Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής"

Transcript

1 Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος, δηλαδή κάθε σημείο του δειγματοχώρου, λέγεται απλό γεγονός ή ενδεχόμενο (simple event). Οι δειγματοχώροι που έχουν πεπερασμένο ή αριθμήσιμο πλήθος σημείων ονομάζονται διακριτοί (discrete), ενώ αυτοί που έχουν μη αριθμήσιμο πλήθος στοιχείων ονομάζονται μη διακριτοί ή συνεχείς (continuous). Ορισμός 1.2. Δύο ενδεχόμενα και ονομάζονται ασυμβίβαστα ή ξένα (disjoint events), όταν η πραγματοποίηση του ενός ενδεχομένου αποκλείει την πραγματοποίηση του άλλου. Αυτό σημαίνει ότι:, ασυμβίβαστα. Για παράδειγμα το να γεννηθεί αγόρι ή κορίτσι είναι δύο ενδεχόμενα ασυμβίβαστα. Ορισμός 1.3. Δύο ενδεχόμενα και ονομάζονται (στοχαστικά) ανεξάρτητα (stochastically independent), όταν η πραγματοποίηση του ενδεχομένου, δεν επηρεάζει την πραγματοποίηση του ενδεχομένου και αντίστροφα. Για παράδειγμα το φύλο του πρώτου παιδιού είναι ανεξάρτητο ενδεχόμενο από το φύλο του δεύτερου παιδιού σε μια οικογένεια. Ορισμός 1.4 [Αξιωματικός ορισμός της πιθανότητας [Kolmogorov]Η πιθανότητα (probability) ορίζεται ως μια συνολοσυνάρτηση που ικανοποιεί τα παρακάτω αξιώματα: P(S)=1. 0 A 1 για κάθε ενδεχόμενο A Ω. Αν I είναι ένα σύνολο δεικτών ισχύει ότι: για οποιαδήποτε οικογένεια συνόλων, P P,, με και για τα οποία ισχύει ότι 1

2 Στην πράξη η πιθανότητα ενός ενδεχομένου ορίζεται ως: P, όπου είναι το πλήθος των ευνοϊκών περιπτώσεων και είναι το πλήθος των δυνατών περιπτώσεων, με την προϋπόθεση ότι όλες οι περιπτώσεις είναι ισοπίθανες. Το πλήθοςτωνευνοϊκώνπεριπτώσεωνείναιτοπλήθοςόλωντωναπλώνενδεχομένωντου, ενώ το πλήθος των δυνατών περιπτώσεων είναι το πλήθος όλων των δυνατών αποτελεσμάτων. Ορισμός 1.5. Η πιθανότητα του ενδεχομένου, όταν είναι γνωστό ότι έχει πραγματοποιηθεί το ενδεχόμενο, ονομάζεται δεσμευμένη πιθανότητα (conditional probability) του δεδομένου του και συμβολίζεται με: P P P. Θεώρημα 1.1 [Bayes] Αν Α και Β είναι δύο ενδεχόμενα με P(Β) 0, τότε: PP P P Ορισμός 1.6. Η απεικόνιση που επιτρέπει την αντιστοίχιση του δειγματικού χώρου S στην ευθεία των πραγματικών αριθμών ( : ) ονομάζεται τυχαία μεταβλητή (τ.μ.) (random variable), αν για κάθε το σύνολο, :, είναι δηλαδή ενδεχόμενο του. Το πεδίο ορισμού της τ.μ. είναι ο δειγματοχώρος του πειράματος, ενώ το πεδίο τιμών είναι ένα υποσύνολο του συνόλου των πραγματικών αριθμών. Οι τ.μ. συμβολίζονται με κεφαλαία γράμματα,,,,ενώ οι αντίστοιχες τιμές τους με πεζά γράμματα. 2

3 Ορισμός 1.7. Μια τ.μ. ονομάζεται διακριτή ή απαριθμητή (discrete variable), όταν το πλήθος τιμών της είναι πεπερασμένο ή το πολύ αριθμήσιμο. Αν η τ.μ. παίρνει τιμές σε διάστημα της μορφής,, όπου, τότε λέγεται συνεχής (continuous). Παραδείγματα διακριτών τυχαίων μεταβλητών είναι το πλήθος των μελών μιας οικογένειας, η βαθμολογία των μαθητών στο σχολείο, ο αριθμός τηλεφωνικών κλήσεων που δέχεται κάποιος κατά τη διάρκεια μιας ημέρας, οαριθμόςτωναυτοκινήτωνπου διέρχονται από μια διασταύρωση κ.ά. Παραδείγματα συνεχών μεταβλητών είναι το ύψος, το βάρος η επίδοση των αθλητών στο μήκος, η ατμοσφαιρική πίεση κ.ά. Ορισμός 1.8. Η συνάρτηση που ορίζεται ως: για κάθε πραγματικό αριθμό ονομάζεται συνάρτηση αθροιστικής κατανομής (σ.α.κ.) (cumulative probability distribution) ήαπλάσυνάρτηση κατανομής (σ.κ.) της τ.μ. και υπολογίζει την πιθανότητα η τ.μ. να πάρει να πάρει όλες τις τιμές μέχρι και το σημείο. Σε κάθε τ.μ. Χ αντιστοιχεί μονοσήμαντα μια σ.α.κ. η οποία έχει τις παρακάτω ιδιότητες: lim 0, lim 1. H x ορίζεται σε ολόκληρο το σύνολο των πραγματικών αριθμών και είναι μια αύξουσα συνάρτηση του. H x είναι συνεχής από δεξιά, δηλαδή lim. Ορισμός 1.9.Αν η τ.μ. είναι διακριτή, τότε η συνάρτηση που υπολογίζει την πιθανότητα η τ.μ. να πάρει την τιμή ονομάζεται συνάρτηση πιθανότητας (σ.π.) (probability function) της τ.μ., συμβολίζεται με P και έχει τις παρακάτω ιδιότητες: 0,, 1(το x διατρέχει όλες τις τιμές της τ.μ. ) 3

4 Για τις συναρτήσεις και ισχύουν οι σχέσεις, 0. Ορισμός Αν η σ.α.κ. ή η τ.μ. είναι συνεχής, τότε υπάρχει συνάρτηση τέτοια ώστε:,. και η συνάρτηση ονομάζεται συνάρτηση πυκνότητας πιθανότητας ή πυκνότητα (σ.π.π) (probability density function) της τ.μ.. Από τον ορισμό προκύπτει ότι:,. Επιπλέον, δύο σημαντικές ιδιότητες της σ.π.π. είναι οι παρακάτω: 0, 1. Ορισμός Μέση τιμή μια συνάρτησης g της τ.μ. με συνάρτηση πιθανότητας ή συνάρτηση πυκνότητας πιθανότητας ορίζεται η:, αν η τυχαία μεταβλητή είναι συνεχής, αν η τυχαία μεταβλητή είναι διακριτή Αν, τότε η ονομάζεται μέση τιμήτης τ.μ., ενώ η ονομάζεται ν οστή ροπή της τ.μ.. Αν, τότε η ονομάζεται ν οστή ροπή της τ.μ. ως προς α. Αν, τότε η ονομάζεται ν οστή κεντρική ροπή ή κεντρική ροπή ν οστής τάξης της τ.μ.. 4

5 Αν, τότε η Varονομάζεται διασπορά ή διακύμανση (variance) της τ.μ., ενώ η ποσότητα Var ονομάζεται τυπική απόκλιση (standard deviation). Για τη μέση τιμή και τη διασπορά ισχύουν οι σχέσεις:, όπου c είναι μια σταθερά,,, Var, Var Var, Var Var Var, αν οι τ.μ. και είναι ανεξάρτητες. Ησυγκεκριμένη ιδιότητα γενικεύεται για ανεξάρτητες τυχαίες μεταβλητές. Κατανομή Bernoulli Σε πολλά από τα πειράματα, που εξετάζουμε στις πιθανότητες διακρίνουμε μόνο δύο αποτελέσματα που ονομάζονται, συμβολικά, «επιτυχία» και «αποτυχία». Για παράδειγμα στην εξέταση ερωτήσεων τύπου Σωστό ή Λάθος, οι δύο πιθανές απαντήσεις είναι αμοιβαίως αποκλειόμενες. Σ αυτά, συνήθως, τα πειράματα αντιστοιχίζεται στην επιτυχία ο αριθμός 1 και στην αποτυχία ο αριθμός 0. Η διακριτή τ.μ. η οποία παίρνει την τιμή μηδέν με πιθανότητα q και την τιμή ένα με πιθανότητα, όπου 1, λέμε ότι ακολουθεί την κατανομή Bernoulli με παράμετρο και συμβολίζεται με 1,. Η συνάρτηση πιθανότητας της κατανομής Bernoulli δίνεται από τη σχέση: 1, όπου 0, 1 και 0 1. Μέση τιμή Διακύμανση Var 1. 5

6 Διωνυμική Κατανομή (Binomial Distribution) Αν υποτεθεί ότι πραγματοποιούνται n ανεξάρτητες δοκιμές Bernoulli με την ίδια πιθανότητα επιτυχίας p σε κάθε δοκιμή, τότε η τ.μ. Xη οποία εκφράζει το πλήθος των επιτυχιών στις n δοκιμές (επαναλήψεις) Bernoulli ονομάζεται διωνυμική κατανομή και συμβολίζεται με,. Ησυνάρτηση πιθανότητας να έχουμε 0,1,, επιτυχίες δίνεται από τη σχέση: 1, όπου 0, 1,, και 0 1. Μέση τιμή Διακύμανση Var 1. Για παράδειγμα ας υποτεθεί ότι ένα ζάρι ρίχνεται τρεις φορές και ζητείται η πιθανότητα ο αριθμός τέσσερα να έρθει ακριβώς δύο φορές. Στην περίπτωση αυτή η πιθανότητα είναι: Γεωμετρική (Pascal) Κατανομή Ητ.μ. Χ που δηλώνει το πλήθος των ανεξάρτητων δοκιμών Bernoulli, που απαιτούνται, μέχρι να εμφανιστεί η πρώτη επιτυχία ακολουθεί τη γεωμετρική κατανομή ή κατανομή Pascal. Αν p είναι η πιθανότητα επιτυχίας, τότε η συνάρτηση πιθανότητας της γεωμετρικής κατανομής δίνεται από τη σχέση: Μέση τιμή Διακύμανση P 1, όπου 1, 2, και 0 1. Var. Για παράδειγμα από προγενέστερες έρευνες έχει διαπιστωθεί ότι οι φοιτητές του τμήματος Μαθηματικών επιτυγχάνουν στο μάθημα της Στατιστικής σε ποσοστό 35%. Να βρεθεί η πιθανότητα ο 4 ος φοιτητήςπουθαερωτηθείναέχειεπιτύχειστομάθημα, ενώ οι προηγούμενοι απέτυχαν. 6

7 Κατανομή Poisson Η κατανομή Poisson είναι η κατανομή των σπάνιων γεγονότων και χρησιμοποιείται, όταν ενδιαφέρει να μετρηθεί ο αριθμός των «συμβάντων» στη μονάδα μέτρησης, που έχει ορίσει ο ερευνητής. Π.χ., τυπογραφικά λάθη ανά σελίδα, τηλεφωνικές κλήσεις ανά λεπτό ή δευτερόλεπτο. Αν μια τ.μ. ακολουθεί την κατανομή Poisson, τότε χρησιμοποιείται ο συμβολισμός, όπου 0 είναι η παράμετρος της κατανομής. Η συνάρτηση πιθανότητας της κατανομής Poisson δίνεται από τη σχέση: P, όπου 0, 1, και 0.! Μέση τιμή = Διακύμανση Var. Να σημειωθεί ότι, αν η τ.μ. ακολουθεί τη διωνυμική κατανομή,, και 0, τότε η κατανομή της τ.μ. είναι προσεγγιστικά η Poisson με παράμετρο, τέτοια ώστε. Ομοιόμορφη Κατανομή (Uniform Distribution) Η συνάρτηση πυκνότητας πιθανότητας της ομοιόμορφης κατανομής, δίνεται από τη σχέση: 1,, 0, αλλού ενώ η συνάρτηση αθροιστικής κατανομής δίνεται από τη σχέση: 0,,, 1, όπου, είναι οι παράμετροι της κατανομής με. Μέση τιμή Διακύμανσή Var. 7

8 Σχήμα 1.1. Γραφικές παραστάσεις των σ.π.π. και σ.α.κ. της ομοιόμορφης κατανομής. Κανονική Κατανομή (Normal Distribution) Η συνάρτηση πυκνότητας πιθανότητας της κανονικής κατανομής, δίνεται από τη σχέση: 1 2, όπου, είναι οι παράμετροι της κατανομής, με και 0. Μέση τιμή Διακύμανση. Η τ.μ. Z με σ.π.π. που δίνεται από την καμπύλη του Gauss: 1 2,, ακολουθεί την κανονική κατανομή 0, 1, η οποία ονομάζεται τυποποιημένη ή τυπική κανονική κατανομή. Η μαθηματική σχέση που συνδέει την κανονική κατανομή, με την τυπική κανονική κατανομή 0, 1 προκύπτει από το παρακάτω θεώρημα και ονομάζεται τυποποίηση της τ.μ.. 8

9 Θεώρημα 1.2. Αν η τ.μ. Χ ακολουθεί την κανονική κατανομή,, τότε η τ.μ. ακολουθεί την κανονική κατανομή 0, 1 κατανομή. Οι πίνακες, στους οποίους δίνονται οι τιμές των πιθανοτήτων, περιέχουν και τις τιμές των σημείων γιαταοποίαισχύει P aή 1a, 0a1. Να σημειωθεί ότι η κανονική κατανομή είναι συμμετρική ως προς τη μέση της τιμή, με συνέπεια για την κανονική κατανομή 0, 1 και για 0να ισχύει: 1 Σχήμα 1.2. Γραφική παράσταση της σ.α.κ. της N(0, 1). Σχήμα 1.3. Συμμετρία και σημεία της κανονικής κατανομής. 9

10 Κατανομή Γάμμα Η συνάρτηση πυκνότητας πιθανότητας της κατανομής γάμμα, που συμβολίζεται με,, δίνεται από τη σχέση:, 0, 0, αλλού όπου, είναι οι παράμετροι της κατανομής, με 0και 0. Η συνάρτηση ορίζεται από τη σχέση:. Αποδεικνύεται ότι: 1 1, 0 1!,,. Μέση τιμή Διακύμανση Var. Σχήμα 1.5. Γραφική παράσταση της σ.π.π. των κατανομών G(1, 1), G(2, 1) και G(1, 2). 10

11 Η κατανομή γάμμα είναι πολύ σημαντική. Για 1και προκύπτει η κατανομή 1, που είναι η εκθετική κατανομή με παράμετρο. Για και προκύπτει η κατανομή, που είναι η κατανομή Xι τετράγωνο με βαθμούς ελευθερίας. Κατανομή Βήτα Η συνάρτηση πυκνότητας πιθανότητας της κατανομής βήτα, που συμβολίζεται με,, δίνεται από τη σχέση: 1,0 1,, όπου, είναι οι παράμετροι της κατανομής με 0και 0. Η συνάρτηση, ορίζεται από τη σχέση: Μέση τιμή Διακύμανση, 1 Var.. Να σημειωθεί ότι για 1η κατανομή 1,1 είναι η ομοιόμορφη κατανομή 0,1. Σχήμα 1.6. Γραφική παράσταση της σ.π.π. των κατανομών β(1, 3), β(2, 2) και β(2, 5). 11

12 Κατανομή Student με ν βαθμούς ελευθερίας Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Student πoυ συμβολίζεταιμε, δίνεται από τη σχέση: 1 2 1,. 2 όπου είναι η παράμετρος της κατανομής για την οποία ισχύει 0. Τα σημεία ; της κατανομής Student ορίζονται ως: ; ; a 1aP ; Να σημειωθεί ότι η κατανομή Student για 30συγκλίνει στην τυπική κανονική κατανομή 0,1. Επιπλέον, η κατανομή Student είναι συμμετρική ως προς τον άξονα των. Σχήμα 1.7. Συμμετρία και κρίσιμα σημεία της κατανομής Student. 12

13 Κατανομή Χι τετράγωνο με βαθμούς ελευθερίας Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Xι τετράγωνο, που συμβολίζεται με, δίνεται από τη σχέση: Τα σημεία ; της κατανομής ορίζονται ως: P ; P ;, 0. a 1aP ; ; Για μεγάλη τιμή του η κατανομή συγκλίνει σε κανονική κατανομή με μέση τιμή και διασπορά 2και ισχύει: ; , όπου η τιμή από τον πίνακα της τυπικής κανονικής κατανομής Ν(0, 1) για το ίδιο a. Σχήμα 1.8. Γραφική παράσταση της σ.π.π. της Xι τετράγωνο κατανομής με n βαθμούς ελευθερίας. 13

14 Εκθετική κατανομή Η συνάρτηση πυκνότητας πιθανότητας της εκθετικής κατανομής, που συμβολίζεται με ή, δίνεται από τη σχέση:, 0 0, 0, όπου είναι η παράμετρος της κατανομής. Μέση τιμή Διακύμανση Var. Σχήμα 1.9. Γραφικές παραστάσεις των σ.π.π. και σ.α.κ. της εκθετικής κατανομής. 14

15 Κατανομή Fisher με ν 1, v 2 βαθμούς ελευθερίας Η συνάρτηση πυκνότητας πιθανότητας της κατανομής Fisher ή Fisher Snedecorπου συμβολίζεται με,, δίνεται από τη σχέση: 2,0, όπου, είναι οι παράμετροι της κατανομής με 0, 0.Τα σημεία, ; της κατανομής Fisher ορίζονται ως:,; 1aP, ; Να σημειωθεί ότι, αν η τ.μ. ακολουθεί την, κατανομή, τότε η τ.μ.: 1 ακολουθεί την, κατανομή. Σχήμα 1.9. Γραφική παράσταση της σ.π.π. των κατανομών F 1, 1, F 2, 5 και F 3,

16 Μετασχηματισμοί τυχαίων μεταβλητών Θεώρημα 1.3. Έστω ότι η τ.μ. Χ με σ.π.π. και η τ.μ., τότε: Αν η λύνεται μονοσήμαντα (είναι μονότονη και παραγωγίσιμη ως προς ), δηλαδή, τότε η σ.π.π. της τ.μ., δίνεται από τη σχέση:. Αν η έχει περισσότερες από μια λύσεις για κάποια συγκεκριμένη τιμή του, δηλαδή, τότε η σ.π.π. της τ.μ., δίνεται από τη σχέση:. Παράδειγμα 1.1. Δίνεται ότι η τυχαία μεταβλητή έχει σ.π.π.,δηλαδή ακολουθεί την εκθετική κατανομή. Να βρεθεί η σ.π.π. της τυχαίας μεταβλητής. Λύση. Από τη σχέση 2προκύπτει ότι, με συνέπεια η σ.π.π. της τ.μ. να υπολογιστεί αν στη συνάρτηση αντικατασταθεί το από το και το αποτέλεσμα πολλαπλασιαστεί με. Επομένως, , 0. Παρατηρείται ότι η παραπάνω συνάρτηση είναι η σ.π.π. της κατανομής Xι τετράγωνο με 2 βαθμούς ελευθερίας, δηλαδή η τ.μ. 2ακολουθεί την κατανομή. 16

17 Θεώρημα 1.4. Έστωσαν και δύο ανεξάρτητες τ.μ. που ακoλουθούν κανονικές κατανομές, και,, αντίστοιχα. Η τ.μ. ακολουθεί κανονική κατανομή,. Θεώρημα 1.5. Έστωσαν οι ανεξάρτητες τ.μ. και,όπου η τ.μ. ακολουθεί την κανονική κατανομή 0,1 και η τ.μ ακoλουθεί την κατανομή, τότε η τ.μ. / ακολουθεί την κατανομή Student. Θεώρημα 1.6. Αν οι,,, είναι ανεξάρτητες τ.μ. που ακολουθούν τυπική κατανομή 0,1 η καθεμία, τότε η τ.μ. ακολουθεί την κατανομή. Θεώρημα 1.7. Αν οι,,, είναι ανεξάρτητες τ.μ. που ακολουθούν κατανομές, 1,2,,, αντίστοιχα, τότε η τ.μ. ακολουθεί την κατανομή, όπου. Θεώρημα 1.8. Έστωσαν και δύο ανεξάρτητες τ.μ. που ακoλουθούν η την κατανομή η την κατανομή, με, τότε η τ.μ. ακολουθεί την κατανομή. και Θεώρημα 1.9. Έστωσαν και δύο ανεξάρτητες τ.μ. που ακολουθούν κατανομές αντίστοιχα, τότε η τ.μ. / ακολουθεί την κατανομή /,. και, Ορισμός Ως ροπογεννήτρια (moment generating function) της τ.μ. ορίζεται η συνάρτηση, όπου είναι μία πραγματική μεταβλητή. Θεώρημα Αν,,, είναι ανεξάρτητες τ.μ. με ροπογεννήτριες, 1,2,,, τότε η τ.μ. έχει ροπογεννήτρια που δίνεται από τη σχέση. 17

18 Στοιχεία Εκτιμητικής Ορισμός Τυχαίο δείγμα (τ.δ.) (random sample) είναι ένα πεπερασμένο σύνολο ανεξάρτητων πραγματοποιήσεων,,, της ίδιας τ.μ. Οαριθμός ονομάζεται μέγεθος του δείγματος. Τα αποτελέσματα δοκιμών σημειώνονται με x,,, και δεν είναι τυχαίες μεταβλητές, ενώ το τ.δ. X,,, είναι τ.μ. Το τ.δ. είναι μια πολυδιάστατη τ.μ. με συνιστώσες ανεξάρτητες και ισόνομες τ.μ. Αν είναι η τ.μ. από την οποία προέρχεται το δείγμα, τότε ισχύει ότι:,var Var, 1,2,,. Το δείγμα προέρχεται από πληθυσμό ο οποίος μπορεί να είναι άπειρου πλήθους, πεπερασμένου ή το πολύ αριθμήσιμου πλήθους. Στην περίπτωση που ο πληθυσμός είναι άπειρος, τότε οι τ.μ.,,, είναι ανεξάρτητες και ισχύει,,,, όπου,,, είναι η από κοινού κατανομή του τ.δ. X,,, και είναι η κατανομή της τ.μ.. Στοιχεία Εκτιμητικής Αν ο πληθυσμός είναι πεπερασμένος και η δειγματοληψία γίνεται χωρίς επανάθεση, τότε οι τ.μ.,,, είναι εξαρτημένες και ισχύει:,,, , όπου είναι το μέγεθος του πληθυσμού και το μέγεθος του δείγματος. Στην περίπτωση που ο πληθυσμός είναι πεπερασμένος και η δειγματοληψία γίνεται με επανάθεση, τότε οι τ.μ.,,, είναι ανεξάρτητες και ισχύει:,,, 1. Έστω μια τ.μ. με σ.π. ή σ.π.π.. Στη θεωρία πιθανοτήτων είναι γνωστή η και συνήθως ζητείται να βρεθεί η πιθανότητα να συμβεί κάποιο γεγονός που προσδιορίζεται με τη βοήθεια της τ.μ.. Συνήθως η εξαρτάται από άγνωστες σταθερές που ονομάζονται παράμετροι. 18

19 Στοιχεία Εκτιμητικής Στην πράξη συνήθως η συναρτησιακή μορφή της είναι γνωστή, σε αντίθεση με τις παραμέτρους που είναι άγνωστες και πρέπει να εκτιμηθούν. Το συγκεκριμένο πρόβλημα αποτελεί το αντικείμενο της Παραμετρικής Στατιστικής. Με τη βοήθεια ενός τ.δ. γίνεται προσπάθεια να προσδιοριστούν οι άγνωστες παράμετροι της κατανομής που μελετάται. Στο εξής, η θα συμβολίζεται με ;, για να δηλωθεί ότι η κατανομή εξαρτάται από την άγνωστη παράμετρο. Στην περίπτωση που υπάρχει μόνο μια άγνωστη παράμετρος θα χρησιμοποιείται ο συμβολισμός ;. Αν οι άγνωστες παράμετροι είναι περισσότερες από μια, τότε θ,,,, θα είναι το διάνυσμα των παραμέτρων και η σ.π.π. θα συμβολίζεται με ; θ. Στοιχεία Εκτιμητικής Στην κατανομή Poisson, η οποία έχει σ.π.:, 0, 1,, 0,! η παράμετρος είναι το και ο παραμετρικός χώρος είναι Ω0,. Στη διωνυμική κατανομή,, η οποία έχει σ.π.: 1, 0, 1,,, 0 1, το μέγεθος του δείγματος είναι γνωστό, η παράμετρος είναι η πιθανότητα και Ω 0,1. Στην εκθετική κατανομή, η οποία έχει σ.π.π.:, 0, 0 η παράμετρος είναι το καιω 0,. 19

20 Στοιχεία Εκτιμητικής Στην κανονική κατανομή,, η οποία έχει σ.π.π.: 1 2,, υπάρχουν δύο παράμετροι, οι οποίες είναι οι και. : άγνωστο και γνωστό. Ο δειγματοχώρος είναιω. : άγνωστο και : γνωστό. Ο δειγματοχώρος είναι Ω0, άγνωστοκαι : άγνωστο. θ, και Ω. Στην κατανομή γάμμα,, η οποία έχει σ.π.π.:, 0, οι παράμετροι είναι οι 0και 0. : άγνωστο και :γνωστό. Ο δειγματοχώρος είναιω 0,. : άγνωστο και : γνωστό. Ο δειγματοχώρος είναι Ω0, άγνωστοκαι : άγνωστο. θ, και Ω. Στοιχεία Εκτιμητικής Στην κατανομή βήτα,, η οποία έχει σ.π.π.: 1,0 1,, οι παράμετροι είναι οι 0και 0. : άγνωστο και :γνωστό. Ο δειγματοχώρος είναιω 0,. : άγνωστο και : γνωστό. Ο δειγματοχώρος είναι Ω0, άγνωστοκαι : άγνωστο. θ, και Ω. Στην κατανομή Pareto,της οποίας η σ.π.π. είναι:,, 0, 0, οι παράμετροι είναι οι και. Επομένως, θ,). : άγνωστο και : γνωστό. Ο δειγματοχώρος είναιω 0, : άγνωστο και : γνωστό. Ισχύει ότι Ω0, : άγνωστο και : άγνωστο. θ, και Ω. 20

21 Στοιχεία Εκτιμητικής Ορισμός Έστω X,,, τ.δ. από τ.μ.. Κάθε μετρήσιμη συνάρτηση,,,, που δεν περιέχει άγνωστες παραμέτρους,καλείται στατιστική συνάρτηση (στ.σ.) (statistical function). Το πεδίο ορισμού της στ.σ. είναι ο δειγματοχώρος, ενώ το πεδίο τιμών είναι ένα υποσύνολο του συνόλου των πραγματικών αριθμών. Ορισμός Εκτιμήτρια συνάρτηση ή εκτιμητής (estimator) της παραμέτρου καλείται μια στατιστική συνάρτησηχ που έχει πεδίο τιμών τον παραμετρικό χώρο Ω και συμβολίζεται με. Η εκτιμήτρια συνάρτηση είναι τυχαία μεταβλητή. Ητιμήx της εκτιμήτριας συνάρτησης για ένα συγκεκριμένο τ.δ. x,,, καλείται εκτίμηση της παραμέτρου. Με την εκτίμηση παραμέτρων του πληθυσμού ασχολείται η Εκτιμητική και προτείνει δύο ειδών εκτιμητές: εκτιμητές σε σημείο και εκτιμητές σε διάστημα. Στοιχεία Εκτιμητικής Προφανώς, οι στατιστικές συναρτήσεις περιέχουν τ.μ., με συνέπεια να είναι και οι ίδιες τ.μ. Αν οι τ.μ.,αντικατασταθούν με τις τιμές,, τότε η τιμή της στατιστικής συνάρτησης είναι μια συγκεκριμένη πραγματική τιμή. Ο πραγματικός αυτός αριθμός ονομάζεται τιμή της στατιστικής συνάρτησης. Οι στ.σ. βοηθούν να οριστούν τα στατιστικά του δείγματος από τις παραμέτρους του πληθυσμού από τον οποίο προέρχεται. Τα στατιστικά αυτά είναι: Ο δειγματικός μέσος που ορίζεται ως: Η δειγματική ροπή r τάξης που ορίζεται ως: 1 1, 2,3, 21

22 Στοιχεία Εκτιμητικής Η δειγματική κεντρική ροπή r τάξης που ορίζεται ως: 1, 2,3, Για 2στον παραπάνω τύπο προκύπτει η δειγματική διασπορά που συμβολίζεται με: 1. Να σημειωθεί ότι ως δειγματική διασπορά τις περισσότερες φορές χρησιμοποιείται η ποσότητα: 1 1. Οι ποσότητες και που είναι ίσες με τις θετικές τετραγωνικές ρίζες των και, αντίστοιχα ονομάζονται δειγματική τυπική απόκλιση. Στοιχεία Εκτιμητικής Έστω X,,, και Y,,, δύο τυχαία δείγματα από τις τ.μ. και, αντίστοιχα, τότε η δειγματική ή εμπειρική συνδιασπορά είναι: 1 1, ή 1, ενώ ο δειγματικός ή ο εμπειρικός συντελεστής συσχέτισης ισούται με:. Όπως κάθε τ.μ., έτσι και οι στ.σ., οι οποίες είναι τ.μ., ακολουθούν κάποια κατανομή. Παρακάτω δίνονται μερικά χρήσιμα θεωρήματα για την κατανομή της μέσης τιμής και της διασποράς, όταν το δείγμα προέρχεται από κανονική κατανομή. 22

23 Στοιχεία Εκτιμητικής Θεώρημα Έστω X,,, ένα τ.δ. από κανονική κατανομή,, τότε η δειγματική μέση τιμή ακολουθεί την κανονική κατανομή,. Θεώρημα Έστω X,,, ένα τ.δ. από κατανομή και για την οποία ισχύει ότι και Var, τότε η τ.μ. συγκλίνει κατά νόμο στην τυπική κανονική κατανομή, που σημαίνει ότι, για αρκούντος μεγάλο ( 30), ακολουθεί την τυπική κανονική κατανομή 0,1. Θεώρημα Έστω X,,, ένα τ.δ. από την κανονική κατανομή,. Οι τ.μ. και είναι ανεξάρτητες και ισχύει ότι η τ.μ. ακολουθεί την κατανομή Student με 1 βαθμούς ελευθερίας, δηλαδή την, ενώ η τ.μ. ακολουθεί κατανομή Χι τετράγωνο με 1 βαθμούς ελευθερίας, δηλαδή την. Στοιχεία Εκτιμητικής Θεώρημα Έστω X,,, ένα τ.δ. μεγέθους και Y,,, ένα τ.δ. μεγέθους. Τα δύο δείγματα είναι ανεξάρτητα από κανονική κατανομή, και,, αντίστοιχα. Τότε για την τ.μ. ισχύει ότι:,. Θεώρημα Έστωσαν X,,, και Y,,,, δύο ανεξάρτητα τ.δ. μεγέθους και από κανονική κατανομή, και,, αντίστοιχα. Επιπλέον, η δειγματική διασπορά του πρώτου δείγματος ισούται με και του δευτέρου με, τότε ισχύει ότι:,. 23

24 Στοιχεία Εκτιμητικής Θεώρημα Έστωσαν X,,, και Y,,,, δύο ανεξάρτητα τ.δ. μεγέθους και από κανονική κατανομή, και,, αντίστοιχα. Επιπλέον, ας είναι η μέση τιμή και η διασπορά του πρώτου δείγματος, ενώ και είναι η μέση τιμή και η διασπορά του δευτέρου δείγματος, τότε ισχύει ότι: Ορισμός Αν Χ, τότε η στατιστική συνάρτηση Χ,,, ονομάζεται αμερόληπτος εκτιμητής (unbiased estimator) της παραμέτρου. Αν, τότε η διαφορά ονομάζεται μεροληψία (bias) του εκτιμητή. Στην περίπτωση που η παράμετρος θ είναι πολυδιάστατη, τότε ο εκτιμητής της θα είναι επίσης πολυδιάστατος της μορφής Τ Χ και, για να είναι αμερόληπτος, θα πρέπει να ισχύει Τ Χ θ. Στοιχεία Εκτιμητικής Αν αναζητείται ο εκτιμητής μιας συνάρτησης της παραμέτρου θ, έστω της θ, τότε ένας εκτιμητής Χ καλείται αμερόληπτος εκτιμητής της θ, αν ισχύει: Χ θ,θ Ω. Η συνάρτηση θ ονομάζεται εκτιμήσιμη ή U εκτιμήσιμη συνάρτηση κατά Lehmann. Αν όμως ισχύει ότι: Χ θ, τότε η μεροληψία ή το μέσο σφάλμα της Χ ισούται με: Χ Χ θ. Η μεροληψία είναι συνάρτηση του θ, αλλά συμβολίζεται με Χ, διότι αναφέρεται στη στ.σ. Χ. 24

25 Στοιχεία Εκτιμητικής Ορισμός Ένας εκτιμητής Χ ενός τ.δ. Χ,,, μεγέθους ονομάζεται ασυμπτωτικά αμερόληπτος (asymptotically unbiased estimator) για τη συνάρτηση θ, αν ισχύει: lim Χ θ,θ Ω. Με άλλα λόγια, ένας εκτιμητής καλείται ασυμπτωτικά αμερόληπτος, όταν η μεροληψία του τείνει στο μηδέν, καθώς το μέγεθος του δείγματος αυξάνει, δηλαδή: lim Χ 0. Ορισμός Η ποσότητα X θ ονομάζεται σφάλμα του εκτιμητή X της συνάρτησης θ, ενώ η ποσότητα X θ ονομάζεται τετραγωνικό σφάλμα και είναι αυτή που χρησιμοποιείται τις περισσότερες φορές. Στοιχεία Εκτιμητικής Το ζητούμενο είναι να βρεθεί μια εκτιμήτρια συνάρτηση X, η οποία θα ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα (mean square error), δηλαδή να ισχύει: X θ X θ,θ Ω και για κάθε άλλη εκτιμήτρια X. Η βέλτιστη εκτιμήτρια συνάρτηση με βάση το κριτήριο του μέσου τετραγωνικού σφάλματος είναι εκείνη για την οποία ισχύει: X θ 0,θ Ω. Να σημειωθεί ότι η παραπάνω σχέση είναι σπάνιο να επιτευχθεί. Για το λόγο αυτό η κλάση των υπό μελέτη εκτιμητών περιορίζεται στην κλάση των αμερόληπτων εκτιμητών. Στην κλάση αυτή επιλέγεται εκείνος ο εκτιμητής με το μικρότερο μέσο τετραγωνικό σφάλμα. Η διασπορά του εκτιμητή X και το μέσο τετραγωνικό σφάλμα συνδέονται μέσω της σχέσης: X θ VarX X. 25

26 Στοιχεία Εκτιμητικής Παράδειγμα 1.2. Να δειχθεί ότι η δειγματική διασπορά που δίνεται από τον τύπο: είναι ένας αμερόληπτος εκτιμητής της θεωρητικής διασποράς οποιασδήποτε κατανομής, ενώ η δειγματική διασπορά που δίνεται από τον τύπο: δεν είναι αμερόληπτος εκτιμητής της αντίστοιχης θεωρητικής. Παράδειγμα 1.3. Μετράται η απόσταση μεταξύ δύο σημείων σε πέντε περιπτώσεις. Τα αποτελέσματα ήταν: Αν θεωρηθεί ότι η απόσταση μεταξύ των δύο σημείων ακολουθεί την κατανομή,, να βρεθεί ένας αμερόληπτος εκτιμητής της διασποράς, όταν: 1. Η μέση τιμή είναι άγνωστη. 2. Ισχύει ότι. Στοιχεία Εκτιμητικής Ορισμός Ένας αμερόληπτος εκτιμητής X της συνάρτηση θ καλείται αμερόληπτος εκτιμητής ομοιόμορφα ελάχιστης διασποράς (α.ε.ο.ε.δ.) (minimum variance unbiased estimator), αν έχει τη μικρότερη διασπορά μεταξύ των αμερόληπτων εκτιμητών για κάθε θ Ω. Μαθηματικά αυτό μεταφράζεται ως εξής: X θ min X θ, θ Ω. Ορισμός Μια στ.σ. Τ X X, X,, X ονομάζεται επαρκής (sufficient) για την οικογένεια κατανομών ; θ, θ Ω ή απλά για την παράμετρο θ, αν η δεσμευμένη κατανομή του δείγματος X, όταν δοθεί η τιμή T X t, είναι ανεξάρτητη της παραμέτρου θ για όλες τις τιμές του t, για τις οποίες μπορεί να ορισθεί η δεσμευμένη κατανομή, δηλαδή: X x T X t X t :ανεξάρτητοτουθ. 26

27 Στοιχεία Εκτιμητικής Οι θεωρητικές ροπές είναι συναρτήσεις των άγνωστων παραμέτρων. Υπενθυμίζεται ότι οι δειγματικές ροπές δίνονται από τις σχέσεις: 1, 1,, 1. Θεώρημα Οι δειγματικές ροπές είναι αμερόληπτοι εκτιμητές των θεωρητικών ροπών. Η μεθοδολογία του υπολογισμού των εκτιμητών, με τη μέθοδο των ροπών, είναι η εξής: εξισώνονται οι θεωρητικές ροπές με τις δειγματικές ροπές ίσης τάξης. Με τον τρόπο αυτό συνδέονται οι εκτιμώμενες παράμετροι με στατιστικές συναρτήσεις και από τη λύση των εξισώσεων που προκύπτουν, υπολογίζονταιοιεκτιμητές. Παράδειγμα 1.9. Έστω,,, τυχαίο δείγμα από κατανομή ;,,. Να υπολογισθεί ένας εκτιμητής για την παράμετρο με τη μέθοδο των ροπών. Στοιχεία Εκτιμητικής Παράδειγμα Έστω η τυχαία μεταβλητή η οποία ακολουθεί κατανομή,. Να εκτιμηθούν οι άγνωστες παράμετροι και της κατανομής με τη μέθοδο ροπών. Η μέθοδος μεγίστης πιθανοφάνειας προτάθηκε πρώτη φορά από τον Gauss, πιστώνεται όμως στο Fisherγιατί αυτός πρώτος στο 1922 ερεύνησε τις ιδιότητες της μεθόδου. Ας είναι X,,, τ.δ. από κατανομή ; Ορισμός Πιθανοφάνεια(likelihood) ονόμασε το 1912 ο R.A. Fisherτην από κοινού κατανομή του δείγματος X, όταν η κατανομή θεωρείται συνάρτηση της παραμέτρου θ για δοσμένη τιμή του δείγματος και συμβολίζεται με: θ x x ; θ θ ;θ. 27

28 Στοιχεία Εκτιμητικής Ορισμός Έστω x ;θ η συνάρτηση πιθανοφάνειας του τυχαίου δείγματος Χ,,,. Ο εκτιμητής θ λέγεται εκτιμητής μεγίστης πιθανοφάνειας (Ε.Μ.Π.) (maximum likelihood estimator) της παραμέτρου θ αν: x ;θ max x ; θ ή ισοδύναμα, αν ο εκτιμητής θ μεγιστοποιεί τη συνάρτηση lnx ;θ. Παρατηρήσεις. 1. Στην περίπτωση που η συνάρτηση πιθανοφάνειας είναι διαφορίσιμη, ο Ε.Μ.Π. είναι η λύση της εξίσωσης πιθανοφάνειας: ln 0, που ικανοποιεί τη σχέση: ln 0. Στοιχεία Εκτιμητικής 2. Για την εύρεση του μεγίστου της πιθανοφάνειας θ υπάρχουν οι ακόλουθες περιπτώσεις: να μην υπάρχει πεπερασμένο μέγιστο, να υπάρχει ακριβώς ένα μέγιστο, να υπάρχουν περισσότερα από ένα μέγιστα. Θεώρημα Έστω Χ,,, τ.δ. από τ.μ. με κατανομή ; θ και θ οε.μ.π.της παραμέτρου θ. Αν θ είναι μια αμφιμονοσήμαντη συνάρτηση της παραμέτρου θ, τότε ο Ε.Μ.Π. της συνάρτησης θ είναι ο θ. Παράδειγμα Έστω ότι η τυχαία μεταβλητή που ακολουθεί την κατανομή Bernoulli,. Να βρεθεί ο Ε.Μ.Π. της άγνωστης παραμέτρου. 28

29 Στοιχεία Εκτιμητικής Παράδειγμα 1.12.Έστω τυχαίο δείγμα,,, από εκθετική κατανομή με σ.π.π. ;,,. Να υπολογισθεί ένας Ε.Μ.Π. για την παράμετρο. Επιπλέον, να βρεθεί η τιμή του εκτιμητή, αν από ένα δείγμα μεγέθους δίνονται οι παρατηρήσεις:,,, και. Παράδειγμα Έστω τυχαίο δείγμα από πληθυσμό με κανονική κατανομή του οποίου η μέση τιμή είναι και η διασπορά 1. Με τη μέθοδο μέγιστης πιθανοφάνειας να υπολογισθεί ένας εκτιμητής της άγνωστης παραμέτρου. Παράδειγμα Έστω,,, τυχαίο δείγμα από γεωμετρική κατανομή με συνάρτηση πιθανότητας ;, όπου,,,. Να βρεθεί ένας εκτιμητής μεγίστης πιθανοφάνειας για την άγνωστη παράμετρο. Κεφάλαιο 1 ο. Ασκήσεις Άσκηση 1.4. Έστω,,, τυχαίο δείγμα από κατανομή Weibull με παράμετρο. Να αποδειχθεί ότι η τυχαία μεταβλητή ακολουθεί την κατανομή. Άσκηση 1.5. Έστω τυχαίο δείγμα από κανονική κατανομή,, όπου η διασπορά είναι γνωστός αριθμός. Να δειχθεί ότι ο εκτιμητής μεγίστης πιθανοφάνειας της παραμέτρου είναι η δειγματική μέση τιμή. Άσκηση 1.6. Έστω τυχαίο δείγμα από κατανομή Poisson με μέση τιμή. Να δειχθεί ότι ο εκτιμητής μεγίστης πιθανοφάνειας της παραμέτρου είναι η δειγματική μέση τιμή. 29

30 Κεφάλαιο 1 ο. Ασκήσεις Άσκηση 1.7. Έστω ο αριθμός των στιγμάτων ανά 100 μέτρα ενός ελάσματος. Είναι γνωστό ότι η τυχαία μεταβλητή ακολουθεί κατανομή Poisson με παράμετρο. Αν 40 παρατηρήσεις της, έδωσαν 5 φορές μηδέν στίγματα, 7 φορές ένα στίγμα, 12 φορές δύο στίγματα, 9 φορές τρία στίγματα, 5 φορές τέσσερα στίγματα και 1 φορά έξι στίγματα, να βρεθεί ο εκτιμητής μεγίστης πιθανοφάνειας της παραμέτρου. Άσκηση 1.8. Έστω τυχαίο δείγμα μεγέθους από κατανομές με συνάρτηση πυκνότητας πιθανότητας: ;,,. ;,,. ;,,. Σε κάθε μια από τις παραπάνω περιπτώσεις, να βρεθεί ο εκτιμητής μεγίστης πιθανοφάνειας και ο εκτιμητής με τη μέθοδο των ροπών για την άγνωστη παράμετρο. Κεφάλαιο 1 ο. Ασκήσεις Άσκηση 1.9. Έστω τ.δ. μεγέθους, το οποίο ακολουθεί μια κατανομή με συνάρτηση πυκνότητα πιθανότητας: ;,,. Να δειχθεί ότι ο εκτιμητής μεγίστης πιθανοφάνειας της παραμέτρου είναι ο: Επίσης, να αποδειχθεί ότι ο συγκεκριμένος εκτιμητής είναι αμερόληπτος εκτιμητής της παραμέτρου.. 30

31 Κεφάλαιο 1 ο. Ασκήσεις Άσκηση Έστω τ.δ. μεγέθους από κατανομές με συνάρτηση πυκνότητα πιθανότητας: ;,,. 1. Να δειχθεί ότι η δειγματική μέση τιμή είναι ένας αμερόληπτος εκτιμητής για την παράμετρο. 2. Να δειχθεί ότι η διασπορά της δειγματικής μέσης τιμής ισούται με. 3. Ένας ερευνητής από ένα τ.δ. μεγέθους έλαβε τις παρατηρήσεις., 8.1,.,. και.. Στην περίπτωση αυτή να βρεθεί ένας εκτιμητής για την παράμετρο. Άσκηση Ένας παίκτης τυχερών παιχνιδιών παίζει, κάθε μέρα, το ίδιο παιχνίδι και σταματά, όταν κερδίζει. Ο παρακάτω πίνακας δίνει το πλήθος των παιχνιδιών, μέχρι να κερδίσει. Δευτέρα Τρίτη Τετάρτη Πέμπτη Παρασκευή Σάββατο Κυριακή Να βρεθεί ο ροποεκτιμητής και ο εκτιμητής μεγίστης πιθανοφάνειας της πιθανότητας να κερδίσει. 31

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις

Διαβάστε περισσότερα

Μαθηματική Στατιστική

Μαθηματική Στατιστική Μαθηματική Στατιστική Έλεγχοι Υποθέσεων Φωτεινή Κολυβά-Μαχαίρα Σταύρος Α Χατζόπουλος Φ ΚΟΛΥΒΑ-ΜΑΧΑΙΡΑ Αναπλ Καθηγήτρια, Τμήμα Μαθηματικών, ΑΠΘ ΣΤ Α ΧΑΤΖΟΠΟΥΛΟΣ Διδάκτωρ Στατιστικής, Τμήμα Μαθηματικών,

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας

Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας Εκτιμήτριες Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Εκτιμήτριες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α μέθοδος ροπών και μέγιστης πιθανοφάνειας κριτήρια αμεροληψίας και συνέπειας 9 άλυτες ασκήσεις 6 9 7.

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #3: Εκτιμητική Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

σ.π.π. Γεωμετρικής Κατανομής με p=0, Αριθμός επιτυχιών μέχρι την πρώτη επιτυχία

σ.π.π. Γεωμετρικής Κατανομής με p=0, Αριθμός επιτυχιών μέχρι την πρώτη επιτυχία Ν(n) 2.11 ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ Αν αντί της ερώτησης "πόσες επιτυχίες σημειώνονται σε n δοκιμές Bernoulli;" ενδιαφέρει η ερώτηση "πόσες δοκιμές απαιτούνται μέχρι να σημειωθεί η πρώτη επιτυχία;", οδηγούμαστε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

Βασικά μαθηματικά εργαλεία

Βασικά μαθηματικά εργαλεία Παράρτημα Αʹ Βασικά μαθηματικά εργαλεία Σύνοψη Παρατίθενται μια επανάληψη σε βασικές γνώσεις που αφορούν βασικά μαθηματικά εργαλεία, για την αντιμετώπιση προβλημάτων που παρουσιάζονται στο σύγγραμμα, και

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας 1 Πειραματικά Μοντέλα Μοντέλα:» Καθοριστικά» (π.χ. ο νόμος του Ohm)» Στοχαστικά ή πιθανοτικά» (π.χ. ένταση

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα