ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2015

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2015"

Transcript

1 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ Εισαγωγή στις Τάσεις και Παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

2 Σκοποί ενότητας Να συμφιλιωθεί ο φοιτητής με ο αντικείμενο της Αντοχής των υλικών. Να εξοικειωθεί με τις έννοιες της τάσης και της παραμόρφωσης. Να γνωρίσει τις σχέσεις που συνδέουν την τάση και την παραμόρφωση. Να αντιληφθεί τα κριτήρια αστοχίας. Να γνωρίσει το πείραμα και το διάγραμμα του εφελκυσμού 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

3 Περιεχόμενα ενότητας Εισαγωγή Παραδοχές Χαρακτηρισμός φορτίων Χαρακτηρισμός φορέων Ορισμός τάσης Είδη παραμόρφωσης Νόμος Hooke Καμπύλη εφελκυσμού 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

4 Εισαγωγή Πολλά δομικά στοιχεία όπως ράβδοι, δοκοί, κολώνες, άξονες, δοχεία πίεσης κ.α χρησιμοποιούνταν ανέκαθεν σχεδόν σε όλους τους τομείς της καθημερινότητας και αποτελούν θεμελειώδη στοιχεία πάνω στα οποία στηρίζεται ο πολιτισμός. Τα υλικά από τα οποία αποτελούνται τα δομικά υλικά ποικίλουν. Κατασκευάζονται κυρίως από διάφορα μέταλλα, σκυρόδεμα, πλαστικό, ξύλο. Σε αυτό το χωρίο του μαθήματος θα ασχοληθούμε με την μηχανική συμπεριφορά αυτών των δομικών στοιχείων σε διάφορες καταπονήσεις (κυρίως εφελκυσμό, θλίψη, κάμψη, στρέψη). 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

5 Αντικείμενο της Αντοχής των υλικών Είναι η μελέτη της συμπεριφοράς ενός δομικού στοιχείου ή ενός τμήματος μιας κατασκευής όταν αυτή καταπονείται με εξωτερικά φορτία ή φορτία που προκύπτουν από θερμοκρασιακές μεταβολές, μεταβολές πίεσης, εσωτερικές ατέλειες κτλ. Αναπτύσσει δηλαδή τις σχέσεις που συνδέουν τα εξωτερικά φορτία με τις εσωτερικές δυνάμεις και παραμορφώσεις που αναπτύσσονται στο σώμα 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

6 Σκοπός της Αντοχής των υλικών Σκοπός της είναι η παροχή στοιχείων για την διαμόρφωση των κατασκευών με τον ασφαλέστερο και οικονομικότερο τρόπο αλλά και την μέγιστη εκμετάλλευση διαθέσιμων υλικών και μεθόδων αλλά και αναζήτηση νέων μεθόδων μόρφωσης κατασκευών. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

7 Τρόποι επίτευξης σκοπού της αντοχής των υλικών Οι τρόποι που επιτυγχάνεται αυτό είναι : Ο υπολογισμός του μέγιστου φορτίου που μπορεί να δεχτεί ένας φορέας. Η πρόβλεψη των κρίσιμων διατομών που είναι υποψήφιες για να οδηγήσουν το δομικό στοιχείο στην αστοχία. Ο προσδιορισμός των ανώτατων αλλά και των επιτρεπτών ορίων φόρτισης των διαφόρων υλικών σε όλα τα είδη φόρτισης Ο καθορισμός του προφίλ της διατομής των φορέων αλλά και η διαστασιολόγηση της με τρόπο τέτοιο ώστε να μπορούν να παραλάβουν με ασφάλεια τα φορτία που καλούνται να δεχτούν. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

8 Η αντοχή υλικών ως διεπιστημονική γνώση Η αντοχή υλικών είναι ένα απαραίτητο εργαλείο πουχρησιμοποιούν πλήθος επιστημονικών κλάδων όπως οι: 1. Πολιτικοί μηχανικοί 2. Μηχανολόγοι Αεροναυπηγοί 3. Χημικοί Μηχανικοί 4. Μεταλλειολόγοι Μηχανικοί 5. Μεταλλουργοί 6. Ηλεκτρολόγοι Ηλεκτρονικοί 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

9 Επιστημονικός κλάδος στον οποίο εντάσσεται η αντοχή υλικών Η Αντοχή υλικών όπως και η θεωρία της ελαστικότητας περιλαμβάνονται στην επιστήμη της τεχνικής μηχανικής των παραμορφώσιμων σωμάτων. Στηρίζεται τόσο σε εμπειρικούς τύπους που προέκυψαν από πειραματικές μετρήσεις όσο και σε ακριβείς μαθηματικές αναλύσεις και μαθηματικά υπολογιστικά μοντέλα. Χρησιμοποιείται στην επίλυση πλήθους πρακτικών προβλημάτων χρησιμοποιώντας απλές αναλυτικές μεθόδους. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

10 Παραδοχές αντοχής υλικών Παραδοχή συμπαγούς σώματος : Κάθε σημείο έχει τις αυτές ιδιότητες, έτσι και κάθε στοιχειώδες τμήμα του υλικού έχει τις αυτές ελαστικές ιδιότητες όπως όλο το σώμα. Παραδοχή ελαστικού σώματος : Τα υλικά κατασκευών μπορούν να θεωρηθούν ως απολύτως ελαστικά σώματα εντός συγκεκριμένων ορίων που εξαρτώνται από τις ιδιότητες των υλικών. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

11 Χαρακτηρισμός υλικών ΟΜΟΓΕΝΕΣ : όταν έχει σε κάθε σημείο τις ίδιες ιδιότητες. ΙΣΟΤΡΟΠΟ : όταν έχει σε όλες τις διευθύνσεις τις ίδιες ιδιότητες. ΑΝΙΣΟΤΡΟΠΟ: όταν οι ιδιότητες είναι διαφορετικές ανά διεύθυνση ΓΡΑΜΜΙΚΑ ΕΛΑΣΤΙΚΟ : όταν οι παραμορφώσεις μεταβάλλονται ανάλογα με τις επιβαλλόμενες δυνάμεις. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

12 Χαρακτηρισμός δυνάμεων ΔΥΝΑΜΕΙΣ Ανάλογα με τον τρόπο που ασκούνται Ανάλογα με την περιοχή που καταλαμβάνουν ΣΤΑΤΙΚΕΣ Ή ΗΜΙΣΤΑΤΙΚΕΣ ΔΥΝΑΜΙΚΕΣ Ή ΚΡΟΥΣΤΙΚΕΣ ΜΟΝΑΧΙΚΕΣ Ή ΣΥΓΚΕΝΤΡΩ ΜΕΝΕΣ 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 ΚΑΤΑΝΕΜΗ ΜΕΝΕΣ 12

13 Χαρακτηρισμός φορτίων ΗΜΙΣΤΑΤΙΚΑ : όταν αυξάνουν ομαλά, διατηρούνται για μικρό χρονικό διάστημα και μετά απομακρύνονται. ΜΟΝΙΜΑ Ή ΠΑΓΙΑ: όταν καταπονούν μόνιμα μια κατασκευή (πχ το βάρος της κατασκευής). ΚΡΟΥΣΤΙΚΑ : όταν δρούν απότομα με μεγάλη ισχύ σε μια κατασκευή. ΕΝΑΛΛΑΣΟΜΕΝΑ : όταν μεταβάλλονται με το χρόνο (για πολλές χιλιάδες ή εκατομμύρια κύκλους). 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

14 Είδη απλών φορέων υπενθύμιση Εδώ βλέπουμε τα κύρια είδη απλών φορέων. Οι απλοί φορείς αν συνδιαστούν μπορούν να δώσουν πλήθος σύνθετων χωρικών κατασκευών όπως αυτές που ακολουθούν. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

15 Είδη σύνθετων φορέων a b d e A: τοξοτός φορέας 1 B: τοξοτός φορές 2 C: πλαίσιο D: κελυφωτός φορέας E: δικτύωμα F: καλωδιωτός φορέας G : πλαισιο 2 c f g 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

16 Τρόποι αστοχίας μιας κατασκευής Το υλικό του στοιχείου αστοχεί πλήρως και επέρχεται θραύση Το υλικό έχει υποστεί εκτεταμένη παραμόρφωση και γίνεται ακατάλληλο προς χρήση Η κατασκευή είναι ασταθής και δεν μπορεί να δεχτεί μεγάλα φορτία 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

17 Πρόληψη αστοχίας Συρματόσχοινο Δοκός Βάρος Εστω ότι μελετάμε τη συγκεκρημένη ανυψωτική κατασκευή. Τα ερωτήματα που προκύπτουν και πρέπει να μελετηθούν είναι πολλα. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

18 Ερωτήματα που εγείρονται Ποιό το βάρος και οι διαστάσεις του φορτίου Ποιό το κέντρο βάρους Ποιά η συναρμογή του συστήματος των ράβδων με το υπόλοιπο σύστημα Ποιό το υλικό των ράβδων Τι διατομή θα έχουν οι ράβδοι Ποιο το υλικό των συρματόσχοινων και ποιά η διατομή τους 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

19 Τάσεις και Παραμορφώσεις στα Υλικά 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

20 Τάσεις στις 3 διαστάσεις Η έννοια του «απειροελάχιστου κύβου» για την μελέτη των τάσεων/ παραμορφώσεων σε πραγματικά υλικά. Τάσεις εξασκούνται κάθετα στις πλευρές του κύβου (ορθές τάσεις) αλλά και στα επίπεδα των πλευρών Λόγω συμμετρίας η ανάλυση γίνεται μόνο στην θετική φορά των τριών πλευρών του σχήματος 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

21 Ορθές και Διατμητικές Τάσεις Στον απειροελάχιστο «κύβο» εξασκούνται 3 ορθές και 6 διατμητικές τάσεις. Οι τάσεις συμβολίζονται ως εξής: σ ij Το i αναφέρεται στο επίπεδο που η τάση δρα Το j αναφέρεται στην παραλληλία με άξονα συντεταγμένων Κάθε «επίπεδο» ορίζεται από τον κάθετο άξονα του. Π.χ. yz =x, xy =z, xz =y 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

22 Διατμητικές Τάσεις (1/2) Σε κατάσταση ισορροπίας οι διατμητικές τάσεις που ασκούνται σε 2 κάθετα επίπεδα είναι ίσες μεταξύ τους και κατευθύνονται προς την κοινή ακμή των επιπέδων ή απομακρύνονται από αυτή (Cauchy). 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

23 Διατμητικές Τάσεις (2/2) z τ zy τ yz. C τ yz τ zy y x Σε κατάσταση ισορροπίας αν πάρουμε τις ροπές ως προς το C έχουμε: dz dy zydxdy yzdxdz 2 2 Εάν κάνουμε την ίδια άσκηση για όλες τις διατμητικές τάσεις προκύπτει:,, xy yx zx xz zy yz 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

24 Ορθές και Διατμητικές Τάσεις Άρα οι 6 τάσεις που επενεργούν στον απειροελάχιστο κύβο είναι Ορθές τάσεις:,, xx x yy y zz z Διατμητικές τάσεις:,, xy yx zx xz zy yz Συμβολισμοί I xx yy zz xy yx xz zx yz zy II x y z xy xy xz zx yz zy III Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

25 Τανυστές Τάσεων Εαν και οι 6 τάσεις είναι γνωστές τότε γνωρίζουμε πλήρως την εντατική κατάσταση του σώματος. Οι πιο πάνω συνιστώσες αποτελούν τα στοιχεία του τανυστή τάσης ij xx yx zx Εάν επιλέξουμε ένα σύστημα αξόνων για τους οποίους οι διατμητικές τάσεις μηδενίζονται τότε οι εναπομένουσες ορθές τάσεις ονομαζονται κύριες τάσεις. Ο αντίστοιχος σ ij είναι: ij x 0 0 xy yy zy 0 0 y xz yz zz 0 0 z 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

26 Ορισμός παραμόρφωσης Παραμόρφωση ορίζεται ως το σύνολο των μετατοπίσεων των σημείων ενός σώματος που οδηγούν στην μεταβολή της γεωμετρίας του σχήματος. Μακροσκοπικά εκφράζεται από το παρακάτω σχήμα. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

27 Αξονική παραμόρφωση Ως ανηγμένη παραμόρφωση ή απλά παραμόρφωση, ε, ορίζεται ο λόγος: ' ' l l l l 1 l l l 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

28 Διατμητική παραμόρφωση Η γωνιακή ή διατμητική παραμόρφωση, γ (σε ακτίνια rad), στο στοιχείο κύβου σε επίπεδη εντατική παραμόρφωση ορίζεται ως: tan 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

29 Είδη παραμόρφωσης Ελαστική παραμόρφωση το σώμα επανέρχεται στο αρχικό του σχήμα όταν πάψει να ενεργεί η δύναμη που προκάλεσε την παραμόρφωση. Παράδειγμα ελαστικής παραμόρφωσης είναι αυτή ενός ελατηρίου, που επανέρχεται στο αρχικό του μήκος μόλις πάψει να του ασκείται δύναμη. Η ελαστική παρμόρφωση περιγράφεται μαθηματικά από το νόμο του Hooke. Πλαστική παραμόρφωση είναι αυτή που είναι μόνιμη, δηλαδή το σώμα δεν επανέρχεται στο αρχικό του σχήμα. Παράδειγμα μπορεί να είναι το τράβηγμα ενός κομματιού πλαστελίνης, το ξεχύλωμα μιας πλαστικής σακούλας κλπ. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

30 Παραμόρφωση ενός σώματος (γενικά) Θεωρούμε δύο σημεία Ρ,Ρ των οποίων η αρχική θέση προσδιορίζεται από το διάνυσμα θέσης PP. Στο σχήμα δεξιά φαίνεται η τελική θέση των δύο σημείων αυτών μετά την μετατόπιση. Η νέα τελική θέση δίνεται από το διάνυσμα θέσης P 1 P 1.. P 1 P 1 (x+u, y+v, z+w) (x+dx+u+du, y+dy+v+dv, z+dz+w+dw) Ορισμός ποσοτήτων du, dv, dw P (x, y, z) P (x+dx, y+dy, z+dz) u u u du dx dy dz x y z v v v dv dx dy dz x y z w w w dw dx dy dz x y z 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

31 y Παραμόρφωση στις 2 διαστάσεις (1/2) (du) y C D (dv) y γ 2 D C dy A γ 1 (du) x B (dv) x (u, v) (u, v) A dx B 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 x 31

32 Παραμόρφωση στις 2 διαστάσεις (2/2) y (du) y C (dv) D y D γ 2 C dy A (u, v) (u, v) A B dx Α'Β' ( x dx u du) ( x u) dx dux (1) B' A' ΑΒ dx (2) μετατόπιση (Α'Β'-ΑΒ) (1), (2) xx αρχικό μήκος ΑΒ B (du) x (dv) x x u dx ( dx dux ) dx x u dx dx x u v w Τελικό αποτέλεσμα στις 3 διαστάσεις: xx, yy, zz x y z γ 1 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

33 Παραμόρφωση (διατμητική) στις 2 διαστάσεις (2/2) γ 2 γ 1 Οι διατμητικές παραμορφώσεις βρίσκονται από τις εφαπτόμενες του σχήματος: v v dx u 1 tan x x v x 1 tan 1 1 u u dx dx 1 x x x v u Επομένως 1, 2 x y 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

34 Συνολικές διατμητικές παραμορφώσεις στις 3 διαστάσεις Η συνολική διατμητική παραμόρφωση στο xy επίπεδο είναι: v xy 1 2 x u y Ανάλογα οι διατμητικές παραμορφώσεις στα άλλα επίπεδα είναι: xz u w, v w yz z x z y 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

35 Συνολική παραμόρφωση Η παραμόρφωση εκφράζει την ανα μονάδα μήκους επιμήκυνση ή βράχυνση για ορθές παραμορφώσεις και την μετατόπιση της ορθής γωνίας για διατμητικές παραμορφώσεις. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

36 Ο τανυστής παραμόρφωσης Η εφαρμογή τάσεων επιφέρει παραμορφώσεις. Όπως έχει ήδη προαναφερθεί υπάρχουν δύο διαφορετικοί τύποι, η ανηγμένη (εκτατική) παραμόρφωση και η διατμητική παραμόρφωση. Για μικρές τιμές παραμορφώσεων η συνολική κατάσταση παραμόρφωσης του υλικού μπορεί να εκφραστεί με τον αντίστοιχο τανυστή παραμόρφωσης x xy xz ij yx y yz zx zy z Όπως και στην περίπτωση των τάσεων και επειδή το στερεό δεν περιστρέφεται έχουμε:,, xy yx xz zx yz zy 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

37 Γενικευμένος νόμος Hooke (1/3) Έχουμε εξετάσει ήδη την γενική εντατική κατάσταση πάνω σε ένα απειροελάχιστο κύβο που αποτελεί τη «σημειακή» μας αναφορά. Η μακροσκοπική σχέση μεταξύ τάσης και παραμόρφωσης δεν είναι προφανής (εκτός εάν αναφερόμαστε σε ένα τέλειο κρύσταλλο γνωστής γεωμετρίας και σταθερών δεσμού). Μπορούμε όμως να υποθέσουμε ότι κάθε συνιστώσα της τάσης συνδέεται γραμμικά με κάθε συνιστώσα παραμόρφωσης (με άλλα λόγια η επιβολή μιας ορισμένης τάσης επιφέρει παραμορφώσεις σε όλα τα επίπεδα και διευθύνσεις που εξετάσαμε). 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

38 Θέλουμε λοιπόν να εκφράσουμε όλες τις τάσεις που εξασκούνται στο στερεό σώμα ως συνάρτηση των έξι ανεξαρτήτων συνιστωσών παραμόρφωσης. yz xz xy z y x yz yz xz xy z y x y yz xz xy z y x x F E D C B A.. F E D C B A F E D C B A εξισώσεις που περιέχουν 36 ελαστικές σταθερές A n, B n...f n Γενικευμένος νόμος Hooke (2/3) 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

39 Γενικευμένος νόμος Hooke (1/3) Οι έξι εξισώσεις μπορούν να παρασταθούν συνοπτικά με την εξίσωση: ij c ijkl ij Τανυστές 2ας τάξης (συνήθως 3Χ3 στοιχείωνεδώ περιέχουν 6 ανεξάρτητες μεταβλητές) Τανυστής 4ης τάξης (συνήθως 9Χ9 στοιχείωνεδώ περιέχει 36 ελαστικές σταθερές) Η πιο πάνω εξίσωση αποτελεί το γενικευμένο νόμο του Hooke για τα στερεά σώματα και για μικρές παραμορφώσεις (γραμμική προσέγγιση). Ο αριθμός των ελαστικών σταθερών που απαιτούνται εξαρτάται από το βαθμό ανισοτροπίας στις ιδιότητες του στερεού σώματος. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

40 Παραδείγματα μητρώων ελαστικών σταθερών Εντελώς ανισότροπο (21 ελαστικές σταθερές) Ορθότροπο (9 ελαστικές σταθερές) Εγκαρσίως ισότροπο (5 ελαστικές σταθερές) Ανεξάρτητο Μηδενικό Ισο Κρύσταλλος κυβικού συστήματος (3 ελαστικές σταθερές) Ισότροπο (2 ελαστικές σταθερές) Μονο κρύσταλλοι πολλών γνωστών υλικών δεν μπορούν να μελετηθούν μηχανικά χωρίς τη γνώση των ως άνω κρυσταλλικών τους σταθερών. Πχ. το πυρίτιο (Si) που ανήκει στο κυβικό σύστημα χρειάζεται 3 ελαστικές σταθερές για τον πλήρη μηχανικό χαρακτηρισμό του. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

41 Ισότροπα υλικά και τεχνικές σταθερές (1/2) Σε αυτή την περίπτωση όλοι οι άξονες είναι ισοδύναμοι: C C C C C C C C Οι ελαστικές (μαθηματικές) σταθερές συνδέονται με τις σταθερές Lamé: G C C 1 C Σε ισότροπα υλικά που εμφανίζουν γραμμική ελαστικότητα, όπως είναι τα μέταλλα και τα κράματά τους, τα κεραμικά και κάποια πολυμερή, οι παραμορφώσεις και οι τάσεις στην ελαστική περιοχή συνδέονται μεταξύ τους με γραμμικό τρόπο μέσω μιας τεχνικής σταθεράς που ονομάζουμε μέτρο Young, E (από νόμο Hooke) και του λόγου Poisson, ν, που εκφράζει συρρίκνωση ή διαστολή στην εγκάρσια διεύθυνση. Οι τεχνικές σταθερές συνδέονται με τις σταθερές Lamé με τις σχέσεις: E G 2 3 2G G G Μία άλλη σημαντική σχέση που προκύπτει είναι αυτή που συνδέει το μέτρο διάτμησης, G, με το μέτρο ελαστικότητας, E, και το λόγο Poisson, ν: G E 2(1 ) 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

42 Ισότροπα υλικά και τεχνικές σταθερές (2/2) Χρειαζόμαστε μόνο 2 τεχνικές σταθερές για να προσδιορίσουμε τη συμπεριφορά ενός ισότροπου υλικού σε εφελκυσμό ή θλίψη ΓΙΑ ΜΙΚΡΕΣ ΠΑΡΑΜΟΡΦΩΣΕΙΣ. Ο λόγος του Poisson, ν, είναι ο λόγος της παραμόρφωσης στη διεύθυνση j προς την παραμόρφωση στη διεύθυνση i, όταν επιβάλλεται παραμόρφωση μόνον στη διεύθυνση i. Το αρνητικό πρόσημο εξασφαλίζει ότι όταν πχ επιβάλλεται εφελκυσμός (διαστολή) στη μια διεύθυνση σε μια από τις εγκάρσιες διευθύνσεις θα προκύψει θλίψη (συστολή): j vij,i, Αν πάρουμε την περίπτωση του μονοαξονικού εφελκυσμού με τάση σ x τότε οι παραμορφώσεις στις 3 διευθύνσεις (βλ. σχήμα) θα δίνονται από: i x x x x, y, z E E E j Για τριαξονική φόρτιση (αρχή της επαλληλίας): E E E,, xx xx yy zz yy yy xx zz zz zz xx yy Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015

43 Μηχανές μηχανικής φόρτισης (1/3) δοκίμιο 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

44 Μηχανές μηχανικής φόρτισης (2/3) 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

45 Ανάλυση καμπύλης φόρτισης (εφελκυσμός θλίψη) Στην συγκεκριμένη καμπύλη τάσηςπαραμόρφωσης στον εφελκυσμό διακρίνονται 2 περιοχές καταπόνησης. Αρχικά η ελαστική περιοχή όπου ισχύει ο νόμος Hooke σ=ε ε, στη συνέχεια η ελαστοπλαστική όπου σχηματίζεται «λαιμός». Στη θλίψη το δοκίμιο λυγίζει μετά από μια κρίσιμη τιμή φορτίου. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

46 Ορισμός μέτρου ελαστικότητας 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

47 Μηχανές μηχανικής φόρτισης (3/3) 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

48 Μέτρα ελαστικότητας και ενέργεια δεσμού Τύπος ΠαραδείγματαΕνέργεια εσμού/ Θερμοκρασία εσμού Ενώσεων kj/ mol Τήξης/ 0 C Ιονικός NaCl MgO Ομοιοπολικός Si C (διαμαντιού) 713 >3550 Hg Μεταλλικός Al Fe W Van der Ar Waals Cl Υδρογονικός NH H 2 O Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

49 Καμπύλες εφελκυσμού/ Κρίσιμες τιμές 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

50 Κρίσιμες τιμές Όριο ελαστικότητας : η μέγιστη ορθή τάση που δύναται να ανπτυχθεί χωρίς να παρουσιαστούν στο δοκίμιο μακροσκοπικά μόνιμες ή πλαστικές παραμορφώσεις Όριο διαρροής : η τάση εκείνη κατά την οποία παρατηρείται σημαντική αύξηση της παραμόρφωσης χωρίς αύξηση της τάσης και πέραν αυτής η παραμόρφωση παύει να είναι ελαστική και γίνεται πλαστική. Όριο αντοχής : η τάση πέραν της οποίας παρατηρείται εγκάρσια παραμόρφωση (στένωση, λαιμός) του δοκιμίου. Συμβατικό όριο διαρροής : η τάση εκείνη που επιφέρει στο δοκίμιο μία μετρήσιμη μόνιμη αντοχή. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

51 Ψαθυρά και Όλκιμα Υλικά 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

52 Πολυμερικά Υλικά Α: Ψαθυρό (υαλώδες) Τάση (MPa) Β: Όλκιμο C: Ελαστομερές (πχ καουτσούκ) Τάση (10 3 psi) Παραμόρφωση 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

53 Χαρακτηριστικές ιδιότητες υλικού που προκύπτουν από [σ ε] Ολκιμότητα : εκφράζει την ικανότητα των υλικών να διαρέουν. Είναι μέτρο της πραγματικής παραμόρφωσης μέχρι την θραύση και της μείωσης της επιφάνειας. Όλκιμο χαρακτηρίζεται ένα υλικό που μπορεί να παραλάβει μεγάλες πλαστικές παραμορφώσεις. Ψαθυρό χαρακτηρίζεται ένα υλικό που θραύεται πρίν αποκτήσει μεγάλη παραμόρφωση. Ολκιμότητα και ψαθυρότητα δεν είναι ιδιότητες των υλικών (όπως ο λόγος Poisson, ν, ή το μέτρο ελαστικότητας, Ε) και μεταβάλλονται ανάλογα με τις συνθήκες της καταπόνησης. 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

54 Τέλος Ενότητας 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Β1. Εισαγωγή στις Τάσεις και Παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Β1. Τάσεις και Παραμορφώσεις 1 Σκοποί ενότητας Να συμφιλιωθεί

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κεραμικών και Πολυμερικών Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Εισαγωγή Όπως ήδη είδαμε, η μηχανική συμπεριφορά των υλικών αντανακλά

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή

Κεφάλαιο 1: Εισαγωγή 1-1 Η Επιστήµη της Αντοχής των Υλικών, 1-2 Γενικές παραδοχές, 1-3 Κατάταξη δυνάµεων, 1-4 Είδη στηρίξεων, 1-5 Μέθοδος τοµών, Παραδείγµατα, 1-6 Σχέσεις µεταξύ εσωτερικών και εξωτερικών δυνάµεων, Παραδείγµατα,

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

5. Θερμικές τάσεις και παραμορφώσεις

5. Θερμικές τάσεις και παραμορφώσεις 5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση

Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Μέσω των πειραμάτων

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος)

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εργαστηριακή Άσκηση 1 Εισαγωγή στη Δοκιμή Εφελκυσμού Δοκίμιο στερεωμένο ακλόνητα

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Υλικών

Εργαστήριο Τεχνολογίας Υλικών Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 07 Εφελκυσμός Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ Θεόδωρος Λούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών Πάτρα 2011 1 Μηχανικές

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

Πρόλογος...11 Εισαγωγή Ελαστικότητα... 15

Πρόλογος...11 Εισαγωγή Ελαστικότητα... 15 1 Περιεχόμενα Πρόλογος...11 Εισαγωγή...13 ΚΕΦΑΛΑΙΟ 1 Ελαστικότητα... 15 1.1 Γενικά...15 1.2 Τάσεις...15 1.3 Εξισώσεις Ισορροπίας...16 1.4 Μετασχηματισμοί Τάσεων...17 1.5 Κύριες Τάσεις...18 1.6 Παραμορφώσεις...19

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού. ΕργαστηριακήΆσκηση2 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού. ΕργαστηριακήΆσκηση2 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Εφελκυσμού ΕργαστηριακήΆσκηση2 η Κατηγορίες υλικών Μέταλλα Σιδηρούχαµέταλλα (ατσάλι, ανθρακούχοι, κραµατούχοι και ανοξείγωτοιχάλυβες, κ.α. Πολυµερικά υλικά Πλαστικά Ελαστοµερή Μη

Διαβάστε περισσότερα

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ:

Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: Κεφάλαιο 2 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΤΗΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΤΩΝ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ 1. ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: 2. ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Δομικά Υλικά. Μάθημα ΙΙ. Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις)

Δομικά Υλικά. Μάθημα ΙΙ. Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις) Δομικά Υλικά Μάθημα ΙΙ Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις) Μηχανικές Ιδιότητες Υλικών Τάση - Παραμόρφωση Ελαστική Συμπεριφορά Πλαστική Συμπεριφορά Αντοχή και Ολκιμότητα Σκληρότητα

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονική Θλίψη

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Μονοαξονική Θλίψη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Μονοαξονική Θλίψη Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών Ενότητα 4: Δοκιμή Εφελκυσμού Χάλυβα Οπλισμού Σκυροδέματος Ευάγγελος Φουντουκίδης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

6/5/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος. Πολιτικός Μηχανικός (Λέκτορας Π.Δ.

6/5/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. Σημειώσεις Εργαστηριακής Άσκησης Θλίψη Σκυροδέματος Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Έως τώρα Καταστατικός νόμος όλκιμων υλικών (αξονική καταπόνιση σε μία διεύθυνση) σ ε Συμπεριφορά

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 2 ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΥΛΙΚΟΥ

ΚΕΦΑΛΑΙΟ 2 2 ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΥΛΙΚΟΥ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑ ΥΛΙΚΟΥ.1 Εισαγωγή Είναι γνωστό ότι τα δομικά υλικά συμπεριφέρονται γραμμικά και ελαστικά για σχετικά μικρές τιμές των τάσεων και των ανηγμένων παραμορφώσεων που αναπτύσσονται υπό

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

Φυσικές & Μηχανικές Ιδιότητες

Φυσικές & Μηχανικές Ιδιότητες Μάθημα 5 ο Ποιες είναι οι Ιδιότητες των Υλικών ; Φυσικές & Μηχανικές Ιδιότητες Κατεργαστικότητα & Αναφλεξιμότητα Εφελκυσμός Θλίψη Έλεγχοι των Υλικών Φορτίσεις -1 ιάτμηση Στρέψη Έλεγχοι των Υλικών Φορτίσεις

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή 15/1/016 Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή Αρχή: Δομικό στοιχείο καταπονείτε σε στρέψη όταν διανύσματα ροπών είναι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

ΜΕΤΑΛΛΑ. 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων

ΜΕΤΑΛΛΑ. 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων ΜΕΤΑΛΛΑ 1. Γενικά 2. Ιδιότητες μετάλλων 3. Έλεγχος μηχανικών ιδιοτήτων 1. ΓΕΝΙΚΑ Τα μέταλλα παράγονται, κυρίως, από τις διάφορες ενώσεις τους, οι οποίες βρίσκονται στη φύση με τη μορφή μεταλλευμάτων. Τα

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 4 ου Μαθήματος

ΣΥΝΟΨΗ 4 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών Φυσική- Κεφάλαιο Μηχανικής των Ρευστών 1 Νοεµβρίου 2013 Το κεφάλαιο αυτό είναι επηρεασµένο από τους [3], [4], [2], [1]. Στερεά Υγρά Αέρια Καταστάσεις Υλης Βασική δοµική µονάδα: το Μόριο. καθορίζει χηµικές

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ I. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ 1. Αντικείµενο της Μηχανικής Συµπεριφοράς Υλικών Η Μηχανική Συµπεριφορά Υλικών ή Μηχανική Μεταλλουργία (σε αντιπαράσταση µε την Φυσική Μεταλλουργία) είναι

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης. ΕργαστηριακήΆσκηση 6 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης. ΕργαστηριακήΆσκηση 6 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης ΕργαστηριακήΆσκηση 6 η Σκοπός Σκοπός του πειράµατος είναι να κατανοηθούν οι αρχές του πειράµατος κρούσης οπροσδιορισµόςτουσυντελεστήδυσθραυστότητας ενόςυλικού. Η δοκιµή, είναι

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΔΙΑΤΜΗΣΗ 1. Γενικά Όλοι γνωρίζουμε ότι σε μια διατομή ενός καταπονούμενου φορέα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ 47 ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ ΣΤΟΧΟΙ Με τη συμπλήρωση του μέρους αυτού ο μαθητής θα πρέπει να μπορεί να: 1. Ορίζει τι είναι στοιχείο μηχανής και να αναγνωρίζει και να κατονομάζει τα βασικά

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 4: ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 4: ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 4: ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανική της θραύσης: Εισαγωγή Υποθέσεις: Τα υλικά συμπεριφέρονται γραμμικώς ελαστικά Οι ρωγμές (ή τα ελαττώματα)

Διαβάστε περισσότερα

ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ

ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ ΠΑΡΑΜΕΝΟΥΣΕΣ ΤΑΣΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΕ ΣΥΓΚΟΛΛΗΣΕΙΣ ΤΗΞΕΩΣ Τοπική θέρμανση συγκολλούμενων τεμαχίων Ανομοιόμορφη κατανομή θερμοκρασιών, πουμεαβάλλεταιμετοχρόνο Θερμικές παραμορφώσεις στο μέταλλο προσθήκης

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα.

ΑΣΚΗΣΗ 1: Υπολογίστε την ορθή και διατμητική τάση, οι οποίες ασκούνται στα επίπεδα με κλίση α ως, όπως φαίνονται στα παρακάτω σχήματα. Ν. Ηράκλειο, Αττικής Τ.Κ. 4 2 Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π.

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #6: Δικτυώματα (Μέθοδος Κόμβων) Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 3: Στοιχεία Θεωρίας Ελαστικότητας Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού ΕργαστηριακήΆσκηση 4 η Σκοπός Σκοπός του πειράµατος είναι ο πειραµατικός προσδιορισµός της καµπύλης ερπυσµού, υπό σταθερό εξωτερικό φορτίο και ελεγχοµένη θερµοκρασία εκτέλεσης

Διαβάστε περισσότερα

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή ΜηχανικέςΜετρήσεις Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Third Edition, 2007 Pearson Education (a) οκιµήεφελκυσµού,

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΑΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΟΥ Ε ΑΦΟΥΣ

ΚΕΦΑΛΑΙΟ 3 ΤΑΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΟΥ Ε ΑΦΟΥΣ Τάσεις στο Εσωτερικό του Εδάφους Σελίδα 1 ΚΕΦΑΛΑΙΟ 3 ΤΑΣΕΙΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΟΥ Ε ΑΦΟΥΣ 3.1 Εισαγωγή Η λεπτοµερής περιγραφή της µετάδοσης τάσεων στο εσωτερικό των εδαφικών µαζών είναι ιδιαίτερα πολύπλοκη

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ

14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 14//008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 007-008 Το τυπολόγιο έχει παραχθεί αποκλειστικά για χρήση κατά την εξέταση του μαθήματος ΑΝΤΟΧΗ ΠΛΟΙΟΥ ΚΑΜΨΗ ΣΕ ΗΡΕΜΟ ΝΕΡΟ Διόρθωση

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Πείραµα εφελκυσµού µεταλλικών δοκιµίων

1η Εργαστηριακή Άσκηση: Πείραµα εφελκυσµού µεταλλικών δοκιµίων 1η Εργαστηριακή Άσκηση: Πείραµα εφελκυσµού µεταλλικών δοκιµίων 1.1. Σκοπός Οι σπουδαστές θα πρέπει να αναλύουν βήµα προς βήµα τους χειρισµούς που πρέπει να εκτελέσουν για να προσδιορίσουν πειραµατικά την

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΑΚΕΣ ΑΣΤΟΧΙΕΣ

ΕΠΙΦΑΝΕΙΑΚΕΣ ΑΣΤΟΧΙΕΣ ΕΠΙΦΑΝΕΙΑΚΕΣ ΑΣΤΟΧΙΕΣ Επιφανειακές αστοχίες είναι οι αστοχίες που προκαλούνται από τη συνεργασία και αλληλεπίδραση μεταξύ των επιφανειών διαφορετικών στοιχείων. Όταν τα σώματα κινούνται, οι αλληλεπιδράσεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Βασικές έννοιες. Κεφάλαιο Τάσεις Ορισμός

Βασικές έννοιες. Κεφάλαιο Τάσεις Ορισμός Κεφάλαιο Βασικές έννοιες Στο παρόν κεφάλαιο παρουσιάζεται και εξετάζεται το πλαίσιο στο οποίο ορίζεται το πρόβλημα της συνοριακής τιμής στη γραμμική ελαστικότητα. Αρχικά παρουσιάζεται ο τανυστής των τάσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 119 Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 6.1 Εισαγωγή Όταν ένα δομικό στοιχείο καταπονείται με ροπές των οποίων τα διανύσματα είναι παράλληλα προς τον άξονα του στοιχείου, δηλαδή προκαλούν συστροφή του στοιχείου

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 77 Κεφάλαιο 4 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 4.1 Εισαγωγή Στα προηγούμενα κεφάλαια υπολογίσαμε τάσεις και παραμορφώσεις που αναπτύσσονται σε ένα σημείο (σε μια πολύ μικρή περιοχή ) ενός δομικού

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #2: Δυνάμεις στο Επίπεδο Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΚΡΟΥΣΗ 40 ΚΡΟΥΣΗ κρούση < αρχαία ελληνική κρούσις το χτύπημα ενός αντικειμένου πάνω σε ένα άλλο (φυσική) η συνάντηση δύο σωμάτων με βίαιο και αιφνίδιο τρόπο ΓΕΝΙΚΑ Τα

Διαβάστε περισσότερα

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ιδάσκων: Χ. Παπαδόπουλος Σύνδεση με μαθήματα Σχολής ΝΜΜ Μηχανική Φορτίσεις, Είδη φορτίσεων (εφελκυσμός, θλίψη,

Διαβάστε περισσότερα

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΔΕΧΟΜΑΣΤΕ ΜΕ ΑΛΛΑ ΛΟΓΙΑ ΟΤΙ ΤΑ ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΕΙΝΑΙ

Διαβάστε περισσότερα

Αντοχή κατασκευαστικών στοιχείων σε κόπωση

Αντοχή κατασκευαστικών στοιχείων σε κόπωση 11.. ΚΟΠΩΣΗ Ενώ ο υπολογισμός της ροπής αντίστασης της μέσης τομής ως το πηλίκο της ροπής σχεδίασης προς τη μέγιστη επιτρεπόμενη τάση, όπως τα μεγέθη αυτά ορίζονται κατά ΙΑS, προσβλέπει στο να εξασφαλίσει

Διαβάστε περισσότερα