22 Trang- 44

45 1.3.Moment của lực Cách 3: Biễu diễn moment bằng một vector cong, phẳng nằm trong mặt phẳng tác dụng của ngẫu lực (hình 1.23). Chiều của vector cong được xác định tuân theo quy tắc bàn tay phải so với chiều vector moment thẳng của cách 1. Hay chiều của vector moment cong sẽ cùng chiều quay của ngẫu lực (dùng trong bài toán không gian 2 chiều). M P M Hình 1.23 Trang- 45

46 1.4.Liên kết và phản lực liên kết Khái niệm Vật rắn tự do hoàn toàn Là vật rắn có thể thực hiện được mọi dạng chuyển động trong không gian mà không có bất ky cản trơ nào Bậc tự do của vật rắn a). Định nghĩa (Dof) Là số chuyển động độc lập mà vật rắn ấy có thể thực hiện đồng thời trong không gian. Ví dụ: chuyển động của quạt trần và của trái đất là 2 chuyển động độc lập. Ký hiệu bậc tự do của vật rắn là Dof (Degree of freedom). Trang- 46

47 1.4.Liên kết và phản lực liên kết b). Xác định Dof của vật rắn tự do hoàn toàn Trong không gian hai chiều: 2D (hình 1.24) Dof VR 3 y S 1: tịnh tiến thẳng theo phương ngang. 2: tịnh tiến thẳng theo phương đứng. 3: quay. 2 O Có 1 và 2 thì vật tịnh tiến theo phương xiên. 3 1 Hình 1.24 x Có cả ➂ thì vật vừa tịnh tiến vừa quay đồng thời. Trang- 47

48 1.4.Liên kết và phản lực liên kết Trong không gian 3 chiều: 3D (hình 1.25) z V Dof VR 6 O y x Hình 1.25 Chú ý rằng một chuyê n động độc lập bao gồm cả hai chiều chuyê n động theo một phương. Trang- 48

49 1.4.Liên kết và phản lực liên kết Liên kê t a). Đi nh nghi a La như ng đô i tươ ng có ta c du ng ha n chê kha năng chuyê n đô ng của vâ t rắn trong không gian. b). Ra ng buô c cu a liên kê t (R lk ) La sô chuyê n đô c lâ p bi mất do liên kê t. lk R la mô t thông sô đa nh gia kha năng ca n trở chuyê n đô ng của liên kê t đô i vơ i vâ t va nó đươ c đi nh nghi a bă ng sô chuyê n đô ng đô c lâ p ma vâ t rắn bi mất đi do liên kê t ấy. Chu y : Mô t chuyê n đô ng đô c lâ p gô m ca hai chiê u chuyê n đô ng theo mô t phương. Nê u vâ t rắn chi chuyê n đô ng theo mô t chiê u của mô t phương thi vâ t ấy có 0,5 chuyê n đô ng đô c lâ p. Trang- 49

50 1.4.Liên kết và phản lực liên kết c). Bâ c tư do cu a hê nhiê u vâ t ră n co liên kê t vơ i nhau Kha o sa t mô t hê thô ng cơ ho c gô m có n vâ t rắn đươ c liên kê t vơ i nhau bởi m liên kê t. Tô ng ca c ra ng buô c của ca c liên kê t trong hê la : c1). Xe t mô t cơ hê trong không gian hai chiê u (2D) Lu c na y Dof hê = 3n - c2). Trong không gian ba chiê u: Vơ i n la sô vâ t rắn trong hê. m j1 Khi Dof hê > 0: hê không luôn cân bă ng vơ i mo i loa i ta i ta c đô ng. Khi Dof hê 0: hê luôn cân bă ng vơ i mo i loa i ta i ta c đô ng. R lk j hê m Dof 6n R j1 lk j m j1 R lk j Trang- 50

51 1.4.Liên kết và phản lực liên kết Trang- 51

52 1.4.Liên kết và phản lực liên kết Pha n lư c liên kê t a). Đi nh nghi a La như ng lư c do ca c liên kê t pha n ta c du ng lên vâ t (hi nh 1.26). Pha n lư c liên kê t la như ng lư c thuô c loa i lư c thu đô ng (bi đô ng). P R R, P la ca c a p lư c lên liên kê t., la ca c PLLK. B B b). Ti nh châ t Ti nh chất 1: Sô pha n lư c liên kê t của mô t loa i liên kê t sẽ bă ng sô la m tro n của ra ng buô c liên kê t ấy [= round (R lk )]. R R B B V Vi du : R lk = 2,5 liên kê t có 3 pha n lư c liên kê t. P Hình 1.26 P B Trang- 52

53 1.4.Liên kết và phản lực liên kết Ti nh chất 2: Vi tri đă t ca c pha n lư c liên kê t tru ng vơ i vi tri của ca c liên kê t ấy (Đă t ta i vi tri có liên kê t). Ti nh chất 3: Phương của ca c pha n lư c liên kê t sẽ tru ng vơ i phương của ca c chuyê n đô ng đô c lâ p bi mất đi. Ti nh chất 4: Chiê u của ca c pha n lư c liên kê t sẽ ngươ c vơ i chiê u của ca c chuyê n đô ng đô c lâ p bi mất đi Pha n lư c liên kê t cu a 9 loa i liên kê t cơ ba n Liên kê t dây T dây R dây = 0,5 Có 1 pha n lư c liên kê t: Lư c căng dây (hi nh 1.27). T Hình 1.27 V Trang- 53

54 1.4.Liên kết và phản lực liên kết Mô t sô liên kê t dây trong thư c tê Trang- 54

55 1.4.Liên kết và phản lực liên kết Tư a nhă n. (Tư a trơn không ma sa t) R tư a = 0,5 Có 1 pha n lư c liên kê t: đă t ta i vi tri liên kê t (hi nh 1.28a). t : tiếp tuyến chung. V N : pha n lư c pha p tuyê n, thă ng góc vơ i mă t tư a (mă t tiê p xu c) va hươ ng va o vâ t kha o sa t. t N Hình 1.28-a Trang- 55

56 he First 1.4.Liên kết và phản lực liên kết N N B B S t B t Hình 1.28-b t : tiê p tuyê n riêng của bê mă t cô đi nh ta i điê m gâ y. tb : tiê p tuyê n riêng của vâ t ta i vi tri điê m B. N N B Trang- 56, : pha n lư c pha p tuyê n.

57 1.4.Liên kết và phản lực liên kết Tư a Hình 1.28-c Trang- 57

58 1.4.Liên kết và phản lực liên kết Mô t sô liên kê t tư a trong thư c tê Trang- 58

59 1.4.Liên kết và phản lực liên kết Khơ p ba n lê cô đi nh (khơ p ba n lê ngoa i cố đi nh, gối cố đi nh). R bl = 2 S Có 2 pha n lư c liên kê t. V H Chiê u pha n lư c dư đoa n Hình 1.29 a Loa i liên kê t na y có chiê u va đô lơ n của ca c pha n lư c liên kê t chưa biê t (hi nh 1.29). Trang- 59

60 1.4.Liên kết và phản lực liên kết Khơ p ba n lê cô đi nh F F F x y Hình 1.29 b Mô hi nh liên kê t khơ p ba n lê trong ly thuyê t Hình 1.29 c y x R y x Trang- 60

61 1.4.Liên kết và phản lực liên kết Khơ p ba n lê trươ t (khơ p ba n lê ngoa i trượt, khơ p ba n lê di đô ng, gối di đô ng) Loa i liên kê t na y chi cho phe p trươ t qua la i theo phương trươ t va quay trong mă t phă ng nhưng không ti nh tiê n thă ng lên, xuô ng theo phương vuông góc vơ i phương trươ t. Đê trươ t nhe ngươ i ta lắp thêm con lăn (hi nh 1.30). R blt = 1 V N Có 1 pha n lư c liên kê t. Chiê u va đô lơ n pha n lư c chưa biê t. Hình 1.30 a Trang- 61

62 1.4.Liên kết và phản lực liên kết Hình 1.30 b Mô hi nh liên kê t khơ p ba n lê di đô ng trong ly thuyê t Hình 1.30 c Trang- 62

63 1.4.Liên kết và phản lực liên kết Khơ p ba n lê nô i (xem hi nh 1.31) Hình 1.31-a R bln = 2 Co 2 pha n lư c liên kê t ta c đô ng lên tư ng vâ t tho a tiên đê 4 của tĩnh học. Trang- 63

64 1.4.Liên kết và phản lực liên kết 1 H 2 H1 V2 V1 H 1 V 1 Khơ p ba n lê nô i V 2 Hình 1.31-b H 2 2 Hình 1.31-c Trang- 64

65 1.4.Liên kết và phản lực liên kết Nga m phă ng (nga m hai chiê u) (xem hi nh 1.32). R nga m 2D = 3 Có 3 pha n lư c liên kê t. V H B M Hình 1.32 Trang- 65

66 1.4.Liên kết và phản lực liên kết Khơ p câ u (xem hi nh 1.33) R câ u = 3 z Có 3 pha n lư c liên kê t. V z x x y Hình 1.33 y Trang- 66

67 1.4.Liên kết và phản lực liên kết Nga m không gian (nga m 3 chiê u ) (xem hi nh 1.34) R nga m3d = 6 Có 6 pha n lư c liên kê t. z Nga m x M y x z M z M x y y Hình 1.34 Trang- 67

68 1.4.Liên kết và phản lực liên kết Liên kê t thanh Kha o sa t thanh thă ng hoă c cong tho a đô ng thơ i ba điê u kiê n sau: (hi nh 1.35) Có tro ng lươ ng rất be nên có thê bo qua đươ c. Có hai liên kê t ở hai đâ u cuô i của mô i thanh thuô c ba loa i liên kê t sau đây: khơ p câ u, khơ p ba n lê, tư a nhă n. R B R D V B D Ca c thanh không chi u ta c đô ng của lư c hoă c moment ở giư a thanh. C Hình 1.35 a Trang- 68

69 1.4.Liên kết và phản lực liên kết Nê u như ng thanh tho a ma n đô ng thơ i ca c điê u kiê n như trên đươ c du ng la m ca c liên kê t cho vâ t rắn thi chu ng sẽ đươ c go i la ca c liên kê t thanh. Mô i liên kê t thanh sẽ có mô t ra ng buô c va sinh ra mô t pha n lư c ta c đô ng lên vâ t. Pha n lư c của liên kê t thanh luôn có ti nh chất nă m trên mô t đươ ng thă ng nô i liê n hai đâ u có liên kê t thanh. Liên kê t thanh Trang- 69

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

Năm Chứng minh Y N

Năm Chứng minh Y N Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.

Διαβάστε περισσότερα

Năm 2017 Q 1 Q 2 P 2 P P 1

Năm 2017 Q 1 Q 2 P 2 P P 1 Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động

Διαβάστε περισσότερα

Kinh tế học vĩ mô Bài đọc

Kinh tế học vĩ mô Bài đọc Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng

Διαβάστε περισσότερα

O 2 I = 1 suy ra II 2 O 1 B.

O 2 I = 1 suy ra II 2 O 1 B. ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến

Διαβάστε περισσότερα

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ: Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:

Διαβάστε περισσότερα

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác

Διαβάστε περισσότερα

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012. wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân

Διαβάστε περισσότερα

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1 SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ

Διαβάστε περισσότερα

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố

Διαβάστε περισσότερα

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3 ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung

Διαβάστε περισσότερα

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C. Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không

Διαβάστε περισσότερα

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

I 2 Z I 1 Y O 2 I A O 1 T Q Z N ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện

Διαβάστε περισσότερα

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân

Διαβάστε περισσότερα

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu) SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)

Διαβάστε περισσότερα

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56 TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ

Διαβάστε περισσότερα

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ). ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng

Διαβάστε περισσότερα

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1- Độ dài đoạn thẳng Ax ( ; y; z ), Bx ( ; y ; z ) thì Nếu 1 1 1 1. Một Số Công Thức Cần Nhớ AB = ( x x ) + ( y y ) + ( z z ). 1 1 1 - Khoảng cách từ điểm đến mặt phẳng

Διαβάστε περισσότερα

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a) Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )

Διαβάστε περισσότερα

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD: . Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm

Διαβάστε περισσότερα

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren). Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí

Διαβάστε περισσότερα

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành

Διαβάστε περισσότερα

O C I O. I a. I b P P. 2 Chứng minh

O C I O. I a. I b P P. 2 Chứng minh ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường

Διαβάστε περισσότερα

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó. HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau

Διαβάστε περισσότερα

5. Phương trình vi phân

5. Phương trình vi phân 5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài

Διαβάστε περισσότερα

Vectơ và các phép toán

Vectơ và các phép toán wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG IV

KỸ THUẬT ĐIỆN CHƯƠNG IV KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính

Διαβάστε περισσότερα

A 2 B 1 C 1 C 2 B B 2 A 1

A 2 B 1 C 1 C 2 B B 2 A 1 Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng

Διαβάστε περισσότερα

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng

Διαβάστε περισσότερα

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết

Διαβάστε περισσότερα

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC). ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm

Διαβάστε περισσότερα

x y y

x y y ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng

Διαβάστε περισσότερα

Chương 12: Chu trình máy lạnh và bơm nhiệt

Chương 12: Chu trình máy lạnh và bơm nhiệt /009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm) THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:

Διαβάστε περισσότερα

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN . ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ

Διαβάστε περισσότερα

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn

Διαβάστε περισσότερα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα - Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει

Διαβάστε περισσότερα

Phần 3: ĐỘNG LỰC HỌC

Phần 3: ĐỘNG LỰC HỌC ài giảng ơ Học Lý Thuết - Tuần 7 4/8/011 Phần : ĐỘNG LỰ HỌ Vấn đề chính cần giải quết là: Lập phương trình vi phân chuển động Xác định vận tốc vàgiatốc hi có lực tácđộng vào hệ hương 10: Phương trình vi

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG II

KỸ THUẬT ĐIỆN CHƯƠNG II KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở

Διαβάστε περισσότερα

c) y = c) y = arctan(sin x) d) y = arctan(e x ).

c) y = c) y = arctan(sin x) d) y = arctan(e x ). Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết

Διαβάστε περισσότερα

Ngày 26 tháng 12 năm 2015

Ngày 26 tháng 12 năm 2015 Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

- Toán học Việt Nam

- Toán học Việt Nam - Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc

Διαβάστε περισσότερα

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH

Διαβάστε περισσότερα

Sử dụngụ Minitab trong thống kê môi trường

Sử dụngụ Minitab trong thống kê môi trường Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều

Διαβάστε περισσότερα

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn

Διαβάστε περισσότερα

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết

Διαβάστε περισσότερα

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn

Διαβάστε περισσότερα

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là. Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.

Διαβάστε περισσότερα

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp

Διαβάστε περισσότερα

1.6 Công thức tính theo t = tan x 2

1.6 Công thức tính theo t = tan x 2 TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos

Διαβάστε περισσότερα

B. chiều dài dây treo C.vĩ độ địa lý

B. chiều dài dây treo C.vĩ độ địa lý ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp

Διαβάστε περισσότερα

Dữ liệu bảng (Panel Data)

Dữ liệu bảng (Panel Data) 5/6/0 ữ lệu bảng (Panel ata) Đnh Công Khả Tháng 5/0 Nộ dung. Gớ thệu chung về dữ lệu bảng. Những lợ thế kh sử dụng dữ lệu bảng. Ước lượng mô hình hồ qu dữ lệu bảng Mô hình những ảnh hưởng cố định (FEM)

Διαβάστε περισσότερα

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...

Διαβάστε περισσότερα

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[] 1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán

Διαβάστε περισσότερα

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

Chứng minh. Cách 1. EO EB = EA. hay OC = AE ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các

Διαβάστε περισσότερα

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X. Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)

Διαβάστε περισσότερα

MỘT SỐ BÀI TOÁN VẬT LÍ ỨNG DỤNG TÍCH PHÂN

MỘT SỐ BÀI TOÁN VẬT LÍ ỨNG DỤNG TÍCH PHÂN MỘT SỐ BÀI TOÁN VẬT LÍ ỨNG DỤNG TÍCH PHÂN I. CƠ BẢN VỀ TÍCH PHÂN 1. Một số công thức cơ tính đạo hàm [c] = [] = 1 [ α ] = α α 1 [sin] = cos [cos] = sin 1 [tan] = cos -1 [cot] = sin [ln] = 1 [log a ] =

Διαβάστε περισσότερα

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.

Διαβάστε περισσότερα

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần. GVLê Văn Dũng - NC: Nguyễn Khuyến Bình Dương Dao Động Cơ 0946045410 (Nhắn tin) DAO ĐỘNG ĐIỀU HÒA rong thời gian t giây vật thực hiện được N dao động toàn phần Chu kì dao động của vật là = t N rong thời

Διαβάστε περισσότερα

Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10

Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10 ĐỀ THAM KHẢO THPT QUỐC GIA 8 MÔN TOÁN (ĐỀ SỐ ) *Biên soạn: Thầy Đặng Thành Nam website: wwwvtedvn Video bài giảng và lời giải chi tiết chỉ có tại wwwvtedvn Thời gian làm bài: 9 phút (không kể thời gian

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên?

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên? Chương 4: HỒI QUY VỚI BIẾN GIẢ VÀ ỨNG DỤNG 1. Nghiên cứu về tuổi thọ (Y: ngày) của hai loại bóng đèn (loại A, loại B). Đặt Z = 0 nếu đó là bóng đèn loại A, Z = 1 nếu đó là bóng đèn loại B. Kết quả hồi

Διαβάστε περισσότερα

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình

Διαβάστε περισσότερα

Tự tương quan (Autocorrelation)

Tự tương quan (Autocorrelation) Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?

Διαβάστε περισσότερα

ĐẠI CƯƠNG VỀ HÒA TAN. Trần Văn Thành

ĐẠI CƯƠNG VỀ HÒA TAN. Trần Văn Thành ĐẠI CƯƠNG VỀ HÒA TAN Trần Văn Thành 1 VAI TRÒ CỦA SỰ HÒA TAN Nghiên cứu phát triển Bảo quản Sinh khả dụng 2 CÁC KHÁI NIỆM CƠ BẢN - CHẤT TAN - DUNG MÔI - DUNG DỊCH (THẬT/GIẢ) 3 NỒNG ĐỘ DUNG DỊCH 4 CÁC KHÁI

Διαβάστε περισσότερα

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB. Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ TRƯỜNG THT HUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓ: 2011-2012 * * HUYÊN ĐỀ ỘT SỐ ÀI TOÁN HÌNH HỌ HẲNG LIÊN QUN ĐẾN TỨ GIÁ TOÀN HẦN Người thực hiện han Hồng Hạnh Trinh Nhóm chuyên toán lớp 111 Kon Tum, ngày 26

Διαβάστε περισσότερα

x i x k = e = x j x k x i = x j (luật giản ước).

x i x k = e = x j x k x i = x j (luật giản ước). 1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG

Διαβάστε περισσότερα

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh. Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM

Διαβάστε περισσότερα

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng 1 HỒI QUY TUYẾN TÍNH ĐƠN GV : Đnh Công Khả FETP Môn: Các Phương Pháp Định Lượng Knh tế lượng là gì? Knh tế lượng được quan tâm vớ vệc xác định các qu luật knh tế bằng thực nghệm (Thel, 1971) Knh tế lượng

Διαβάστε περισσότερα

BÀI TẬP ÔN THI HOC KỲ 1

BÀI TẬP ÔN THI HOC KỲ 1 ÀI TẬP ÔN THI HOC KỲ 1 ài 1: Hai quả cầu nhỏ có điện tích q 1 =-4µC và q 2 =8µC đặt cách nhau 6mm trong môi trường có hằng số điện môi là 2. Tính độ lớn lực tương tác giữa 2 điện tích. ài 2: Hai điện tích

Διαβάστε περισσότερα

ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011)

ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011) Đề cương chi tiết Toán cao cấp 2 1 TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập Tự do Hạnh phúc 1. Thông tin chung về môn học ĐỀ CƯƠNG CHI TIẾT HỌC

Διαβάστε περισσότερα

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG Sau khi học xong chương này, người

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4.

ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4. ShaMO 30 A1. Cho các số thực a, b, c, d thỏa mãn a + b + c + d = 6 và a 2 + b 2 + c 2 + d 2 = 12. Chứng minh rằng 36 4 ( a 3 + b 3 + c 3 + d 3) ( a 4 + b 4 + c 4 + d 4) 48. A2. Cho tam giác ABC, với I

Διαβάστε περισσότερα

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận. BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.

Διαβάστε περισσότερα

Tự tương quan (Autoregression)

Tự tương quan (Autoregression) Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan

Διαβάστε περισσότερα

PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG KIẾN THỨC CẦN NHỚ : 1. Phép tịnh tiến : a. Định nghĩa :Cho cố định. Với mỗi điểm M, ta dựng điểm M sao cho MM ' = T (M) = M sao cho : MM ' = b. Biể thức

Διαβάστε περισσότερα

PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC

PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC Luận văn thạc sĩ kỹ thuật 1 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHIỆP --------------------------------------- VŨ THỊ VÒNG PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC

Διαβάστε περισσότερα

có nghiệm là:. Mệnh đề nào sau đây đúng?

có nghiệm là:. Mệnh đề nào sau đây đúng? SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương

Διαβάστε περισσότερα

TRANSISTOR MỐI NỐI LƯỠNG CỰC

TRANSISTOR MỐI NỐI LƯỠNG CỰC hương 4: Transistor mối nối lưỡng cực hương 4 TANSISTO MỐI NỐI LƯỠNG Ự Transistor mối nối lưỡng cực (JT) được phát minh vào năm 1948 bởi John ardeen và Walter rittain tại phòng thí nghiệm ell (ở Mỹ). Một

Διαβάστε περισσότερα

CHƯƠNG III NHIỆT HÓA HỌC 1. Các khái niệm cơ bản: a. Hệ: Là 1 phần của vũ trụ có giới hạn trong phạm vi đang khảo sát về phương diện hóa học.

CHƯƠNG III NHIỆT HÓA HỌC 1. Các khái niệm cơ bản: a. Hệ: Là 1 phần của vũ trụ có giới hạn trong phạm vi đang khảo sát về phương diện hóa học. CHƯƠNG III NHIỆT HÓA HỌC 1. Các khái niệm cơ bản: a. Hệ: Là 1 phần của vũ trụ có giới hạn trng phạm vi đang khả sát về phương diện hóa học. Phần còn lại của vũ trụ ba quanh hệ được gọi là môi trường ngài

Διαβάστε περισσότερα

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG hieuchuoi@ Tháng 7.006 GIỚI THIỆU Tuyển tập đề thi này gồm tất cả 0 đề thi tuyển sinh vào trường THPT chuyên Nguyễn Trãi Tỉnh Hải Dương (môn Toán chuyên) và

Διαβάστε περισσότερα

x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)

x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2) 65 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 53, 2009 HỆ PHÂN HOẠCH HOÀN TOÀN KHÔNG GIAN R N Huỳnh Thế Phùng Trường Đại học Khoa học, Đại học Huế TÓM TẮT Một phân hoạch hoàn toàn của R n là một hệ gồm 2n vec-tơ

Διαβάστε περισσότερα

1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình...

1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình... BÀI TẬP ÔN THI KINH TẾ LƯỢNG Biên Soạn ThS. LÊ TRƯỜNG GIANG Thành phố Hồ Chí Minh, ngày 0, tháng 06, năm 016 Mục lục Trang Chương 1 Tóm tắt lý thuyết 1 1.1 Tổng quan về kinh tế lượng......................

Διαβάστε περισσότερα

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân

Διαβάστε περισσότερα

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH ỨNG DỤNG PHƯƠNG TÍH, TRỤ ĐẲNG PHƯƠNG TRNG ÀI TÁN YẾU TỐ Ố ĐỊNH. PHẦN Ở ĐẦU I. Lý do chọn đề tài ác bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá

Διαβάστε περισσότερα

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác

Διαβάστε περισσότερα

CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC

CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC I. Nguyên lý 1 nhiệt động học: Q= U + A hay U = Q A a) Quy ước dấu công và nhiệt: - Hệ thu nhiệt: Q > 0 ; Hệ phát nhiệt: Q < 0 - Hệ nhận công: A < 0 ; Hệ sinh công ( thực hiện

Διαβάστε περισσότερα

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1 TIN HỌC ỨNG DỤNG (CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Phan Trọng Tiến BM Công nghệ phần mềm Khoa Công nghệ thông tin, VNUA Email: phantien84@gmail.com Website: http://timoday.edu.vn Ch4 -

Διαβάστε περισσότερα

Viết phương trình dao động điều hòa. Xác định các đặc trưng của DĐĐH.

Viết phương trình dao động điều hòa. Xác định các đặc trưng của DĐĐH. Viết phương trình dao động điều hòa Xác định các đặc trưng của DĐĐH I Phương pháp 1:(Phương pháp truyền thống) * Chọn hệ quy chiếu: - Trục Ox - Gốc tọa độ tại VTCB - Chiều dương - Gốc thời gian * Phương

Διαβάστε περισσότερα

H O α α = 104,5 o. Td: H 2

H O α α = 104,5 o. Td: H 2 CHƯƠNG II LIÊN KẾT HÓA HỌC I. Các đặc trưng của liên kết hóa học 1. Độ dài liên kết:là khoảng cách ngắn nhất nối liền 2 hạt nhân của 2 nguyên tử tham gia liên kết Liên kết H F H Cl H Br H I d(a o ) 0,92

Διαβάστε περισσότερα

Chương 2: Đại cương về transistor

Chương 2: Đại cương về transistor Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR

Διαβάστε περισσότερα

Thuật toán Cực đại hóa Kì vọng (EM)

Thuật toán Cực đại hóa Kì vọng (EM) Thuật toán Cực đại hóa Kì vọng (EM) Trần Quốc Long 1 1 Bộ môn Khoa học Máy tính Khoa Công nghệ Thông tin Trường Đại học Công nghệ Thứ Tư, 30/03/2016 Long (Đại học Công nghệ) Thuật toán EM 30/03/2016 1

Διαβάστε περισσότερα

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT 1 CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC 1.1. Kiến thức cơ bản: DẠNG 1: ĐỊNH LUẬT THỨ NHẤT - Dạng này là dạng ứng dụng định luật thứ nhất nhiệt động lực học để giải các bài toán về nhiêt.

Διαβάστε περισσότερα

tâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G.

tâm O. CMR OA1 5 HD. Tính qua các véc tơ chung điểm đầu A Bài 19. Cho tam giác ABC, gọi G là trọng tâm và H là điểm đối xứng của B qua G. Phần I. Véc tơ. hứng minh hệ thức véc tơ Véc tơ - Toạ độ hú ý + ho Với mọi điểm O, t có: = O O. + Tứ giác là hbh =. + Để cm = b. = b i) b ii) Nếu = ;b =. T cm là hbh. iii) Tính chất bắc cầu + Để cm = t

Διαβάστε περισσότερα