ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ"

Transcript

1 ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος της Τεχνικής Μηχανικής Ι. Μια δύναμη F ανήκει στα λεγόμενα διανυσματικά μεγέθη και για να οριστεί πλήρως στο επίπεδο πρέπει να καθοριστούν δύο μεγέθη : α) Το μέτρο της και β) Η γωνία κατεύθυνσής της (διεύθυνση και φορά). Αν θεωρήσουμε ότι στο παράδειγμα του επόμενου σχήματος η δύναμη F αναλύεται σε δύο συνιστώσες, τις Fx και Fy.

2 Το μέτρο της δύναμης F υπολογίζεται από τον τύπο 2 2 F F x F y, ενώ η FY κατεύθυνσή της προκύπτει arctan( ) (και είναι προφανώς 0 2 ). F X Ένας εναλλακτικός τρόπος παρουσίασης της δύναμης F στο επίπεδο, είναι η θεώρηση, για κάθε άξονα, ενός μοναδιαίου διανύσματος το οποίο έχει τη διεύθυνση του άξονα και μέτρο ίσο με τη μονάδα. Για παράδειγμα, το μοναδιαίο διάνυσμα î βρίσκεται πάνω στο άξονα x, με αρχή του την αρχή των αξόνων και ισχύει μέτρο iˆ 1. Αντίστοιχα ισχύουν για το μοναδιαίο διάνυσμα ĵ που βρίσκεται πάνω στον άξονα y, με αρχή του την αρχή των αξόνων και ισχύει μέτρο ˆj 1.

3 Σε αυτή την περίπτωση η δύναμη F μπορεί να παρουσιαστεί ως F xiˆ yj ˆ, όπου x,y η τετμημένη και τεταγμένη αντίστοιχα, του πέρατος του διανύσματος. Το μέτρο του διανύσματος μπορεί να υπολογιστεί σύμφωνα με τη σχέση 2 2 F x y. Εάν βέβαια η αρχή του διανύσματος F δεν βρίσκεται στην αρχή των αξόνων αλλά σε κάποιο σημείο Α( x, y ) και το πέρας σε κάποιο σημείο Β ( x, y ), τότε η τετμημένη A A του διανύσματος F θα είναι x xb xa και αντίστοιχα η τεταγμένη θα είναι y y y. B A B B Η αντίστροφη διαδικασία μπορεί να ακολουθηθεί εάν θελήσουμε να αναλύσουμε μια δύναμη σε δύο επιμέρους συνιστώσες. Η ανάλυση έχει νόημα να γίνεται σε δύο άξονες, μη παράλληλους μεταξύ τους. Εφόσον γνωρίζουμε το μέτρο της δύναμης και την διεύθυνσή της (γωνία φ ως προς οριζόντιο επίπεδο), μπορούμε να υπολογίσουμε τις συνιστώσες. Χαρακτηριστικό παράδειγμα δίνεται στο επόμενο σχήμα.

4 Προκύπτει F Fcos και αντίστοιχα F Fsin. Επίσης με τη θεώρηση των X μοναδιαίων διανυσμάτων μπορεί να γραφεί για τη δύναμη F : F F iˆ F ˆj F Fcos iˆ Fsin ˆj. X Y Ακριβώς αντίστοιχη θεώρηση μπορεί να γίνει για τον ορισμό μιας δύναμης F στο χώρο. Σε εκείνη την περίπτωση, η δύναμη θα πρέπει να αναλυθεί σε τρεις συνιστώσες Fx, Fy και Fz και να υπολογιστούν οι γωνίες α, β, γ που σχηματίζει η δύναμη F αντίστοιχα με τους άξονες Ox, Oy και Oz. Με την ίδια λογική μπορούμε να ορίσουμε και το μοναδιαίο διάνυσμα ˆk για τον άξονα Oz. Κατά συνέπεια ένα οποιοδήποτε διάνυσμα στο χώρο μπορεί να δίνεται υπό τη μορφή F xiˆ yj ˆ zkˆ. Τα συνημίτονα των γωνιών α, β, γ ονομάζονται συνημίτονα κατεύθυνσης της δύναμης F και μάλιστα ισχύει : cos cos cos 1. Ένα διάνυσμα το οποίο είναι παράλληλο με έναν από τους άξονες Ox, Oy και Oz μπορεί να υπολογιστεί ως a iˆ ή a ˆj ή a kˆ, ανάλογα προφανώς με ποιόν άξονα

5 από τους Ox, Oy και Oz είναι παράλληλο. Είναι προφανές πως η φορά του (προς τα θετικά ή προς τα αρνητικά του άξονα) θα επηρεάσει το πρόσημο του α. Εναλλακτικός τρόπος παρουσίασης ενός διανύσματος το οποίο δεν βρίσκεται πάνω σε κάποιον από τους άξονες Ox, Oy και Oz είναι να δοθεί ως γινόμενο του μέτρου του διανύσματος επί το μοναδιαίο διάνυσμα στην αντίστοιχη διεύθυνση, δηλαδή F F Fˆ. Από τη σχέση αυτή προκύπτει αντίστοιχα ο ορισμός του μοναδιαίου διανύσματος επί τυχαίου άξονα, ˆ F F. Αν το διάνυσμα F γράφεται υπό τη μορφή F F xiˆ yj ˆ zkˆ, τότε το μέτρο του υπολογίζεται σύμφωνα με τη σχέση F x y z ˆ F F x y z και κατ επέκταση το μοναδιαίο διάνυσμα θα είναι Εκτός από τα διανυσματικά μεγέθη, υπάρχουν και τα μονόμετρα μεγέθη (επιφάνεια, μάζα, χρόνος), για να ορίσουμε τα οποία χρειαζόμαστε μόνο το μέτρο τους. Τα παραπάνω στοιχεία (μέτρο και κατεύθυνση) όσον αφορά σε μια δύναμη είναι τα απαραίτητα για την ερμηνεία της επίδρασής της σε ένα απολύτως στερεό σώμα. Με τέτοια σώματα ενασχολείται η Τεχνική Μηχανική Ι. Για να μπορέσουμε να ερμηνεύσουμε την επίδραση μιας δύναμης σε ένα παραμορφώσιμο στερεό σώμα, είναι ιδιαιτέρως σημαντικό να γνωρίζουμε το σημείο εφαρμογής της δύναμης. Για παράδειγμα ας θεωρηθούν οι ράβδοι του επόμενου σχήματος, οι οποίες έχουν ακριβώς τα ίδια χαρακτηριστικά (μήκος, εμβαδό διατομής, υλικό) και είναι υποκείμενες σε δυνάμεις F με ίσο μέτρο, ίδια διεύθυνση και φορά αλλά διαφορετικό σημείο εφαρμογής.

6 Αντιλαμβάνεται κανείς ότι εφόσον στην πρώτη περίπτωση το σημείο Β δεν μπορεί να κινηθεί τότε η ράβδος ΑΒ θα υποστεί θλίψη λόγω της δύναμης και κατά συνέπεια μείωση του μήκους της. Αντιθέτως, στη δεύτερη περίπτωση και εφόσον το σημείο Α δεν μπορεί να κινηθεί τότε η ράβδος Α Β θα υποστεί εφελκυσμό λόγω της δύναμης και κατά συνέπεια αύξηση του μήκους της. Η Τεχνική Μηχανική ΙΙ (Μηχανική του Παραμορφώσιμου Σώματος) για την ερμηνεία της επίδρασης μιας δύναμης σε ένα στερεό σώμα, απαιτεί τη γνώση τόσο του μέτρου και της κατεύθυνσης όσο και του σημείο εφαρμογής μιας δύναμης στο υπό εξέταση σώμα. ΡΟΠΗ ΥΝΑΜΗΣ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ Στην Τεχνική Μηχανική Ι θα χρειαστεί πολύ συχνά να υπολογιστεί η ροπή μιας δύναμης ως προς ένα συγκεκριμένο σημείο, για την επίλυση ενός προβλήματος είτε στις δύο διαστάσεις (επίπεδο) είτε στις τρεις διαστάσεις (χώρος). Για τον υπολογισμό της ροπής της δύναμης F ως προς τη σημείο Ο του επόμενου σχήματος μπορεί να χρησιμοποιηθεί η σχέση M RxF, δηλαδή ίση με το εξωτερικό γινόμενο του διανύσματος θέσης R (με αρχή το ζητούμενο σημείο και πέρας ένα οποιοδήποτε σημείο Α του άξονα της δύναμης F), επί το διάνυσμα της δύναμης F.

7 Το εξωτερικό γινόμενο δύο διανυσμάτων είναι και αυτό διάνυσμα και μάλιστα κάθετο στο επίπεδο που περιέχει το διάνυσμα της δύναμης. Η κατεύθυνσή του ορίζεται με τον κανόνα του δεξιού χεριού (τα δάκτυλα του χεριού δείχνουν την ωρολογιακή ή αντιωρολογιακή φορά της ροπής και ο αντίχειρας δείχνει τη διεύθυνση του διανύσματος). Στο παραπάνω παράδειγμα το διάνυσμα της ροπής είναι προφανώς κάθετο στο επίπεδο που περιέχει την F και έχει φορά προς τα πάνω. Όσον αφορά στο μέτρο της ροπής της δύναμης ισχύει ότι M FRsin.

8 Όπως φαίνεται και από το παραπάνω σχήμα η θέση του σημείου Α δεν επηρεάζει το τελικό αποτέλεσμα διότι καθώς το Α κινείται πάνω στο φορέα της δύναμης αντίστοιχα μεταβάλλεται η γωνία φ, με αποτέλεσμα η ποσότητα σταθερή! Πρακτικά ισχύει ότι M Rsin l να παραμένει Fl, όπου l η κάθετη απόσταση του σημείου Ο ως προς τον φορέα της δύναμης F. Αυτή η απόσταση l, ονομάζεται μοχλοβραχίονας της δύναμης ως προς το σημείο. Από τα παραπάνω συνάγεται ότι αν θεωρηθεί ροπή δύναμης ως προς σημείο από το οποίο διέρχεται η διεύθυνσή της τότε η ροπή θα προκύψει μηδενική καθώς ο μοχλοβραχίονας της δύναμης θα είναι μηδενικός. Για την περίπτωση που εξετάζεται αντίστοιχο πρόβλημα στις τρεις διαστάσεις τότε για να υπολογιστεί η ροπή δύναμης ως προς σημείο είναι χρήσιμο να είναι γνωστές οι εκφράσεις τόσο του διανύσματος θέσης όσο και της δύναμης, ως προς την αρχή των αξόνων, με βάση τα μοναδιαία διανύσματα. Αφού υπάρχουν οι εκφράσεις R ai a j ak και F xiˆ yj ˆ zkˆ τότε το ζητούμενο εξωτερικό γινόμενο ˆ ˆ 1 2 3ˆ (διάνυσμα) M RxF θα προκύψει από την επίλυση της ορίζουσας του επόμενου σχήματος ως προς την πρώτη γραμμή. Μετά την επίλυση θα προκύψει μια ποσότητα της μορφής : Aiˆ Bj ˆ Ckˆ που είναι η ζητούμενη ροπή.

9 ΑΘΡΟΙΣΗ ΙΑΝΥΣΜΑΤΩΝ Η άθροιση δύο ή περισσοτέρων διανυσμάτων δεν μπορεί να γίνει απευθείας αλγεβρικά. Για τέτοιου είδους προβλήματα στο επίπεδο και ανάλογα με το πλήθος των διανυσμάτων συνιστάται να γίνεται χρήση του κανόνα του παραλληλογράμμου (για δύο διανύσματα) ή του κανόνα του δυναμοπολυγώνου (για πάνω από δύο διανύσματα). Και οι δύο μέθοδοι είναι γραφικές και απαιτείται καλή ακρίβεια. Ενδεικτικά σχήματα που παρουσιάζονται οι δύο μέθοδοι παρατίθενται στην επόμενη σελίδα. Αλγεβρικοί υπολογισμοί μπορούν να γίνουν στα επιμέρους τρίγωνα που δημιουργούνται και απαιτούν καλή γνώση τριγωνομετρίας και εφαρμογές του νόμου των ημιτόνων και των συνημιτόνων. Εφόσον υπάρχουν οι εκφράσεις των διανυσμάτων με μοναδιαία διανύσματα μπορεί να γίνει εύκολα η πρόσθεση των διανυσμάτων, τόσο για προβλήματα δύο διαστάσεων όσο και τριών, με βάση την ακόλουθη λογική :

10 Εφόσον το διάνυσμα «Α» είναι το Ai ˆ 1 A ˆ 2j Ak 3ˆ και το διάνυσμα «Β» είναι το ˆ ˆ 1 2 3ˆ B i B j B k τότε το διάνυσμα C=Α+B θα είναι το ( A B ) iˆ ( A B ) ˆj ( A B ) kˆ Προφανώς το παραπάνω μπορεί να επεκταθεί για την περίπτωση πολλών διανυσμάτων αθροίζοντας κάθε φορά τις επιμέρους συνιστώσες τους. Επειδή πολλές φορές είναι δύσκολο να βρεθεί άμεσα ένα συγκεκριμένο διάνυσμα (μέτρο αλλά και τιμές συνιστωσών κατά τους τρεις άξονες) συνιστάται να επιλέγονται επιμέρους διανύσματα έτσι ώστε αρχίζοντας από το πέρας του διανύσματος και τελειώνοντας στην αρχή του να προκύψει «σύνθεση» του ζητούμενου διανύσματος από τα επιμέρους.

11 ΑΝΑΓΩΓΕΣ ΥΝΑΜΕΩΝ-ΡΟΠΩΝ ΣΕ ΣΗΜΕΙΟ Στο επόμενο παράδειγμα, σε κύκλο με ακμή 2m, ζητείται η εύρεση της ροπής της δύναμης F = 50 2 kn, ως προς το σημείο Ο. Η δύναμη F, έχει το φορέα της πάνω στη διαγώνιο ΕΘ της άνω ακμής του κύβου. Κατά συνέπεια η γωνία μεταξύ της ΕΘ και ΕΗ είναι 45 o. Η δύναμη F μπορεί να 2 αναλυθεί σε δύο συνιστώσες, μια κατά την ΕΗ Fcos kN (και φορά 2 προς το σημείο Η, με τελική έκφραση 50 ˆj ) και μια κατά την Ε 2 Fsin kN (και φορά προς το σημείο, με τελική έκφραση 50iˆ ). 2 Πρακτικά λοιπόν η δύναμη F μπορεί να γραφτεί ως F 50iˆ 50 ˆj. Το διάνυσμα θέσης R=OE, υπολογίζεται R 2iˆ 2kˆ.

12 Η ροπή της δύναμης ως προς το σημείο Ο προκύπτει από τη σχέση M εξωτερικό γινόμενο υπολογίζεται από την επόμενη ορίζουσα. RxF. Το Η ροπή της δύναμης F ως προς το σημείο Ο είναι : Για την περίπτωση που στον τρισδιάστατο χώρο δρουν διάφορες δυνάμεις σε συγκεκριμένα σημεία καθώς και διάφορες ροπές, μπορεί να γίνει αναγωγή του συστήματος των δυνάμεων και των ροπών σε ένα άλλο σημείο του χώρου.

13 Η αναγωγή θα γίνει σύμφωνα με το θεώρημα του Varignon, κατά το οποίο η συνισταμένη των δυνάμεων FA, FB, F C ως προς το σημείο Ο, μπορεί να ληφθεί από το διανυσματικό άθροισμα των τριών δυνάμεων, ενώ η συνισταμένη των ροπών των δυνάμεων ως προς το σημείο Ο αλλά και των ροπών M1, M 2, μπορεί επίσης να ληφθεί από το διανυσματικό άθροισμα των παραπάνω ροπών. Ακολουθεί αριθμητικό παράδειγμα για την καλύτερη κατανόηση του θέματος. ίνονται οι δυνάμεις : F 2iˆ 5ˆj kˆ με σημείο εφαρμογής το Α(-5,-1,2), A F 2iˆ 2ˆj 5kˆ με σημείο εφαρμογής το Β(2,-2,-1), και F 6iˆ με σημείο B εφαρμογής το C(-1,5,0) καθώς και οι ροπές M ˆ ˆ 1 4i 2j και M ˆ ˆ ˆ 2 i 2j 3k, και ζητείται να γίνει η αναγωγή του συστήματος δυνάμεων και ροπών στην αρχή των συντεταγμένων Ο. Καταρχήν υπολογίζεται η συνισταμένη των δυνάμεων F σύμφωνα με τη σχέση: F F F F ( 2 2 6) iˆ (5 2) ˆj (1 5) kˆ F 2iˆ 3ˆj 6kˆ. A B C C Εν συνεχεία υπολογίζονται οι ροπές των δυνάμεων ως προς την αρχή των συντεταγμένων σύμφωνα με τις σχέσεις M A RxF A A, M B RxF B B και M RxF. Πιο συγκεκριμένα θα έχουμε : C C C M RxF= M 11iˆ ˆj 27kˆ A A A A

14 M RxF M 12iˆ 8 ˆj 8kˆ B B B B M RxF C C C M C 30kˆ Η συνισταμένη των ροπών ως προς το σημείο Ο θα υπολογιστεί από τη σχέση: M M M M M M 28iˆ 7 ˆj 62kˆ. A B C 1 2 Με την ίδια φιλοσοφία θα δουλεύαμε αν αντί για πλήθος συγκεντρωμένων δυνάμεων και ροπών είχαμε ομοιόμορφα κατανεμημένη φόρτιση σε μια συγκεκριμένη επιφάνεια. Η φόρτιση θα μας έχει δοθεί με τη μορφή q aiˆ bj ˆ ckˆ. Αυτή η φόρτιση είναι ισοδύναμη με μια συγκεντρωμένη δύναμη F = q x Εμβαδό επιφάνειας, που βέβαια ασκείται στο κέντρο βάρους της επιφάνειας. Αφού υπολογιστεί το εμβαδό και το κέντρο βάρους της επιφάνειας, είναι γνωστή η συγκεντρωμένη δύναμη και το σημείο εφαρμογής της. Στη συνέχεια υπολογίζεται το διάνυσμα θέσης της δύναμης F ( R ), από το σημείο στο οποίο ζητείται να γίνει η αναγωγή της φόρτισης, το οποίο υπολογίζεται εύκολα αφού οι συντεταγμένες του κέντρου βάρους είναι γνωστές. Η συγκεντρωμένη δύναμη ανάγεται στο ζητούμενο σημείο ως έχει, ενώ προκύπτει και ροπή M O RxF F, η οποία υπολογίζεται με τη διαδικασία που αναπτύχθηκε στο προηγούμενο παράδειγμα. F

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #2: Δυνάμεις στο Επίπεδο Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Γ. Λούντος Π. Ασβεστάς Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://www.teiath.gr/stef/tio/medisp/gr_downloads.htm E-mail: gloudos@teiath.gr Ροπή Η τάση για περιστροφή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΕΡΓΟ Το έργο, εκφράζει την ενέργεια που μεταφέρεται από ένα σώμα σ ένα άλλο ή που μετατρέπεται από μια μορφή σε μία άλλη. Για σταθερή δύναμη δίνεται από τη σχέση W F Δx Είναι μονόμετρο μέγεθος και η μονάδα

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΜΗΧΑΝΟΛΟΓΙΑ - ΣΤΕΡΕΟΣΤΑΤΙΚΗ. 2. Στερεοστατική. 2.1 Ισοδύναμα συστήματα δυνάμεων Δύναμη

ΓΕΝΙΚΗ ΜΗΧΑΝΟΛΟΓΙΑ - ΣΤΕΡΕΟΣΤΑΤΙΚΗ. 2. Στερεοστατική. 2.1 Ισοδύναμα συστήματα δυνάμεων Δύναμη 2. Στερεοστατική 2.1 Ισοδύναμα συστήματα δυνάμεων 2.1.1 Δύναμη Στο πλαίσιο της καθημερινής ζωής κάνουμε διάφορες ενέργειες που προκαλούν διάφορα αποτελέσματα. Όταν για παράδειγμα λέμε ότι κάποιος σπρώχνει

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΕΩΝ. Απόστολος Κ. Ζαφειρόπουλος, Ph.D. Εαρινό Εξάµηνο

ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΕΩΝ. Απόστολος Κ. Ζαφειρόπουλος, Ph.D. Εαρινό Εξάµηνο ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΕΩΝ Όπως είναι γνωστό απο την θεωρία η συνισταµένη δύναµη πολλών δυνάµεων F1, F2, F3,..., F n, οι οποίες ενεργούν σε ένα υλικό σηµείο (έστω Ο), έχουν συνισταµένη, η οποία πολλές φορές στην

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά).

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά). Διανύσματα Βαθμωτή Ποσότητα: αυτή που μπορεί να οριστεί πλήρως με έναν αριθμό και μια μονάδα. Ο αριθμός και η μονάδα συνιστούν το μέτρο της βαθμωτής ποσότητας. Διάνυσμα: είναι η ποσότητα που έχει (α) μέτρο,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους

Διαβάστε περισσότερα

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση.

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση. 1. Επιλέξτε τη σωστή απάντηση: Η συνισταμένη δύο δυνάμεων είναι μία δύναμη που a. έχει μέτρο ίσο με το άθροισμα των μέτρων των δύο δυνάμεων. b. έχει μέτρο πάντα μεγαλύτερο από το μέτρο της κάθε επί μέρους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΝΟΜΟΣ COULOMB Πριν την ανάπτυξη της μεθοδογίας κρίνεται σκόπιμο να τονίσουμε τον τρόπο γραφής της δύναμης Coulomb που ασκείται μεταξύ δύο φορτίων. Συγκεκριμένα για αποφυγή των λαθών των μαθητών στις δυνάμεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ Στην σύνθεση δυνάµεων (δηλαδή πρόσθεση δυνάµεων), ενεργούµε µε τέτοιον τρόπο ώστε από πολλές δυνάµεις, οι οποίες ενεργούν σε ένα υλικό σηµείο ή σώµα,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

Οι συνθήκες ισορροπίας του στερεού σώματος και η λανθασμένη ερώτηση Α.3 της Φυσικής των Πανελλαδικών εξετάσεων 2014.

Οι συνθήκες ισορροπίας του στερεού σώματος και η λανθασμένη ερώτηση Α.3 της Φυσικής των Πανελλαδικών εξετάσεων 2014. Οι συνθήκες ισορροπίας του στερεού σώματος και η λανθασμένη ερώτηση.3 της Φυσικής των Πανελλαδικών εξετάσεων 04.. ερεό που ισορροπεί μεταφορικά και στροφικά. Έστω ένα στερεό που ισορροπεί μεταφορικά και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης 1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις Διανύσματα ΦΥΣ 131 - Διάλ. 2 1 q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις q Διανύσματα περιγράφουν μέτρο αλλά και κατεύυνση q Αντίετα, βαμωτά μεγέη περιγράφονται μόνο από το μέτρο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων

Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Κεφάλαιο 6: Σύνθεση ομοεπιπέδων δυνάμεων Σύνοψη Πειραματικός προσδιορισμός της δύναμης, η οποία εξισορροπεί δύο ομοεπίπεδες δυνάμεις και σύγκρισή της με τη συνισταμένη τους που υπολογίζεται αριθμητικά

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

Βιβλιογραφία Ευρετήριο...437

Βιβλιογραφία Ευρετήριο...437 Περιεχόμενα 1 Εισαγωγή... 11 1.1 Φυσικοί νόμοι Επιστήμη Τεχνολογία Μηχανική...11 1.2 Εξέλιξη της Στατικής...13 1.3 Κανονισμοί, προδιαγραφές και οδηγίες...16 1.4 Ο ρόλος της Στατικής στα πλαίσια του κατασκευαστικού

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

1. Δυνάμεις και ο κανόνας του παραλληλογράμμου

1. Δυνάμεις και ο κανόνας του παραλληλογράμμου 1. Δυνάμεις και ο κανόνας του παραλληλογράμμου Δύναμη είναι μία επίδραση που μπορεί να ασκείται σε ένα σώμα και έχει ως αποτέλεσμα είτε ότι αλλάζει την κινητική κατάσταση του σώματος είτε ότι προκαλεί

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Μηχανική Ι - Στατική

Μηχανική Ι - Στατική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μηχανική Ι - Στατική Ενότητα #6: Δικτυώματα (Μέθοδος Κόμβων) Δρ. Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Μάθημα: Τεχνική Μηχανική

Μάθημα: Τεχνική Μηχανική Μάθημα: Τεχνική Μηχανική Ενότητα 1: Τεχνική Μηχανική Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών Επιπρόσθετα για την δύναμη Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973 Επιλογή μόνον για την εκπαίδευση των φοιτητών Εικόνα : Τα πόδια της κοπέλας σπρώχνουν κάτω καθώς πατάει πάνω

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα