4.8 V NPN Silicon ipolar Common Emitter Transistor Technical Data AT-3886 Features 4.8 Volt Pulsed (pulse width = 577 µsec, duty cycle = 12.5%)/CW Operation +28 dm Pulsed P out @ 9 MHz, Typ. +23.5 dm CW P out @ 836.5 MHz, Typ. 6% Pulsed Collector Efficiency @ 9 MHz, Typ. 11 d Pulsed Power Gain @ 9 MHz, Typ. -35 dc IMD 3 @ P out of 17 dm per tone, 9 MHz, Typ. Applications Driver Amplifier for GSM and AMPS/ETACS/ 9 MHz NMT Cellular Phones 9 MHz ISM and Special Mobile Radio 85 mil Plastic Surface Mount Package Outline 86 Pin Configuration 4 EMITTER 1 ASE 2 EMITTER 3 COLLECTOR Description Hewlett Packard s AT-3886 is a low cost, NPN silicon bipolar junction transistor housed in a surface mount plastic package. This device is designed for use as a pre-driver or driver device in applications for cellular and wireless communications markets. At 4.8 volts, the AT-3886 features +28 dm pulsed output power, Class A operation, and +23.5 dm CW. Superior efficiency and gain makes the AT-3886 an excellent choice for battery powered systems. The AT-3886 is fabricated with Hewlett Packard s 1 GHz F t Self- Aligned-Transistor (SAT) process. The die are nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, selfalignment techniques, and gold metalization in the fabrication of these devices. 4-89 5965-5959E
AT-3886 Absolute Maximum Ratings Absolute Symbol Parameter Units Maximum [1] V EO Emitter-ase Voltage V 1.4 V CO Collector-ase Voltage V 16. V CEO Collector-Emitter Voltage V 9.5 I C Collector Current [2] ma 25 I C Collector Current [3] ma 16 P T Peak Power Dissipation [2, 4] W 3.7 P T CW Power Dissipation [3, 5] mw 46 T j Junction Temperature C 15 T STG Storage Temperature C -65 to 15 Notes: 1. Permanent damage may occur if any of these limits are exceeded. 2. Pulsed operation, pulse width = 577 µsec, duty cycle = 12.5%. 3. CW operation. 4. Derate at 57.1 mw/ C for T C > 85 C. T C is defined to be the temperature of the collector pin 3, where the lead contacts the circuit board. 5. Derate at 7.1 mw/ C for T C > 85 C. T C is defined to be the temperature of the collector pin 3, where the lead contacts the circuit board. 6. Using the liquid crystal technique, V CE =4.5 V, I c = 5 ma, T j =15 C, 1-2 µm hot-spot resolution. Thermal Resistance [6] : θ jc = 14 C/W Electrical Specifications, T C = 25 C Symbol Parameters and Test Conditions Units Min. Typ. Max. Freq. = 9 MHz, V CE = 4.8 V, I CQ = ma, Pulse width = 577 µsec, duty cycle = 12.5%, unless otherwise specified P out Output Power, Test Circuit A, P in = +17 dm dm +26.5 +28. Pulsed Operation [1] η C Collector Efficiency, Test Circuit A, P in = +17 dm % 5 6 Pulsed Operation [1] Mismatch Tolerance Test Circuit A, P out = +28 dm, 7:1 No Damage, Pulsed [1] any phase, 2 sec duration P out Output Power, F = 836.5 MHz, I CQ = 15 ma dm +22. +23.5 CW Operation [2] Test Circuit, P in = +1 dm IMD 3 3rd Order Intermodulation Distortion, F1 = 899 MHz, F2 = 91 MHz dc -35 2-Tone Test, P out each tone = +17 dm, CW [2,3] I CQ = 15 ma, Test Circuit Mismatch Tolerance, No Damage, F = 836.5 MHz, I CQ = 15 ma 7:1 CW [2] Test Circuit, P out = +23.5 dm any phase, 2 sec duration V EO Emitter-ase reakdown Voltage I E =.2 ma, open collector V 1.4 V CO Collector-ase reakdown Voltage I C = 1. ma, open emitter V 16. V CEO Collector-Emitter reakdown Voltage I C = 3. ma, open base V 9.5 h FE Forward Current Transfer Ratio V CE = 3 V, I C = 16 ma 4 15 3 I CEO Collector Leakage Current V CEO = 5 V µa 15 Notes: 1. With external matching on input and output, tested in a 5 ohm environment. Refer to Test Circuit A (GSM). 2. With external matching on input and output, tested in a 5 ohm environment. Refer to Test Circuit (AMPS). 3. Test circuit re-tuned at 9 MHz. 4-9
AT-3886 Typical Performance, T C = 25 C Frequency = 9 MHz, V CE = 4.8 V, I CQ = ma, pulsed operation, pulse width = 577 µsec, duty cycle = 12.5%, Test Circuit A (GSM), unless otherwise specified OUTPUT POWER (dm) 32 28 26 24 22 Γ source =.75-177 Γ load =.48 +161 Pout η c 1 18 16 14 1 12 2 4 6 8 1 12 14 16 18 22 24 Figure 1. Output Power and Collector Efficiency vs. Input Power. 9 8 7 6 5 4 COLLECTOR EFFICIENCY (%) OUTPUT POWER (dm) 32 28 26 24 22 Γ source =.75-177 Γ load =.48 +161 18 16 3.6 V 4.8 V 14 6. V 12 2 4 6 8 1 12 14 16 18 22 24 Figure 2. Output Power vs. Input Power Over ias Voltage. COLLECTOR EFFICIENCY (%) 9 8 7 6 5 4 Γ source =.75-177 Γ load =.48 +161 3.6 V 4.8 V 1 6. V 2 4 6 8 1 12 14 16 18 22 24 Figure 3. Collector Efficiency vs. Input Power Over ias Voltage. OUTPUT POWER (dm) 32 28 26 24 Γ source =.75-177 Γ load =.48 +161 22 T C = +85 C T C = +25 C T C = 4 C 1 12 14 16 18 22 24 Figure 4. Output Power vs. Input Power Over Temperature. OUTPUT POWER (dm) 29. 28.8 28.6 28.4 28.2 28. 27.8 27.6 27.4 27.2 27. 88 Γ source =.75-177 Γ load =.48 +161 Pout Pin = +17 dm η c 55 89 9 91 9 FREQUENCY (MHz) Figure 5. Output Power and Collector Efficiency vs. Frequency. Note: Tuned at 9 MHz, then Swept over Frequency. 75 71 67 63 59 COLLECTOR EFFICIENCY (%) RETURN LOSS (d) -2-4 -6-8 -1-12 -14 Γ source =.75-177 Γ load =.48 +161 Output R.L. Input R.L. -16 8 85 9 95 1 FREQUENCY (MHz) Figure 6. Input and Output Return Loss vs. Frequency. 4-91
AT-3886 Typical Performance, T C = 25 C Freq. = 836.5 MHz, V CE = 4.8 V, I CQ = 15 ma, CW operation, Test Circuit (AMPS), unless otherwise specified OUTPUT POWER (dm) 28 26 24 22 18 16 Γ source =.86-18 Γ load =.46 +128 P out η c 9 8 7 6 5 4 14 2 4 6 8 1 12 14 16 17 Figure 7. Output Power and Collector Efficiency vs. Input Power. COLLECTOR EFFICIENCY (%) OUTPUT POWER (dm) 29 27 25 23 21 Γ source =.86-18 Γ load =.46 +128 19 3.6 V 17 4.8 V 6. V 15 2 4 6 8 1 12 14 16 17 Figure 8. Output Power vs. Input Power Over ias Voltage. COLLECTOR EFFICIENCY (%) 9 8 7 6 5 4 Γ source =.86-18 Γ load =.46 +128 3.6 V 4.8 V 6. V 1 2 4 6 8 1 12 14 16 17 Figure 9. Collector Efficiency vs. Input Power Over ias Voltage. OUTPUT POWER (dm) 28 26 24 22 18 16 14 Γ source =.86-18 Γ load =.46 +128 T C = +85 C T C = +25 C T C = 4 C 2 4 6 8 1 12 14 16 17 Figure 1. Output Power vs. Input Power Over Temperature. RETURN LOSS (d) -2-4 -6-8 -1-12 Γ source =.86-18 Γ load =.46 +128 Output R.L. Input R.L. -14 75 8 836.5 85 9 95 FREQUENCY (MHz) Figure 11. Input and Output Return Loss vs. Frequency. IMD (dc) -5-1 -15 - -25 - -35-4 -45-5 Γ source =.87-178 Γ load =.48 +126 IMD3 IMD5 5 7 9 11 13 15 17 19 21 22 OUTPUT POWER/TONE (dm) Figure 12. IMD3, IMD5 vs. Output Power Per Tone. Note: Test circuit (AMPS) used and re-tuned at 9 MHz. 4-92
AT-3886 Typical Large Signal Impedances (GSM) Freq. = 9 MHz, V CE = 4.8 V, I CQ = ma, Pulsed Operation, P out = +28. dm Freq. Γ source Γ load MHz Mag. Ang. Mag. Ang. 88.743-175.6.474 162. 89.741-176.4.476 161.5 9.747-177.3.478 161.2 91.751-178.1.481 16. 915.752-178.6.482 159.6 9.754-179.1.483 158.9 AT-3886 Typical Large Signal Impedances (AMPS) Freq. = 836.5 MHz, V CE = 4.8 V, I CQ = 15 ma, CW Operation, P out = +23.5 dm Freq. Γ source Γ load MHz Mag. Ang. Mag. Ang. 824.856-178.9.455 129.1 836.5.864-179.9.459 128.2 849.87-179.1.464 127.3 Ccb (pf) 3.5 3.3 3.1 2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 1 2 3 4 5 6 7 8 9 Vcb (V) Figure 13. Collector-ase Capacitance vs. Collector-ase Voltage (DC Test). SPICE Model Parameters Die Model Packaged Model CPad C Cbc CPad CPad Lb C L3 C Die Area =.67 CPad =.36 pf E1 E2 Cbe E1 Le E2 Cce Label F IKF ISE NE VAF NF TF XTF VTF ITF PTF XT R IKR ISC NC VAR Value 28 299.9 9.9E-11 2.399 33.16.9935 1.6E-11.6656.2785.1 23 54.61 81 8.7E-13 1.587 1.511 Label NR TR EG IS XTI CJC VJC MJC XCJC FC CJE VJE MJE R RE RC Value.9886 1E-9 1.11 3.598E-15 3 1.2 pf.4276.258.1.999.98 pf.811.596 5.435 1..1 Label Cbe Cbc Cce L3 Lb Le Value.32 pf.36 pf.122 pf.46 nh.46 nh.46 nh.47 nh.14 nh E 4-93
AT-3886 Typical Scattering Parameters, Common Emitter, Z O = 5 Ω V CE = 3.6 V, I c = 5 ma, T c = 25 C Freq. S 11 S 21 S 12 S 22 GHz Mag. Ang. d Mag. Ang. d Mag. Ang. Mag. Ang..5.71-85 31.7 38.52 138-31.7.26 54.75-57.1.73-124 28.2 25.72 118-29.1.35 39.56-9.25.75-16 21.3 11.66 84-27.3.43 35.39-133.5.76-176 15.5 5.95 76-25.5.53 43.36-155.75.76 175 12. 3.98 72-23.6.66 5.36-165.9.77 171 1.4 3.32 69-22.6.74 52.36-168 1..77 169 9.5 2.99 63-22..79 54.37-17 1.25.78 164 7.6 2.39 57 -.5.94 56.38-174 1.5.78 16 6. 1.99 51-19.3.18 57.4-176 1.75.79 156 4.7 1.71 46-18.3.122 57.41-179 2..8 152 3.5 1.49 41-17.3.137 57.43 179 2.25.8 148 2.5 1.33 37-16.4.151 57.45 176 2.5.81 145 1.5 1.19 32-15.7.164 56.47 174 2.75.81 142.7 1.8 28-15..178 55.49 172 3..82 139 -.1.99 25-14.4.191 54.51 169 V CE = 4.8 V, I c = 5 ma, T c = 25 C.5.72-82 31.8 39.2 139-31.7.26 54.76-55.1.73-121 28.4 26.32 119-29.1.35 4.56-87.25.75-158 21.6 12. 97-27.3.43 35.38-1.5.75-176 15.8 6.14 85-25.5.53 43.35-154.75.76 176 12.3 4.1 76-23.7.65 49.35-163.9.76 172 1.7 3.42 72-22.7.73 52.35-167 1..76 169 9.8 3.8 69-22..79 53.36-169 1.25.77 164 7.8 2.46 63 -.6.93 56.37-172 1.5.78 16 6.2 2.5 57-19.4.17 57.38-175 1.75.78 156 4.9 1.76 51-18.3.121 58.4-178 2..79 152 3.8 1.54 46-17.4.135 57.42 18 2.25.8 149 2.7 1.37 41-16.5.15 57.44 177 2.5.8 145 1.8 1.23 37-15.8.163 56.46 175 2.75.81 142 1. 1.12 32-15..177 55.48 173 3..82 139.2 1.2 28-14.4.19 55.5 17 V CE = 6. V, I c = 5 ma, T c = 25 C.5.73-79 31.8 39.7 14-32..25 55.76-54.1.74-119 28.5 26.6 1-29.1.35 4.56-85.25.74-157 21.7 12.21 98-27.3.43 35.38-128.5.75-175 15.9 6.25 85-25.5.53 42.34-152.75.75 176 12.4 4.18 76-23.7.65 49.34-162.9.76 172 1.8 3.48 72-22.7.73 52.34-166 1..76 17 9.9 3.13 69-22.2.78 53.34-167 1.25.77 165 8. 2.51 63 -.7.92 56.36-171 1.5.77 16 6.4 2.9 57-19.5.16 57.37-174 1.75.78 156 5.1 1.79 51-18.4.1 57.39-177 2..79 152 3.9 1.56 46-17.5.134 58.41-179 2.25.79 149 2.9 1.39 41-16.6.148 57.43 178 2.5.8 146 1.9 1.25 37-15.8.162 56.45 176 2.75.81 142 1.1 1.13 32-15.1.175 56.47 174 3..81 139.3 1.3 28-14.5.188 55.49 171 4-94
Typical Performance GAIN (d) 35 25 15 1 5 MSG S 21 2 MAG -5.5.25.75 1. 1.5 2. 2.5 3. FREQUENCY (GHz) Figure 14. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. V CE = 3.6V, Ic = 5 ma. GAIN (d) 35 25 15 1 5 MSG S 21 2 MAG.5.25.75 1. 1.5 2. 2.5 3..5.25.75 1. 1.5 2. 2.5 3. FREQUENCY (GHz) Figure 15. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. V CE = 4.8V, Ic = 5 ma. GAIN (d) 35 25 15 1 5 MSG S 21 2 MAG FREQUENCY (GHz) Figure 16. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. V CE = 6.V, Ic = 5 ma. Part Number Ordering Information Part Number No. of Devices Container AT-3886-TR1 1 7" Reel AT-3886-LK 1 Antistatic ag Package Dimensions Outline 86.51 ±.13 (. ±.5) 4 45 C L 1 3 2.34 ±.38 (.92 ±.15) 2 1.52 ±.25 (.6 ±.1) 2.67 ±.38 (.15 ±.15) 5 TYP..3 ±.51 (.6 ±.2).66 ±.13 (.26 ±.5). MIN (.12 MIN) 2.16 ±.13 (.85 ±.5) 8 MAX MIN DIMENSIONS ARE IN MILLIMETERS (INCHES) 4-95
Test Circuit A: Test Circuit oard Layout @ 9 MHz for Pulsed Operation (GSM) V 38.1 (1.5) V T1 C1 INPUT C3 R2 R1 C2 PA1 DEMO R3 C4 R4 R5 C5 C6 MFG139 C8 C9 C7 9/96 C1 OUTPUT C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 R1 R2 R3 R4 R5 T1 1. pf 1. pf 1. nf 8.2 pf 1. nf 1. pf 3.6 pf 1.5 µf 1. µf 1. pf 1. Ω 619. Ω 1. Ω 4. Ω 1. Ω MT 2222A 18. µh 18. µh Pulse Test V CE = 4.8 V I CQ = ma Freq. = 9 MHz NOTE: Dimensions are shown in millimeters (inches). 76.2 (3.) Test Circuit: FR-4 Microstrip, glass epoxy board Dielectric Constant = 4.5 Thickness =.79 (.31) Test Circuit A: Test Circuit Schematic Diagram @ 9 MHz for Pulsed Operation (GSM) 1 Ω V 619 Ω Pulse Test V CE = 4.8 V I CQ = ma Freq. = 9 MHz C E DC Transistor 1 Ω 1 nf 1 Ω 18 µh 1 pf 1 pf 8 Ω 8 Ω 1 nf 1.5 µf 1 µf 18 µh λ/4 @ 9 MHz λ/4 @ 9 MHz RF IN 1 pf 5 Ω 4 Ω 5 Ω = 19. (.748) 3.6 pf 1 pf RF OUT 8.2 pf = 6.53 (.257) 4-96
Test Circuit : Test Circuit oard Layout @ 836.5 MHz for CW Operation (AMPS) V 38.1 (1.5) V T1 C1 INPUT C2 R2 R1 R3 C3 PA1 DEMO C4 R4 C5 R5 C6 MFG139 C7 C8 9/96 C9 C1 OUTPUT C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 R1 R2 R3 R4 R5 T1 1. pf 1. nf 11. pf 1. pf 1. pf 1. nf 1.5 µf 1. µf 4.7 pf 1. pf 1. Ω 619. Ω 1. Ω 4. Ω 1. Ω MT 2222A 18. µh 18. µh CW Test V CE = 4.8 V I CQ = 15 ma Freq. = 836.5 MHz NOTE: Dimensions are shown in millimeters (inches). 76.2 (3.) Test Circuit: FR-4 Microstrip, glass epoxy board Dielectric Constant = 4.5 Thickness =.79 (.31) Test Circuit : Test Circuit Schematic Diagram @ 836.5 MHz for CW Operation (AMPS) 1 Ω V 619 Ω CW Test V CE = 4.8 V I CQ = 15 ma Freq. = 836.5 MHz C E DC Transistor 1 Ω 1 nf 1 Ω 1 pf 1 pf 1 nf 1.5 µf 1 µf 18 µh 18 µh 8 Ω 8 Ω λ/4 @ 836.5 MHz λ/4 @ 836.5 MHz RF IN 1 pf 5 Ω 4 Ω 5 Ω = 32.66 (1.286) 4.7 pf 1 pf RF OUT 11. pf = 9.2 (.355) 4-97
Tape Dimensions and Product Orientation for Outline 86 REEL 1 12 mm CARRIER TAPE NOTE: 1 INDICATES PIN 1 ORIENTATION USER FEED DIRECTION COVER TAPE t COVER TAPE D P P 2 1 PITCHES CUMULATIVE TOLERANCE ON TAPE ±.2 MM E K C A F W USER FEED DIRECTION T P 1 D 1 CAVITY PERFORATION DESCRIPTION SYMOL SIZE (mm) SIZE (INCHES) LENGTH WIDTH DEPTH PITCH OTTOM HOLE DIAMETER DIAMETER PITCH POSITION A K P 1 D 1 D P E 5.77 ±.1 6.1 ±.1 1.7 ±.1 8. ±.1 1.5 min. 1.5 +.1/-.5 4. ±.1 1.75 ±.1.227 ±.4.24 ±.4.67 ±.4.314 ±.4.59 min..59 +.4/-.2.157 ±.4.69 ±.4 CARRIER TAPE WIDTH THICKNESS W t 12. ±.. ±.5.472 ±.8.12 ±.2 COVER TAPE WIDTH TAPE THICKNESS C T 9. ±.1.65 ±.1.366 ±.4.26 ±.4 DISTANCE ETWEEN CENTERLINE CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) F P 2 5.5 ±.5 2. ±.5.217 ±.2.79 ±.2 4-98