HMY 795: Αναγνώριση Προτύπων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HMY 795: Αναγνώριση Προτύπων"

Transcript

1 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας

2 Εκτίμηση ML για την κανονική κατανομή

3 Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή διασπορά, άγνωστη μέση τιμή μ Συζυγής a priori κατανομή: κανονική ως προς μ

4 Μπεϋζιανή εκτίμηση για την κανονική κατανομή Έστω τώρα ότι η μέση τιμή μ είναι γνωστή και η διασπορά σ 2 είναι άγνωστη. Η πιθανοφάνεια σε συνάρτηση με την ακρίβεια λ=1/σ 2 είναι: Θέλουμε συζυγή εκ των προτέρων κατανομή p(λ): Gamma distribution (συνήθης κατανομή για χρόνους αναμονής) λ,, a,, b>0

5 Μπεϋζιανή εκτίμηση για την κανονική κατανομή Posterior density: H κατανομή αυτή είναι με παραμέτρους: Άρα η παρατήρηση Ν σημείων αλλάζει τις παραμέτρους της εκ των προτέρων Άρα η παρατήρηση Ν σημείων αλλάζει τις παραμέτρους της εκ των προτέρων κατανομής. Μπορεί να θεωρήσει κάποιος ότι η εκ των προτέρων κατανομή αντιστοιχεί σε κάποιες «εικονικές» παρατηρήσεις, πχ για το α Ν η εκ των προτέρων κατανομή αντιστοιχεί σε 2α 0 παρατηρήσεις 0

6 Μπεϋζιανή εκτίμηση για την κανονική κατανομή Τι συμβαίνει όταν οι παράμετροι μ,σ 2 (ή ισοδύναμα, λ) είναι και οι δύο άγνωστες? Conjugate prior? Gaussian gamma distribution Quadratic in μ Linear in λ Gamma distribution over λ Independent of μ Για την πολυμεταβλητή κανονική κατανομή: ανάλογη διαδικασία πχ για άγνωστο μ > p(μ): normal, για άγνωστο Λ (=Σ 1 ) > p(λ): Wishart κλπ

7 Μείξεις κανονικών κατανομών (Gaussian mixtures) Σε αρκετές περιπτώσεις, η κανονική κατανομή παρουσιάζει περιορισμούς Single Gaussian Mixture of two Gaussians Μείξη (mixture): Γραμμικός συνδυασμός κανονικών κατανομών α

8 Μείξεις κανονικών κατανομών (Gaussian mixtures) Component Mixing coefficient H p(x) πρέπει να είναι κατανομή πιθανότητας:

9 Μείξεις κανονικών κατανομών (Gaussian mixtures) Πως μπορούμε να υπολογίσουμε τους συντελεστές π k και τις παραμέτρους κάθε συνιστώσας? Εκτίμηση ML Λογάριθμος αθροίσματος - δεν μπορεί να βρεθεί μέγιστο αναλυτικά Λύση: Επαναληπτικές μέθοδοι ή expectation maximization (μεγιστοποίηση αναμενόμενης τιμής) στη συνέχεια

10 Εκτίμηση και αναγνώριση προτύπων Είδαμε ότι μπορούμε να παραμετροποιήσουμε μια κατανομή πιθανότητας p(x θ), όπου θ είναι το διάνυσμα των άγνωστων παραμέτρων μας, και να εκτιμήσουμε τις παραμέτρους με βάση τη μέθοδο ML ή τη μέθοδο Bayes Στην αναγνώριση προτύπων, ο σκοπός μας είναι ο προσδιορισμός της κατανομής των χαρακτηριστικών (features) για κάθε κλάση του προβλήματος, δηλ. p(x C i ), οπότε η ανωτέρω διαδικασία δ πραγματοποιείται για κάθε κλάση ξεχωριστά, συλλέγοντας ένα σύνολο παρατηρήσεων D i από κάθε μια και υπολογίζοντας την p(x D i )(=p(x C i,d i )) Στη συνέχεια, μπορούμε να υπολογίσουμε την εκ των υστέρων πιθανότητα για κάθε κλάση και να σχεδιάσουμε βέλτιστους ταξινομητές με βάση τον κανόνα Bayes, δηλ. επιλογή της κλάσης για την οποία μεγιστοποιείται η: p( x Ci) p( Ci) pc ( i x) = c p( x C ) p( C ) j= 1 j j

11 Maximum likelihood Εκτίμηση και αναγνώριση προτύπων Μεγιστοποιούμε την p(d i i θ) ως προς θ και ηζητούμενη ηκατανομή πιθανότητας είναι κατευθείαν p(x θ ML,D i ) Bayes Η εκ των προτέρων ρ γνώση μας περιέχεται στην a priori κατανομή p(θ) Το βασικό πρόβλημα είναι ο υπολογισμός της εκ των υστέρων (posterior) πιθανότητας p(θ D i ) pd ( i θ ) p ( θ ) p ( θ Di ) = pd ( θ) p( θ) dθ i Όταν υπολογιστεί η παραπάνω, η ζητούμενη κατανομή p(x D i ) δίνεται από την p( x Di) = p( x θ) p( θ Di) dθ

12 Μπεϋζιανή εκτίμηση Παράδειγμα: Αν η κατανομή είναι κανονική με άγνωστη μέση τιμή για κάθε κλάση, δηλ. Ν(μ i,σ i ) και υπολογίσουμε κατά Bayes τη μέση τιμή μ i τότε i i i p( x Di) = p( x μi) p( μi D) dμi Στα προηγούμενα είδαμε ότι αν p(x μ)~ν(μ Ν(μ,σ 2 ) και υποθέσουμε κανονική a priori κατανομή για το p(μ) (Ν(μ 0,σ 02 )), τότε: p 2 ( μ D)~ Ν( μ μν, σν ) Μάλιστα, τελικά προκύπτει: p D N μ σ σ 2 2 ( x i )~ ( Ν, + Ν)

13 Μπεϋζιανή εκτίμηση Γενικά σχόλια για επιλογή εκ των προτέρων κατανομών Ίδιας μορφής με την πιθανοφάνεια: συζυγής (conjugate) Αν δεν έχουμε πληροφορία: noninformative prior Μπορούμε να διαλέξουμε εκ των προτέρων κατανομή, η οποία δεν πληροί τις συνθήκες που ισχύουν για κατανομές πιθανότητας (μη γνήσια improper), π.χ. για μια θετική τ.μ. όπως η διασπορά μπορούμε να διαλέξουμε p(σ)=1/σ (σ>0) Translation invariant/scale invariant: Κατανομές που δεν αλλάζουν με μετατόπιση/κλιμάκωση της τ.μ. Π.χ. για p(λ)=σταθερή και λ=n 2 Η ομοιόμορφη κατανομή σε όλο το διάστημα είναι translation invariant (αναλλοίωτη ως προς μετατόπιση) αλλά μη γνήσια

14 Σύγκριση μεθόδων εκτίμησης Σύγκριση μεταξύ εκτίμησης ML, MAP και Bayes: ML μεγιστοποίηση p(d i θ) p(x D i )=p(x θ ML,D i ) MAP μεγιστοποίηση p(d i θ) p(θ) p(x D i )=p(x θ )p(x θ MAP,D i ) Bayes: p( θ D) = i pd ( θ) p( θ) i pd ( θ ) p ( θ ) d θ i Αν η πιθανοφάνεια παρουσιάζει μια οξεία κορυφή στο θ ML, η p(θ) δεν είναι μηδέν στο θ ML και επίσης δεν αλλάζει δραματικά στη γειτονιά του, τότε και η p(θ D i ) θα παρουσιάζει κορυφή σε αυτό το σημείο Άρα το αποτέλεσμα με βάση την p( x Di) = p( x θ) p( θ Di) dθ θα είναι αρκετά «κοντά» στο αποτέλεσμα της ML δηλ. p(x θ ML,D i ) Γενικά, όταν η εκ των προτέρων κατανομή δεν αποκλείει την «πραγματική» λύση, οι μέθοδοι ML και Bayes δίνουν ισοδύναμα αποτελέσματα στο ασυμπτωτικό όριο άπειρων δεδομένων εκπαίδευσης (Ν ) Στην πράξη βέβαια δεν έχουμε αυτή την περίπτωση (άπειρα δεδομένα) όμως όταν έχουμε αρκετά δεδομένα και η a priori κατανομή είναι σχετικά «επίπεδη» παίρνουμε αρκετά παρόμοια αποτελέσματα και η εκτίμηση maximum a posteriori (MAP) είναι περίπου ίδια με την εκτίμηση ML

15 Σύγκριση μεθόδων εκτίμησης Υπολογιστική πολυπλοκότητα: τυπικά η εκτίμηση ML είναι αρκετά απλούστερη Η Μπεϋζιανή προσέγγιση λαμβάνει υπόψη την αβεβαιότητα όλων των πιθανών μοντέλων Αν παραμετροποιήσουμε την κατανομή πιθανότητας, τότε με την μέθοδο ML παίρνουμε απαραίτητα κατανομή της ίδιας μορφής (p(x θ ML,D i )), αλλά όχι με τη μέθοδο Bayes, λόγω του υπολογισμού με βάση την p( x Di) = p( x θ) p( θ Di) dθ Όταν η p(θ D) είναι «πλατιά» ή ασύμμετρη γύρω από τη λύση ML (θ ML ) οι δύο μέθοδοι μπορεί να δώσουν αρκετά διαφορετικά αποτελέσματα Γενικά το σφάλμα ταξινόμησης είναι τριών ειδών: Σφάλμα Bayes για επικαλυπτόμενες εκ των υστέρων πιθανότητες pc ( i x ) : το σφάλμα αυτό δεν μπορεί να εκμηδενιστεί Σφάλμα μοντέλου (model error): Αν το μοντέλο δεν περιλαμβάνει το πραγματικό μοντέλο που δημιούργησε τα δεδομένα (π.χ. κατανομή πιθανότητας) θα έχουμε σφάλμα Σφάλμα εκτίμησης (estimation error): Οι υπολογισμοί γίνονται με πεπερασμένο αριθμό δεδομένων. Το σφάλμα αυτό μπορεί να μειωθεί αυξάνοντας τον αριθμό των δεδομένων εκπαίδευσης

16 Μη παραμετρικές μέθοδοι Στα προηγούμενα εξετάσαμε την εκτίμηση συναρτήσεων πυκνότητας πιθανότητας υπό την προϋπόθεση ότι η μορφή της τελευταίας ήταν γνωστή πρόβλημα εκτίμησης παραμέτρων Πολλές φορές στην πράξη αυτό δεν είναι δυνατό Οι συγκεκριμένες κατανομές (πχ κανονική) δεν αναπαριστούν τα δεδομένα επαρκώς Δεδομένα με πολλαπλά μέγιστα (multimodal) πιθανή λύση: Gaussian mixtures Η εναλλακτική προσέγγιση είναι η μη παραμετρική εκτίμηση πυκνότητας Δεν υποθέτουμε συγκεκριμένη μορφή Δύο γενικές κατηγορίες Εκτίμηση των p(x Ci) Απευθείας εκτίμηση των p(ci x) και ταξινόμηση

17 Μη παραμετρικές μέθοδοι Μέθοδοι ιστογράμματος (histogram methods) Χωρίζουμε τα δεδομένα μας σε κάδους (bins) μεγέθους Δ i Συνήθως Δ i =Δ Δ: παράμετρος ομαλοποίησης (smoothing parameter) Απλή μέθοδος αλλά: Ασυνεχή αποτελέσματα Διαστάσεις προβλήματος! Χρειαζόμαστε Μ D κάδους

18 Μη παραμετρικές μέθοδοι Ιστόγραμμα: Η εκτιμώμενη πυκνότητα πιθανότητας εξαρτάται από τα γειτονικά σημεία με τρόπο που καθορίζεται από το Δ Σύμφωνα με τον ορισμό της συνάρτησης πυκνότητας πιθανότητας p(x), η πιθανότητα να βρίσκεται το x μέσα σε κάποια περιοχή R είναι: Έστω ότι έχουμε Ν συνολικά δείγματα από την κατανομή p(x). Η πιθανότητα ένα σημείο να βρίσκεται μέσα στο R είναι P, άρα ο αριθμός Κ των σημείων που βρίσκεται μέσα στο R ακολουθεί δυωνυμική κατανομή Η μέση τιμή της Bernoulli είναι Ε{Κ}=NP άρα το μέσο κλάσμα των σημείων που βρίσκονται στην περιοχή R θα είναι: E{K/N}=P, ενώ η διασπορά θα είναι Var{K/N}=P(1 P)/N P)/N

19 Μη παραμετρικές μέθοδοι Για μεγάλο Ν η διασπορά 0 άρα K NP Αν επιπλέον η περιοχή R είναι αρκετά μικρή μπορούμε να θεωρήσουμε ότι το p(x) είναι περίπου σταθερό και Άρα: Η σχέση αυτή μπορεί να χρησιμοποιηθεί με 2 τρόπους για την εκτίμηση του p(x) Θεωρούμε το Κ σταθερό και υπολογίζουμε το V από τα δεδομένα: αλγόριθμος Κ πλησιέστερων γειτόνων (K nearest neighbors ihb algorithm) Θεωρούμε το V σταθερό και υπολογίζουμε το Κ από τα δεδομένα: Εκτίμηση πυκνότητας με πυρήνα (kernel density estimation)

20 Αν ο όγκος V είναι πεπερασμένος, Μη παραμετρικές μέθοδοι όσο αυξάνουμε τον αριθμό των δειγμάτων Ν, ο λόγος η Κ/Ν συγκλίνει, αλλά η εκτίμηση για το p(x) είναι μέσος όρος ως προς το χώρο Για να πάρουμε την p(x) θα πρέπει να πάμε στο όριο V 0, αλλά τότε και το Κ 0! αν το Ν είναι πεπερασμένο K/N Επομένως δεν μπορούμε να πάρουμε απολύτως ακριβή εκτίμηση της p(x) με αυτό τον τρόπο

21 Εκτίμηση πυκνότητας με πυρήνες (kernel density estimation) i Έστω ότι η περιοχή R είναι κύβος D διαστάσεων Ορίζουμε τη συνάρτηση Άρα: k(u): Συνάρτηση πυρήνα (kernel lfunction) ή παράθυρο Parzen (Parzen window) και επειδή V=h D για κύβο D διαστάσεων, τελικά: Και αυτή η εκτίμηση είναι ασυνεχής

22 Εκτίμηση πυκνότητας με πυρήνες (kernel density estimation) i Λύση: Χρήση ομαλής συνάρτησης πυρήνα, π.χ. Γκαουσιανός πυρήνας (Gaussian kernel) Άρα η εκτίμηση είναι άθροισμα Γκαουσιανών καμπυλών με κέντρο στα σημεία εκπαίδευσης, κανονικοποιημένη από τον όρο 1/Ν και η συνεισφορά κάθε δείγματος εξαρτάται από την απόστασή του από το x Γενικά μπορούμε να χρησιμοποιήσουμε οποιαδήποτε συνάρτηση πυρήνα για την οποία ισχύει παράμετρος ομαλότητας

23 Εκτίμηση πυκνότητας με πυρήνες Πως επηρεάζει το μέγεθος του h? Το πλάτος και το μέτρο του παραθύρου αλλάζουν Στο όριο h 0 προσεγγίζουμε τη συνάρτηση Dirac δ(x x x n ) Για Ν, όταν h 0 προσεγγίζουμε την αληθινή κατανομή p(x)

24 Εκτίμηση πυκνότητας με πυρήνες Σύγκλιση της μεθόδου Parzen Έστω η εκτίμηση p Ν(x) για Ν σημεία. Η εκτίμηση αυτή είναι τυχαία μεταβλητή, άρα έχει κάποια μέση τιμή και διασπορά. Μπορεί να δειχθεί ότι η p Ν (x) συγκλίνει στην αληθινή κατανομή p(x) (mean square convergence): lim E{ p ( x)} p( x) N N = N N = lim Var{ p ( x)} 0 υπό συνθήκες οι οποίες συνήθως πληρούνται (p(x) συνεχής, Για τη μέση τιμή: N 1 1 x x { ( )} { i E pn x = E k } = N i= 1 VN hn 1 x v = k p ( v ) d v= VN hn = x v p( v) dv δ Ν ( ) δ 1 ( ) k x v x v Ν VN hn Συνέλιξη μεταξύ δ Ν και p. Στο όριο όμως δ Ν > Dirac delta και αν η p είναι συνεχής: lim E{ p ( x)} p( x) N N = κλπ.)

25 Εκτίμηση πυκνότητας με πυρήνες Παράδειγμα: Έστω p(x)~n(0,1) και k(u)~n(0,1) i= N 1 1 x x i p ( ) όπου N x = k h / N = h1 N N i= 1 hn hn Για Ν=1, h 1 =1: 1 1/2 2 1 = 1 = 1 1 p ( x) k( x x ) e ( x x ) N( x,1) 2π

26 Εκτίμηση πυκνότητας με πυρήνες

27 Εκτίμηση πυκνότητας με πυρήνες Παράδειγμα:Bimodal distribution (mixture of triangular and uniform)

28 Εκτίμηση πυκνότητας με πυρήνες Ταξινόμηση με βάση τη μέθοδο Parzen: Για στενό παράθυρο καλό σφάλμα εκπαίδευσης, όχι απαραίτητα επικύρωσης

29 Μη παραμετρικές μέθοδοι Kernel density: Η παράμετρος h είναι η ίδια για όλους τους πυρήνες Μεγάλο h: υπερβολικά ομαλές κατανομές σε περιοχές με μεγάλη πυκνότητα δεδομένων: Μικρό h: «Θορυβώδεις» κατανομές σε περιοχές με μικρή πυκνότητα δεδομένων Το βέλτιστο h εξαρτάται από το περιοχή του χώρου δεδομένων στην οποία βρισκόμαστε Λύση: Στην κρατάμε σταθερό το Κ και μεταβάλλουμε το V. Για κάθε σημείο x θεωρούμε μια σφαίρα με αυξανόμενο μέγεθος μέχρι να περιέχει Κ σημεία. Τότε η εκτίμηση μας δίνεται από την παραπάνω σχέση Περιοχές με υψηλή πυκνότητα: μικρό κελί, υψηλή ανάλυση Περιοχές με χαμηλή πυκνότητα: μεγάλο κελί, χαμηλή ανάλυση παράμετρος ομαλοποίησης (smoothing parameter)

30 Μη παραμετρικές μέθοδοι

31 Μη παραμετρικές μέθοδοι Η μέθοδος των Κ κοντινότερων γειτόνων μπορεί να χρησιμοποιηθεί στην αναγνώριση προτύπων για την απευθείας εκτίμηση των εκ των υστέρων πιθανοτήτων p(c i x) Έστω το σύνολο δεδομένων εκπαίδευσης για ένα πρόβλημα με C k κλάσεις, το οποίο περιέχει Ν k σημεία σε κάθε κλάση (οπότε Σ kν k=n) Για την ταξινόμηση ενός νέου σημείου x Θεωρούμε μια σφαίρα με κέντρο το x η οποία περιέχει Κ σημεία εκπαίδευσης Έστω ότι αυτή η σφαίρα έχει όγκο V και περιέχει Κ k σημεία από την κλάση C k Άρα και καθώς τελικά: Κ=1: nearest neighbor neighbor rule

32 Μη παραμετρικές μέθοδοι

33 Μη παραμετρικές μέθοδοι

34 Μη παραμετρικές μέθοδοι

35 Μη παραμετρικές μέθοδοι έ ό ί ά έ ύ ά ά ό Η μέθοδος του κοντινότερου γείτονα ασυμπτωτικά έχει το πολύ διπλάσιο σφάλμα από τον βέλτιστο ταξινομητή δηλ. αυτόν που χρησιμοποιεί τις αληθινές κατανομές πιθανότητας των δεδομένων

36 Μη παραμετρικές μέθοδοι Πλεονεκτήματα: Γενικότητα Για αρκετά δείγματα, εγγυημένη σύγκλιση Μειονεκτήματα Ο αριθμός των δειγμάτων που απαιτείται για ικανοποιητικά αποτελέσματα μπορεί να είναι πολύ μεγαλύτερος πχ από παραμετρικές μεθόδους Αυξημένες απαιτήσεις σε υπολογιστική πολυπλοκότητα,, αποθήκευση Εκθετική αύξηση με τη διάσταση D του προβλήματος (curse of dimensionality)

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9-10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή

Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή Κεφάλαιο 4: Μη Παραμετρικές Τεχνικές 4.1 Εισαγωγή Στο 3 ο κεφάλαιο περιγράφηκε η διαδικασία της μη επιβλεπόμενης μάθησης υπό τη θεώρηση ότι οι μορφές των αντίστοιχων συναρτήσεων πυκνότητας πιθανότητας

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Εκτίμηση Παραμέτρων (Parameter Estimation)

Αναγνώριση Προτύπων. Εκτίμηση Παραμέτρων (Parameter Estimation) Αναγνώριση Προτύπων Εκτίμηση Παραμέτρων Parameter Estimatio Χριστόδουλος Χαμζάς Τα περιεχόμενα των παρουσιάσεων προέρχονται κυρίως από τις παρουσιάσεις του αντίστοιχου διδακτέου μαήματος του κα. Παναγιώτη

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή Κεφάλαιο : Θεωρία Απόφασης του Bayes. Εισαγωγή Η θεωρία απόφασης του Bayes αποτελεί μια από τις σημαντικότερες στατιστικές προσεγγίσεις για το πρόβλημα της ταξινόμησης προτύπων. Βασίζεται στη σύγκριση

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2014-15 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εαρινό Εξάμηνο Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Μηχανική Μάθηση Εργασία 1 Άσκηση 1 a. Αρχικά πρέπει να βρούμε τις παραμέτρους

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Περιγραφική στατιστική

Περιγραφική στατιστική Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα

Διαβάστε περισσότερα

c(x 1 + x 2 + x 3 ) εάν 0 x 1, x 2, x 3 k (x 1, x 2, x 3 ) =

c(x 1 + x 2 + x 3 ) εάν 0 x 1, x 2, x 3 k (x 1, x 2, x 3 ) = ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 11: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 009-010 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ 1 Εστω X = x 1, x, x T τυχαίο

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ

ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ (Diversity Receivers) Alexandros-Apostolos A. Boulogeorgos e-mail: ampoulog@auth.gr WCS GROUP, EE Dept, AUTH ΑΝΑΓΚΑΙΟΤΗΤΑ ΔΙΑΦΟΡΙΣΜΟΥ Η ισχύς σε κάθε όδευση παρουσιάζει διακυμάνσεις

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Κεφάλαιο 2 - ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ

Κεφάλαιο 2 - ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ Σύνοψη Κεφάλαιο 2 - ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ Με το κεφάλαιο αυτό ξεκινά η μελέτη των στοιχειωδών δειγματοληπτικών σχημάτων που ανήκουν στη γενικότερη κατηγορία των μεθόδων δειγματοληψίας στις οποίες η

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Εκτίµηση Παραµέτρων (Parameter Estimation) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Αναγνώριση Προτύπων (Pattern Recognition) Εκτίµηση Παραµέτρων (Parameter Estimation) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπν Patter Recogitio Εκτίµηση Παραµέτρν Parameter Estimatio Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Εκτίµηση Παραµέτρν ΟΜπεϋζιανός ταξινοµητής δεν µπορεί να χρησιµοποιηεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες(ΠΛΗ513)

Αυτόνομοι Πράκτορες(ΠΛΗ513) Αυτόνομοι Πράκτορες(ΠΛΗ513) Παρουσίαση Εργασίας Εξαμήνου Mapping a Base Station Location in a Wireless Network Using Particle Filters Αλιμπέρτης Εμμανουήλ Πολυτεχνείο Κρήτης Τμήμα ΗΜΜΥ Intelligence Lab

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος. Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης Αναγνώριση Προτύπων (Patter Recogitio) Μη Παραµετρικές Τεχνικές (Noparametric Techiques) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μη-Παραµετρικές Τεχνικές Προβλήµατα παραµετρικών τεχνικών:

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά

ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ MCMC Η Monte Carlo μεθοδολογία για την δημιουργία αριθμητικών προσεγγίσεων διαφόρων τιμών της εκ των υστέρων κατανομής, όπως του μέσου και της τυπικής απόκλισης, στηρίζεται στους Ασθενείς Νόμους των Μεγάλων

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 13

Περιεχόμενα. Πρόλογος... 13 Περιεχόμενα Πρόλογος... 3 Κεφάλαιο : Εισαγωγή... 9. Είδη των προβλημάτων λήψης αποφάσεων... 9.2 Το πρόβλημα της ταξινόμησης και η σημασία του... 24.3 Γενικό περίγραμμα των μεθοδολογιών ταξινόμησης... 29.4

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα