Các ph n ng peri hóa

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Các ph n ng peri hóa"

Transcript

1 Các ph n ng peri hóa (The Young Vietnamese Chemistry Specialists) Pericyclic Reactions Các orbital phân t c a polyen: Ch c b n ã làm quen v i các ph n ng th, ph n ng tách và ph n ng c ng h p. Trong các ph n ng th m t nhóm electron giàu n t thay th nhóm khác. Trong các ph n ng tách các nguyên b di chuy n t m t m ch cacbon còn trong khi ó các ph n ng c ng h p các nguyên t c thêm vào m t liên k t b i. Có m t lo i các ph n ng hóa h c khác n a x y ra trong m t h các liên t ôi liên h p, hình thành các liên k t cacbon-cacbon m i theo nh h ng l p th. Lo i ph n ng này g i là nh ng ph n ng không c ch b i vì có s s p x p l i các liên k t. Các ph n ng này hi n nay c xem nh b nh h ng v m t l p th và b chi ph i b i các qui t c orbital i x ng. Chúng ta s xét 2 lo i ph n ng trong các ph n ng peri hóa ó là ph n ng c ng óng vòng và ph n ng n vòng (s chuy n hóa l n nhau c a h ch a n n t và các phân t vòng ch a n-2 n t p c hình thành b ng vi c n i các u c a các phân t m ch th ng) Hình 1 cho th y 2 orbital nguyên t p(ao) riêng bi t có n ng l ng b ng nhau. Khi các hàm sóng c a 2 orbital này c c ng và tr cho nhau thì có 2 orbital phân t (MO) c hình thành. S MO hình thành b ng v i s các AO ban u. M t MO c g i MO liên t π 1 có n ng l ng th p h n các AO ban u, m t MO là MO ph n liên k t π 2 * có n ng ng cao h n các orbital p ban u. Hai MO này bi u di n liên k t pi etylen. Hai c p electron ghép ôi c a liên k t p-p c x p vào trong MO liên k t, MO liên k t là MO có ng l ng cao nh t n y các electron (Highest-Occupied-Molecular-Orbital,HOMO ). MO ph n liên k t là MO có n ng l ng th p nh t có ch a các orbital tr ng (Lowest- Unoccupied-Molecular-Orbital,LUMO). HOMO và LUMO c g i là các Frontier MO hay FMO Ph n liên k t LUMO Liên k t HOMO Hình 1 Chú ý r ng HOMO không có nút và i x ng(symmetrical)(s) gi ng nh là m t m t ph ng g ng vuông góc v i liên k t sigma trong khi ó LUMO có m t nút và ph n i x ng (antisymmetric (A)) trong m t ph ng g ng, các b ng xanh và c a các orbital không bi u th n tích mà là các pha a hàm sóng. Hóa c u t o Trang 1

2 Trong tr ng h p c a etylen m t trong các electron trong HOMO có th nh y lên LUMO và có cùng spin (Hình 2). Quá trình này x y ra v i n ng l ng n t m trong vùng có n ng l ng cao trong mi n t ngo i ( ultraviolet,uv,~ nm). Tr ng thái kích thích LUMO, (m t eletron n ch a ghép ôi) liên quan n s h p th n ng l ng(m t n eletron nh y t HUMO lên LUMO quá trình này nh n n ng l ng). Khi electron này tr v tr ng thái c b n(homo), quá trình này gi i phóng n ng l ng. Các h HOMO cao h n c a etylen nh 1,3- butadien, 1,3,5-hexatrien, 1,3,5,7- octatraen c ng x y ra quá trình t ng. Ph n liên k t liên k t Hình 2 Khi các hàm sóng c a hai MO liên k t c a etylen c k t h p, thì hai MO m i c hình thành(hình 3). M t trong hai MO m i này s có n ng l ng th p h n các MO c a etylen, và m t MO m i khác l i có n ng l ng cao h n các MO c a etylen. MO th p h n s có S i x ng trong khi ó MO cao h n s có A, do ó có n t n, t ng t nh v y 2 MO không liên k t c a etylen(a), có th gép v i nhau hình thành m t LUMO có c u trúc xen ph gi a C 2 và C 3 và có ng l ng th p h n các LUMO c a etylen. C u trúc không xen ph s cho ra các A MO không liên k t c a butadien và có 3 n t. N ng l ng HOMO-LUMO tr ng trong butadien do ó th p h n ng l ng HUMO-LUMO trong etylen. Ph ng pháp xây d ng các MO c g i là lý thuy t g n úng (ph ng pháp gi i ph ng trình l y nghi m g n úng cho m t h v t lý ph c t p b ng cách chuy n h ph c t p thành m t h t ng t nh ng n gi n h n). Lý thuy t này có th dùng xây d ng các MO cho polyen cao h n. Hình 3 Hóa c u t o Trang 2

3 Trong h 1,3 butadien có 4 MO, 2 MO liên k t và 2 MO ph n liên k t(hình 4). M i MO có n ng ng cao h n thì có thêm m t n t. HOMO cao n là π 2 trong ó LUMO cao h n là π 3. N ng ng tr ng gi a HOMO và LUMO là 131 kcal/mol(214nm), nh h n n ng l ng tr ng trong etylen. m t electron liên k t trong HOMO nh y lên LUMO c n nh h ng c a ánh sáng t ngo i. Nó c g i là s chuy n ti p t π --> π*. 16 orbital trong hình 4 c minh h a có cùng size, nh ng th t ra thì size c a chúng khác nhau. Các orbital cu i cùng trong HOMO và LUMO thì l n h n các orbital liên quan n i. H n th n a bi u di n các orbital có cùng size s d dàng h n cho chúng ta thay vì làm v n ph c t p thêm.. Hình 4 t ví d n a là 1,3,5-hexatrien(hình 5) có 3 MO liên k t và 3 MO ph n liên k t. Hình 5 Kho ng tr ng HOMO-LUMO s chuy n ti p π --> π* trong hexatrien ch còn 109 kcal/mol (258nm) và dài sóng c a quá trình h p th n ng l ng l i t ng lên. ý r ng s i x ng c a các FMO cho các polyen dài h n xen k nh sau S A, SA SA, và SAS ASA. HOMO c a etylen (hình 1) và HOMO c a 1,3,5-hexadien u là S(nh ã chú thích trên S là i x ng) trong khi ó LUMO c a chúng u là A(ph n i x ng) i ngh ch v i 1,4-butadien, HOMO c a nó là A còn Hóa c u t o Trang 3

4 LUMO là S. Còn 1,3,5,7-octatetraen thì sao, c ng gi ng nh 1,3-butadien thôi không có gì khác c, n gi n nh. Do ó m i polyen khác u có cùng pha HOMO-LUMO. M t nhóm có h n nhóm khác 2 pha(4n+2) nhóm khác là 4n trong ó n là s t nhiên. n = 0, 1, 2,3,. HOMO LUMO 4n + 2 S A 4n A S Và nó c ng tuân theo qui lu t là các orbital gi i h n c a b t k S-MO ph i là nh g ng c a các S- MO i x ng v i nó và c ng t ng t cho các MO n m c nh cùng phía v i nó, t o thành m t h i x ng, còn các A-MO có orbital gi i h n thì không. Ph n ng peri hóa c n có các tiêu chu n i x ng HOMO-LUMO c a các c u t ph n ng. Hãy t u v i ph n ng c ng vòng. Ph n ng c ng vòng: Ph n ng Diels-Alder(PDA), c Otto Diels và Kurt Alder công b vào n m 1928, là m t ph n ng c ng vòng [4+2], ph n ng nhi t và x y ra b m t tr i u. Mô hình u tiên cho PDA c minh h a (hình 6). Trong khi ó 1,3-butadien là m t dien liên h p trong ph n ng, etylen là m t tâm nghèo dienophil( p ch t ái dien). Nhìn chung m t dienophil không ho t hóa r t c n cho PDA. ng cách phân ph i n t có ngh a là c 2 liên k t sigma cùng c t o thành. B m t tr i r ng có ngh a là 2 liên k t sigma c hình thành cùng chi u v i m i tác nhân ph n ng, dien và dienophil. H [4+2] có ngh a là h liên h p 4 electron ph n ng v i m t h 2 electron. dien dienophil Hình 6 Hình 7 cho th y r ng MO c a 1,3-butadien và etylen cùng v i n ng l ng t ng i c a chúng, nh ã c p trên, kho ng cách n ng l ng HOMO-LUMO trong etylen l n h n trong butadien. cho 2 ch t ph n ng v i nhau, m t HOMO c a ch t này ph i ph n ng v i LUMO c a ch t khác v i u ki n i x ng orbital c b o toàn.n ng l ng g n nh t ng ng. Ph n ng gi a các c p SS và AA( minh h a b ng m i tên màu lá chu i), c hai u ph n ng b m t và b o toàn tính i x ng. C hai n ng l ng tr ng là b ng nhau và r t l n cho ph n ng x y ra m t cách nhanh chóng. Hóa c u t o Trang 4

5 *2 ph n liên k t LUMO butadien *1 liên k t HUMO Etylen Hình 7 t cách gi m kho ng tr ng n ng l ng HOMO-LUMO là làm th p LUMO c a m t tác nhân ph n ng. u này th c hi n b ng cách dùng m t etylen có m t nhóm rút n t (electronwithdrawing group EWG) ính v i nó(hình 8). Acrylat ester,xê tôn α,β-không bão hòa và Nitril(RC N) α,β-không bão hòa là nh ng dienophil tiêu bi u. Các dienophil này h p th ánh sáng trong vùng h ng ngo i(~ nm) có ngh a là kho ng tr ng HOMO-LUMO c gi m xu ng ng kho ng cách HOMO-LUMO nh trong butadien n ã bi t r ng t t c các s MO ã c d ng c t o thành t các cacbon AO. H n th a n ng l ng c a các MO liên k t và ph n liên k t c phân b m t cách i x ng trên và i c a các p-ao c a cacbon( ng g ch n i). B i vì EWG ch a m t d nguyên t, mà AO c a nó có n ng l ng th p h n các AO c a cacbon nên s i x ng qua ng g ch n i b m t. Nên không có s b ng nhau c a 2 kho ng tr ng n ng l ng HOMO-LUMO ó là dien HOMO và dienophil LUMO có kho ng tr ng n ng l ng th p h n. Etylen không ho t hóa hình 8 là trong m t h 4-electron n u b n tính luôn c nhóm carbonyl. MO có n ng l ng cao nh t và th p nh t ã c b qua trong s này. *2 ph n liên k t LUMO *1 liên k t HOMO Butadien Hình 8 Etylen không ho t hóa Có th phát bi u gì v ph n ng c ng vòng [2+2] trong hình 9 thì qui t c i x ng không nh ng g n HOMO và LUMO c a etylen cho ph n ng c ng vòng có th x y ra theo ki u ng tác b m t(s và A). S hình thành cyclobutan t 2 etylen không th là ph n ng c ng h p và Hóa c u t o Trang 5

6 là ph n ng nhi t c. Có cách nào làm cho ph n ng c ng h p x y ra? Rõ ràng là c 2 tác nhân ph n ng có cùng tính i x ng, ó là m u ch t gi i quy t v n. *2 ph n liên k t LUMO *1 liên k t HOMO Hình 9 Kho ng tr ng HOMO-LUMO, tr ng thái chuy n ti p π --> π* c n ánh sáng v i b c sóng 171 nm chuy n n tr ng thái kích thích c a etylen( xem hình 2). M t electron nh y t HOMO liên k t lên LUMO không liên k t. Và HOMO(HOMO * ) i x ng ki u A. Tr ng thái chuy n ti p này HOMO có cùng ki u i x ng v i LUMO khi tr ng thái c b n. C ng h p vòng x y ra theo trên m t. Nên chúng ta có th th y r ng ki u t ng tác b m t trong c ng h p [4+2] cho phép x y ra tr ng thái c b n mà không cho phép x y ra tr ng thái kích thích(hν), trong khi ó c ng h p [2 + 2] thì trái l i, cho phép x y ra tr ng thái kích thích mà ko cho phép x y ra tr ng thái c b n. t qui lu t chung có th xây d ng cho ph n ng c ng h p vòng theo ki u trên b m t cho h trong ó i =1, 2, 3. Và 4i = m + n, ho c 4i +2 = m + n, m và n là s ch n gi ng nh b ng d i ây. Tr ng thái n Tr ng thái kích thích Hình 10 m + n Tr ng thái c b n (d ng nhi t) Tr ng thái kích thích (quang hóa) 4i Không cho phép Cho phép {[2+2], [6+2], [4+4]...} 4i + 2 Cho phép {[4+2], [8+2], [6+4]...} Không cho phép Hóa c u t o Trang 6

7 Trong các ví d mà chúng ta ã xem xét, thì s orbital và s electron là b ng nhau. 2 orbital và 2 electron cho etylen; 4 và 4 cho 1,3 butadien Xem xét ph n ng trong Hình 11 trong ó butadien ph n ng v i cation allyl. ây là mot65 ph n ng c ng vòng [4 + 2] th t ra thì cation allyl có 3 orbital và ch có 2 electron, Hình 12 cho th y ng i x ng AA trong ph n ng. Cation allyl không liên k t(có cùng n ng l ng nh p-ao c a nguyên t cacbon) LUMO có 2 orbital. Hình 11 Ph n ng n vòng: Hình 12 ( chuy n hóa l n nhau c a h th ng ch a n n t và các phân t vòng ch a n-2 n t c hình thành b ng vi c n i các u cu i c a phân t m ch th ng ) Các polyen liên h p có th b chi ph i b i các nh h ng l p th, s óng vòng n phân t d i u ki n nhi t và quang hóa. Nh ng ph n ng c bi t nh ph n ng n vòng thì b chi ph i i u ki n v i x ng orbital Hình 13 minh h a ph n ng m u, ví d nh 1,3,4-hexatrien có th t o thành 1,3-cyclohexadien. Ph n ng m vòng cyclobuten t o thành 1,3-butadien d i tác ng nhi t, trái l i ph n ng quang hóa là ph n ng thu n ngh ch. H u h t các ph n ng ki u này u là ph n ng thu n ngh ch chúng b nh h ng b i HOMO tr ng thái c b n và HOMO * tr ng thái kích thích. Hóa c u t o Trang 7

8 Hình 13 v n d ng t t hóa l p th vào các tr ng h p liên quan, chúng ta c n xem xét m t s polyen có các ph n t thay th. Hình 14 minh h a m i quan h gi a (E,E)-2,4-hexadien và ng phân l p th (E,Z) v i trans và cis-3,4-dimetylcyclobuten. S bi n i c a ng phân(e,e) c minh h a trong Hình 15 ng t nét bi u di n quá trính thu nhi t. HOMO c a dien trong tr ng thái c b n là MO π 2 có i x ng A(m t ph ng g ng). Trong m t ph n ng nhi t, orbital gi i h n p-orbital a HOMO quay cùng chi u v i tr c t nét t o thành liên k t σ (S) và m t π* etylen (liên k t ôi,a). Ph n ng óng vòng cyclobuten ch xem xét orbital và có i x ng A. Nh chúng ta ã nói n tr c ây ph n ng này không có l i v m t nhi t ng h c. Các ph n ng thu n ngh ch v n y ra theo ki u quay cùng chi u. S quay ch x y ra các nhóm metyl m i phía c a vòng nh trong trans-dimetyl cyclobuten. Khi dien b kích thích b i ánh sáng UV(~225 nm) m t electron nh y t π 2 HOMO n π 3 * LUMO vì MO bây gi ã c n thêm 1 electron tr thành HOMO(HOMO * ). MO này có i x ng S mà òi h i quay ng c chi u óng vòng ho c m vòng. Ph n ng m vòng t o ra cis-3,4-dimetylcyclobuten. cùng Ng c Ng c cùng Hình 14 Quang hóa HOMO* Tr ng thái Kích thích Quay ng c chi u HOMO* Tr ng thái n Quay cùng chi u Hình 15 Hóa c u t o Trang 8

9 Hình 16 thì khác h n v i Hình 15 trong ó chúng ta chú tr ng ng phân (E,Z)- h n là ng phân (E,E)-2,4-hexadien. V c b n thì hoàn toàn gi ng nhau ngo i tr cis-3,4-dimetylcyclobuten t o nên (E,Z)-dien b ng vi c m vòng ng c chi u, trong khi ó (E,Z)-dien hay trans-3,4- dimetylcyclobuten x y ra quá trình quang phân b ng s quay ng c chi u ta thu c b ng sau. trans cis E,E Quang hóa E,Z Quang hóa HOMO* tr ng thái kích thích Quang nhi t Ng c chi u Quang nhi t HOMO tr ng thái n cùng chi u Hình 16 Hãy xem xét 2 trien có tên là (2E,4Z,6E)-2,4,6-octatrien và (2E,4Z,6Z)-2,4,6-octatrien và s chuy n gi a trans và cis-5,6-dimetyl-1,3-cyclohexatrien Hình 17. T acyclic trien n cyclic trien m t liên t σ c hình thành và m t liên k t π b b gãy. B i vì các liên k t σ C-C b n h n các liên k t π C-C. Do ó quá trình này là quá trình phát nhi t và d n n s vòng hóa. Vì dien và dien có kho ng UV khác nhau, s chi u x c a dien và h p th c c i c a nó là kho ng 253nm s h ng ph n ng quang hóa v phía trien. S h p th ánh sáng UV và s h p th c c i c a trien s lái ph n ng theo h ng ng c l i. Liên k t trung tam c a trien ph i có c u hình Z cho phép các orbital gi i h n có n ng l ng x p x v i các orbital khác ph n ng có th x y ra. ng c trans cùng (E,Z,E) cùng ng c (E,Z,Z) cis Hình 17 Hóa c u t o Trang 9

10 HOMO* tr ng thái kích thích A 4 * Cùng chi u A trans HOMO tr ng thái n S 3 Ng c chi u S cis Hình 18 HOMO c a trien(π 3 ) có i x ng S Hình 18. ây các orbital gi i h n là nh g ng c a nhau, không gi ng nh HOMO tr ng thái c b n c a hexadien mà chúng ta ã kh o sát trên. Do v y ph n ng nhi t thì quay ng c chi u trong khi ó ph n ng quang hóa có i x ng ki u A thì quay cùng chi u. Nên chúng ta không c n ph i làm ph c t p thêm v (E,Z,Z)-trien ngo i tr tr ng thái mà ph n ng nhi t sinh ra trans-cyclohexadien trong khi ó ph n ng quang hóa thì cho ra ng phân cis c a nó. Gi ng nh các ph n ng c ng vòng k t qu trên c tóm t t trong b ng sau: n=1,2,3... Quang hóa 4n Cùng chi u Ng c chi u 4n+2 Ng c chi u Cùng chi u Hóa c u t o Trang 10

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU: Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác

Διαβάστε περισσότερα

Năm 2017 Q 1 Q 2 P 2 P P 1

Năm 2017 Q 1 Q 2 P 2 P P 1 Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động

Διαβάστε περισσότερα

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ). ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng

Διαβάστε περισσότερα

Năm Chứng minh Y N

Năm Chứng minh Y N Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.

Διαβάστε περισσότερα

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3 ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung

Διαβάστε περισσότερα

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C. Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không

Διαβάστε περισσότερα

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC). ài tập ôn đội tuyển I năm 015 Nguyễn Văn inh Số 7 ài 1. (ym). ho tam giác nội tiếp đường tròn (), ngoại tiếp đường tròn (I). G là điểm chính giữa cung không chứa. là tiếp điểm của (I) với. J là điểm nằm

Διαβάστε περισσότερα

O 2 I = 1 suy ra II 2 O 1 B.

O 2 I = 1 suy ra II 2 O 1 B. ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến

Διαβάστε περισσότερα

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren). Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí

Διαβάστε περισσότερα

N NH KINH T V MÔ, DUY TRÌ TI M N NG T NG TR NG. C p nh t Báo cáo Quan h i tác

N NH KINH T V MÔ, DUY TRÌ TI M N NG T NG TR NG. C p nh t Báo cáo Quan h i tác N NH KINH T V MÔ, DUY TRÌ TI M N NG T NG TR NG C p nh t Báo cáo Quan h i tác Báo cáo không chính th c H i ngh gi a k Nhóm t v n các nhà tài tr cho Vi t Nam Buôn Ma Thu t, k L k, 8-9/6/2009 1 L I C M N

Διαβάστε περισσότερα

O C I O. I a. I b P P. 2 Chứng minh

O C I O. I a. I b P P. 2 Chứng minh ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường

Διαβάστε περισσότερα

VÀ CÔNG TY TÀI CHÍNH QU C T

VÀ CÔNG TY TÀI CHÍNH QU C T Tài li u c a Ngân hàng Th gi i CH S D NG CHO M C ÍCH CHÍNH TH C Báo cáo s : 51659-VN HI P H I PHÁT TRI N QU C T VÀ NGÂN HÀNG QU C T V TÁI THI T VÀ PHÁT TRI N VÀ CÔNG TY TÀI CHÍNH QU C T VÀ C QUAN B O LÃNH

Διαβάστε περισσότερα

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

I 2 Z I 1 Y O 2 I A O 1 T Q Z N ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện

Διαβάστε περισσότερα

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân

Διαβάστε περισσότερα

Kinh tế học vĩ mô Bài đọc

Kinh tế học vĩ mô Bài đọc Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng

Διαβάστε περισσότερα

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng

Διαβάστε περισσότερα

A 2 B 1 C 1 C 2 B B 2 A 1

A 2 B 1 C 1 C 2 B B 2 A 1 Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng

Διαβάστε περισσότερα

27/ h n h i ni n : A. h i a à nh n h n i n như à h n nhưn ượ n hợ B. h i a à nh n h n à s h n n n C. h i a à nh n h hi n n i nư h n à s h n n n D.

27/ h n h i ni n : A. h i a à nh n h n i n như à h n nhưn ượ n hợ B. h i a à nh n h n à s h n n n C. h i a à nh n h hi n n i nư h n à s h n n n D. 27/ h n h i ni n : A. h i a à nh n h n i n như à h n nhưn ượ n hợ B. h i a à nh n h n à s h n n n C. h i a à nh n h hi n n i nư h n à s h n n n D. h i a à nh n h hi n n i nư h n à s h n n n à h n a h a

Διαβάστε περισσότερα

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012. wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân

Διαβάστε περισσότερα

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

Vn 1: NHC LI MT S KIN TH C LP 10

Vn 1: NHC LI MT S KIN TH C LP 10 Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà

Διαβάστε περισσότερα

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN . ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ

Διαβάστε περισσότερα

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a) Mặt nón. Mặt trụ. Mặt cầu ài : Trong không gin cho tm giác vuông tại có 4,. Khi quy tm giác vuông qunh cạnh góc vuông thì đường gấp khúc tạo thành một hình nón tròn xoy. b)tính thể tích củ khối nón 4 )

Διαβάστε περισσότερα

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1 SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ

Διαβάστε περισσότερα

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu) SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)

Διαβάστε περισσότερα

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp

Διαβάστε περισσότερα

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

Chứng minh. Cách 1. EO EB = EA. hay OC = AE ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các

Διαβάστε περισσότερα

& KHU T TR H I NINH. H i Quân Cán Chính H i Ninh phát hành

& KHU T TR H I NINH. H i Quân Cán Chính H i Ninh phát hành NG I NÙNG & KHU T TR H I NINH VI T NAM H i Quân Cán Chính H i Ninh phát hành In t i nhà in T & L Printing, Inc. 17331 Newhope St. Fountain Valley CA 92708 M i sao chép, trích d ch ph i có s ch p-thu n

Διαβάστε περισσότερα

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố

Διαβάστε περισσότερα

Ngày 26 tháng 12 năm 2015

Ngày 26 tháng 12 năm 2015 Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ

Διαβάστε περισσότερα

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG Khó học LTðH KT-: ôn Tán (Thầy Lê á Trần Phương) THỂ TÍH KHỐ HÓP (Phần 4) ðáp Á À TẬP TỰ LUYỆ Giá viên: LÊ Á TRẦ PHƯƠG ác ài tập trng tài liệu này ñược iên sạn kèm the ài giảng Thể tich khối chóp (Phần

Διαβάστε περισσότερα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα - Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει

Διαβάστε περισσότερα

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết

Διαβάστε περισσότερα

Dữ liệu bảng (Panel Data)

Dữ liệu bảng (Panel Data) 5/6/0 ữ lệu bảng (Panel ata) Đnh Công Khả Tháng 5/0 Nộ dung. Gớ thệu chung về dữ lệu bảng. Những lợ thế kh sử dụng dữ lệu bảng. Ước lượng mô hình hồ qu dữ lệu bảng Mô hình những ảnh hưởng cố định (FEM)

Διαβάστε περισσότερα

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD: . Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm

Διαβάστε περισσότερα

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên?

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên? Chương 4: HỒI QUY VỚI BIẾN GIẢ VÀ ỨNG DỤNG 1. Nghiên cứu về tuổi thọ (Y: ngày) của hai loại bóng đèn (loại A, loại B). Đặt Z = 0 nếu đó là bóng đèn loại A, Z = 1 nếu đó là bóng đèn loại B. Kết quả hồi

Διαβάστε περισσότερα

x i x k = e = x j x k x i = x j (luật giản ước).

x i x k = e = x j x k x i = x j (luật giản ước). 1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG

Διαβάστε περισσότερα

CƠ HỌC LÝ THUYẾT: TĨNH HỌC

CƠ HỌC LÝ THUYẾT: TĨNH HỌC 2003 The McGraw-Hill Companies, Inc. ll rights reserved. The First E CHƯƠNG: 01 CƠ HỌC LÝ THUYẾT: TĨNH HỌC ThS Nguyễn Phú Hoàng CÁC KHÁI NIỆM CƠ BẢN HỆ TIÊN ĐỀ TĨNH HỌC Khoa KT Xây dựng Trường CĐCN Đại

Διαβάστε περισσότερα

Chương 12: Chu trình máy lạnh và bơm nhiệt

Chương 12: Chu trình máy lạnh và bơm nhiệt /009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG IV

KỸ THUẬT ĐIỆN CHƯƠNG IV KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính

Διαβάστε περισσότερα

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên MỘT SỐ ÀI TOÁN THẲNG HÀNG ài toán 1. (Imo Shortlist 2013 - G1) ho là một tm giác nhọn với trực tâm H, và W là một điểm trên cạnh. Gọi M và N là chân đường co hạ từ và tương ứng. Gọi (ω 1 ) là đường tròn

Διαβάστε περισσότερα

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn

Διαβάστε περισσότερα

Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm

Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm 1. Giới thiệu Ống bê tông dự ứng lực có nòng thép D2400 là sản phẩm cung cấp cho các tuyến ống cấp nước sạch. Đây là sản phẩm

Διαβάστε περισσότερα

+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)

+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7) Nhớm 3 Bài 1.3 1. (X,.) là nhóm => a X; ax= Xa= X Ta chứng minh ax=x Với mọi b thuộc ax thì b có dạng ak với k thuộc X nên b thuộc X => Với mọi k thuộc X thì k = a( a -1 k) nên k thuộc ax. Vậy ax=x Tương

Διαβάστε περισσότερα

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB. Đường tròn mixtilinear Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Đường tròn mixtilinear nội tiếp (bàng tiếp) là đường tròn tiếp xúc với hai cạnh tam giác và tiếp xúc trong (ngoài)

Διαβάστε περισσότερα

Sử dụngụ Minitab trong thống kê môi trường

Sử dụngụ Minitab trong thống kê môi trường Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều

Διαβάστε περισσότερα

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình

Διαβάστε περισσότερα

KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT)

KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT) Chương 1 KHÁI NIỆM CHUNG VỀ BÊTÔNG CỐT THÉP (BTCT) 1.1 Tính chất của êtông cốt thép : Bêtông cốt thép là vật liệu xây dựng phức hợp do hai loại vật liệu là êtông và thép có đặc trưng cơ học khác nhau cùng

Διαβάστε περισσότερα

Bài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC

Bài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC Bài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC TS. Nguyễn Văn Định, Khoa CNTT Lời nói đầu Ngôn ngữ là phương tiện để giao tiếp, sự giao tiếp có thể hiểu là giao tiếp giữa con người với nhau, giao tiếp

Διαβάστε περισσότερα

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...

Διαβάστε περισσότερα

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56 TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ

Διαβάστε περισσότερα

Vectơ và các phép toán

Vectơ và các phép toán wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu

Διαβάστε περισσότερα

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ TRƯỜNG THT HUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓ: 2011-2012 * * HUYÊN ĐỀ ỘT SỐ ÀI TOÁN HÌNH HỌ HẲNG LIÊN QUN ĐẾN TỨ GIÁ TOÀN HẦN Người thực hiện han Hồng Hạnh Trinh Nhóm chuyên toán lớp 111 Kon Tum, ngày 26

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

5. Phương trình vi phân

5. Phương trình vi phân 5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài

Διαβάστε περισσότερα

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH ỨNG DỤNG PHƯƠNG TÍH, TRỤ ĐẲNG PHƯƠNG TRNG ÀI TÁN YẾU TỐ Ố ĐỊNH. PHẦN Ở ĐẦU I. Lý do chọn đề tài ác bài toán về Hình học phẳng thường xuyên xuất hiện trong các kì thi HSG môn toán và luôn được đánh giá

Διαβάστε περισσότερα

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ: Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:

Διαβάστε περισσότερα

x y y

x y y ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng

Διαβάστε περισσότερα

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết

Διαβάστε περισσότερα

- Toán học Việt Nam

- Toán học Việt Nam - Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc

Διαβάστε περισσότερα

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH

Διαβάστε περισσότερα

Tự tương quan (Autocorrelation)

Tự tương quan (Autocorrelation) Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?

Διαβάστε περισσότερα

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.

Διαβάστε περισσότερα

Tự tương quan (Autoregression)

Tự tương quan (Autoregression) Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan

Διαβάστε περισσότερα

Chương 2: Mô hình hồi quy đơn

Chương 2: Mô hình hồi quy đơn Chương : Mô hình hồ quy đơn I. Bản chất của phân tích hồ quy: 1. Khá nệm: Phân tích hồ quy là nghên cứu sự phụ thuộc của một bến (bến phụ thuộc) vào một hay nhều bến khác (các bến gả thích) để ước lượng

Διαβάστε περισσότερα

PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC

PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC VÀ NHỮNG GIẢI PHÁP KHẮC PHỤC Luận văn thạc sĩ kỹ thuật 1 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHIỆP --------------------------------------- VŨ THỊ VÒNG PHÂN TÍCH ẢNH HƢỞNG CỦA SÓNG HÀI TRONG TRẠM BÙ CÔNG SUẤT PHẢN KHÁNG KIỂU SVC

Διαβάστε περισσότερα

LIÊN KẾT TRONG PHÂN TỬ. CẤU TẠO VÀ TÍNH CHẤT

LIÊN KẾT TRONG PHÂN TỬ. CẤU TẠO VÀ TÍNH CHẤT Chương 3. LIÊN KẾT TRONG PHÂN TỬ. CẤU TẠO VÀ TÍNH CHẤT 3.1. Một số khái niệm 3.1.1. Khái niệm về phân tử Phân tử là phần tử nhỏ nhất của một chất có khả năng tồn tại độc lập mà vẫn giữ nguyên tính chất

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG II

KỸ THUẬT ĐIỆN CHƯƠNG II KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở

Διαβάστε περισσότερα

BÀI TOÁN HỘP ĐEN. Câu 1(ID : 74834) Cho mạch điện như hình vẽ. u AB = 200cos100πt(V);R= 50Ω, Z C = 100Ω; Z L =

BÀI TOÁN HỘP ĐEN. Câu 1(ID : 74834) Cho mạch điện như hình vẽ. u AB = 200cos100πt(V);R= 50Ω, Z C = 100Ω; Z L = ÀI TOÁN HỘP ĐEN âu 1(ID : 74834) ho mạch đện như hình vẽ. u = cos1πt(v);= 5Ω, Z = 1Ω; Z = N >> Để xem lờ gả ch tết của từng câu, truy cập trang http://tuyensnh47.com/ và nhập mã ID câu. 1/8 ết: Ω. I =

Διαβάστε περισσότερα

LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU

LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU Nội dung: 2.1 Lấy mẫu tín hiệu 2.2 Bộ tiền lọc 2.3 Lượng tử hóa 2.4 Khôi phục tín hiệu tương tự 2.5 Các bộ biến đổi ADC và DAC Bài tập 1 2.1 Lấy mẫu tín hiệu: Quá trình biến

Διαβάστε περισσότερα

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác

Διαβάστε περισσότερα

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X. Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)

Διαβάστε περισσότερα

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là. Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.

Διαβάστε περισσότερα

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1 TIN HỌC ỨNG DỤNG (CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Phan Trọng Tiến BM Công nghệ phần mềm Khoa Công nghệ thông tin, VNUA Email: phantien84@gmail.com Website: http://timoday.edu.vn Ch4 -

Διαβάστε περισσότερα

CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC

CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC I. Nguyên lý 1 nhiệt động học: Q= U + A hay U = Q A a) Quy ước dấu công và nhiệt: - Hệ thu nhiệt: Q > 0 ; Hệ phát nhiệt: Q < 0 - Hệ nhận công: A < 0 ; Hệ sinh công ( thực hiện

Διαβάστε περισσότερα

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận. BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.

Διαβάστε περισσότερα

Biên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ

Biên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ B. PHƯƠNG PHÁP GIẢI BÀI TẬP VỀ AMIN I. Phản ứng thể hiện tính bazơ của amin Phương pháp giải Một số điều cần lưu ý về tính bazơ của amin : + Các amin đều phản ứng được với các dung dịch axit như HCl, HNO,

Διαβάστε περισσότερα

LÍ THUYẾT MỞ RỘNG TRƯỜNG VÀ GALOIS

LÍ THUYẾT MỞ RỘNG TRƯỜNG VÀ GALOIS NGUYỄN CHÁNH TÚ Khoa Toán, Đại Học Sư Phạm Huế Giáo trình điện tử LÍ THUYẾT MỞ RỘNG TRƯỜNG VÀ GALOIS Huế 12-2006 D C TÍNH KỸ T Ă THUÂ Có thê tra cú u d ê n tù ng phần cu a giáo trình bằng cách click vào

Διαβάστε περισσότερα

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân

Διαβάστε περισσότερα

(Propensity Score Matching Method) Ngày 11 tháng 5 năm 2016

(Propensity Score Matching Method) Ngày 11 tháng 5 năm 2016 Mô hình So sánh bằng Điểm Xu hướng (Propensity Score Matching Method) Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 11 tháng 5 năm 2016 1 / 20 Table of contents 1. Tác động can thiệp trung

Διαβάστε περισσότερα

H O α α = 104,5 o. Td: H 2

H O α α = 104,5 o. Td: H 2 CHƯƠNG II LIÊN KẾT HÓA HỌC I. Các đặc trưng của liên kết hóa học 1. Độ dài liên kết:là khoảng cách ngắn nhất nối liền 2 hạt nhân của 2 nguyên tử tham gia liên kết Liên kết H F H Cl H Br H I d(a o ) 0,92

Διαβάστε περισσότερα

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG hieuchuoi@ Tháng 7.006 GIỚI THIỆU Tuyển tập đề thi này gồm tất cả 0 đề thi tuyển sinh vào trường THPT chuyên Nguyễn Trãi Tỉnh Hải Dương (môn Toán chuyên) và

Διαβάστε περισσότερα

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG Sau khi học xong chương này, người

Διαβάστε περισσότερα

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng 1 HỒI QUY TUYẾN TÍNH ĐƠN GV : Đnh Công Khả FETP Môn: Các Phương Pháp Định Lượng Knh tế lượng là gì? Knh tế lượng được quan tâm vớ vệc xác định các qu luật knh tế bằng thực nghệm (Thel, 1971) Knh tế lượng

Διαβάστε περισσότερα

ĐẠI CƯƠNG VỀ HÒA TAN. Trần Văn Thành

ĐẠI CƯƠNG VỀ HÒA TAN. Trần Văn Thành ĐẠI CƯƠNG VỀ HÒA TAN Trần Văn Thành 1 VAI TRÒ CỦA SỰ HÒA TAN Nghiên cứu phát triển Bảo quản Sinh khả dụng 2 CÁC KHÁI NIỆM CƠ BẢN - CHẤT TAN - DUNG MÔI - DUNG DỊCH (THẬT/GIẢ) 3 NỒNG ĐỘ DUNG DỊCH 4 CÁC KHÁI

Διαβάστε περισσότερα

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα - Γενικά Πού μπορώ να βρω τη φόρμα για ; Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Πότε εκδόθηκε το [έγγραφο] σας; Για να ρωτήσετε πότε έχει εκδοθεί ένα έγγραφο

Διαβάστε περισσότερα

B m 1 giai on (1 stage) B m 1 giai on có m tng. 1 giai on 1 giai on 2 giai on sensor

B m 1 giai on (1 stage) B m 1 giai on có m tng. 1 giai on 1 giai on 2 giai on sensor B m (counter) a chc nng Màn hin th d nhìn (negative transmissive LCD) có chiu nn. Giá tr hin ti có màu lp trình c d nhn thy t xa khi tình trng ca u ra thay i (loi u dây). Cài t dùng phím DIP switch và

Διαβάστε περισσότερα

Tinh chỉnh lược đồ và các dạng chuẩn hoá

Tinh chỉnh lược đồ và các dạng chuẩn hoá Tinh chỉnh lược đồ và các dạng chuẩn hoá Bởi: Ths. Phạm Hoàng Nhung Thiết kế cơ sở dữ liệu mức khái niệm cung cấp cho chúng ta một tập các lược đồ quan hệ và các ràng buộc toàn vẹn, đây có thể được coi

Διαβάστε περισσότερα

MỤC LỤC LỜI NÓI ĐẦU...

MỤC LỤC LỜI NÓI ĐẦU... MỤC LỤC LỜI NÓI ĐẦU... 5 Chƣơng I: Mở đầu... 8 1.1 Tập hợp và các cấu trúc đại số... 8 1.1.1 Tập hợp và các tập con... 8 1.1.2 Tập hợp và các phép toán hai ngôi... 9 1.3 Quan hệ và quan hệ tương đương...

Διαβάστε περισσότερα

QCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater

QCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 28:2010/BTNMT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ NƯỚC THẢI Y TẾ National Technical Regulation on Health Care Wastewater HÀ NỘI - 2010 Lời nói đầu QCVN 28:2010/BTNMT

Διαβάστε περισσότερα

Бизнес Заказ. Заказ - Размещение. Официально, проба

Бизнес Заказ. Заказ - Размещение. Официально, проба - Размещение Εξετάζουμε την αγορά... Официально, проба Είμαστε στην ευχάριστη θέση να δώσουμε την παραγγελία μας στην εταιρεία σας για... Θα θέλαμε να κάνουμε μια παραγγελία. Επισυνάπτεται η παραγγελία

Διαβάστε περισσότερα

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần.

Dao Động Cơ. T = t. f = N t. f = 1 T. x = A cos(ωt + ϕ) L = 2A. Trong thời gian t giây vật thực hiện được N dao động toàn phần. GVLê Văn Dũng - NC: Nguyễn Khuyến Bình Dương Dao Động Cơ 0946045410 (Nhắn tin) DAO ĐỘNG ĐIỀU HÒA rong thời gian t giây vật thực hiện được N dao động toàn phần Chu kì dao động của vật là = t N rong thời

Διαβάστε περισσότερα

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[] 1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán

Διαβάστε περισσότερα