Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης"

Transcript

1 Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

2 Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά βέλτιστη ταξινόµηση. Βασίζεται στην περιγραφή του προβλήµατος ταξινόµησης µε πιθανοτικούς όρους. Η θεωρία υποθέτει: Το πρόβληµα απόφασης µπορεί να τεθεί µε όρους πιθανοτήτων Είναι γνωστές όλες οι απαραίτητες τιµές και συναρτήσεις πιθανότητας (στην πράξη αυτό δεν ισχύει.

3 εσµευµένες Πιθανότητες (Class Condtonal Probabltes ω 1 : Λαβράκι ω : Σολοµός p(x ω : εσµευµένη συνάρτηση πυκνότητας πιθανότητας (ΣΠΠ της µεταβλητής x δεδοµένης της κατάστασης της φύσης. Πιθανοφάνεια: εδοµένου ότι παρατηρείται σολοµός, ποιά είναι η πιθανότητα, το βάρος του να είναι µεταξύ 11 και 1? βάρος

4 Ορισµοί και Κανόνας Απόφασης Bayes Κατάσταση της φύσης (state of nature Εκ των προτέρων πιθανότητα (pror Εκ των υστέρων πιθανότητα (posteror Πιθανοφάνεια (Lkelhood Evdence ( ( ( ( ( ( ( ( x p P x p P x p P x p x P X x ω ω ω ω ω ω ω = =

5 Εκ των Υστέρων Πιθανότητες (Posteror Probabltes Ο κανόνας Bayes επιτρέπει τον υπολογισµό της εκ των υστέρων πιθανότητας (δύσκολο να καθοριστεί από την εκ των προτέρων πιθανότητα, την πιθανοφάνεια, και τις αποδείξεις (υπολογίζονται ευκολότερα. Εκ των υστέρων πιθανότητες όταν P(ω 1 = /3 και P(ω = 1/3. Για παράδειγµα, δεδοµένου ότι ένα πρότυπο µετριέται µε τιµή χαρακτηριστικού (feature x =14, η πιθανότητα να βρίσκεται στην τάξη ω είναι περίπου 0.08, ενώ η πιθανότητα να βρίσκεται στην ω 1 είναι 0.9. Για κάθε x, οι εκ των υστέρων πιθανότητες αθροίζονται στο 1.0.

6 Κανόνας Απόφασης Bayes (Bayes Decson Rule Επιλογή της κλάσης που έχει τη µεγαλύτερη εκ των υστέρων πιθανότητα!! Επιλογή της ω εάν P(ω x > P(ω x for all =1,,,c P(error = mn [ P(ω 1 x, P(ω x,, P(ω c x ] Εάν υπάρχουν πολλά χαρακτηριστικά, x={x 1, x,, x d } Επιλογή της ω εάν P(ω x > P(ω x for all =1,,,c P(error = mn [ P(ω 1 x, P(ω x,, P(ω c x ]

7 Συνάρτηση Κόστους (The Loss Functon Μαθηµατική περιγραφή του κόστους κάθε επιλογής. Είναι κάποιες επιλογές περισσότερο «ακριβές» από άλλες? {ω 1, ω,, ω c }: Σύνολο φυσικών καταστάσεων (κλάσεις - classes x = [x 1,, x d ] T : ιάνυσµα χαρακτηριστικών (feature vector {α 1, α, α a }: Σύνολο δυνατών δράσεων (actons. Προσέξτε ότι το a δεν χρειάζεται να είναι το ίδιο µε τοc, καθώς µπορούµεναπραγµατοποιούµε περισσότερες ή λιγότερες δράσεις από το πλήθος των τάξεων. Για παράδειγµα, η απόρριψη είναι επίσης µια δυνατή δράση. λ(α ω }: Κόστος (cost της δράσης α όταν η πραγµατική κατάσταση της φύσης είναι ω. R(α x: εσµευµένο ρίσκο (condtonal rsk Αναµενόµενη απώλεια για την δράση α. R( α x c = λ( α ω P( ω = 1 x Ηαπόφαση κατά Bayes επιλέγει τη δράση που ελαχιστοποιεί το δεσµευµένο ρίσκο!

8 Απόφαση κατά Bayes µε Βάση το εσµευµένο Ρίσκο 1. Υπολογισµός δεσµευµένου ρίσκου R(α x για κάθε δράση.. Επιλογή δράσης µε τοελάχιστοδεσµευµένο ρίσκο. Έστω ότι είναι ηδράσηk. 3. Το συνολικό ρίσκο είναι: 4. Αυτό είναι το ρίσκο του Bayes, το ελάχιστο δυνατό ρίσκο που µπορεί να έχει ένας οποιοσδήποτε ταξινοµητής! R = x X R(α k x p( x dx 5. Π.χ. ταξινόµηση σε µία από δύο κλάσεις: p p ( x / ω 1 ( x / ω ω 1 λ λ 1 1 λ λ 11 P P ( ω ( ω 1

9 Ταξινόµηση Ελάχιστης Πιθανότητας Λάθους (Mnmum Error Rate Classfcaton Εάν ως δράση α επιλέξουµε την ταξινόµηση στην κλάση ω, και εάν όλα τα κόστη λάθος ταξινόµησης είναι ίσα µε µονάδα, έχουµετη λεγόµενη συµµετρική ή 0-1 επιλογή: ( ω λ α 0, = 1, Αυτή η συνάρτηση κόστους προβλέπει µηδενική απώλεια για σωστή ταξινόµηση, και µοναδιαία απώλεια για λάθος ταξινόµηση. Το αντίστοιχο δεσµευµένο ρίσκο που αντιστοιχεί σε αυτή τη συνάρτηση κόστους είναι R( α x = P P( ω x το οποίο είναι ακριβώς η πιθανότητα λάθους. Προφανώς, για να ελαχιστοποιήσουµε το ρίσκο, θα πρέπει να επιλέξουµε την κλάση που µεγιστοποιεί την εκ των υστέρων πιθανότητα!!! f f ( ω x = 1 = 1,..., c =

10 Ταξινόµηση Βάσει Συναρτήσεων ιάκρισης (Dscrmnant Based Classfcaton Ησυνάρτηση διάκρισης g(x, διαχωρίζει τις κλάσεις µεταξύ τους. Αυτή η συνάρτηση αντιστοιχεί το διάνυσµα εισόδου σε µια κλάση σύµφωνα µε τον ορισµό: Επέλεξε την τάξη εάν g ( x > g ( x,, = 1,,..., c Ο κανόνας Bayes µπορεί να υλοποιηθεί µε τη µορφή συναρτήσεων διάκρισης g( x = P( ω x Κάθε συνάρτηση διάκρισης δηµιουργεί c περιοχές απόφασης, R 1,,R c, οι οποίες χωρίζονται από τις επιφάνειες απόφασης. Οι περιοχές απόφασης δεν απαιτείται να είναι συνεχείς. Οι επιφάνειες απόφασης ικανοποιούν την g ( x = g ( x

11 Γκαουσιανές ΣΠΠ Εάν οι συναρτήσεις πιθανοφάνειας ακολουθούν την πολυδιάστατη Γκαουσιανή, τότε η συνάρτηση διάκρισης παίρνει την µορφή g ( x = 1 d [( ( ] T 1 x µ Σ x µ ln π ln Σ + ln P( ω 1 Υπάρχουν 3 περιπτώσεις ανάλογα µε τη µορφή του πίνακα συνδιασποράς

12 Περίπτωση 1: Σ = σ I Τα χαρακτηριστικά είναι στατιστικώς ανεξάρτητα, και έχουν όλα την ίδια διασπορά: Τα δείγµατα βρίσκονται σε υπερ-σφαίρες ίσου µεγέθους, και οι επιφάνειες απόφασης είναι υπερεπίπεδα διάστασης d-1. d=1 d=

13 Περίπτωση 1: Σ = σ I Όταν d=3, τα δείγµατα βρίσκονται σε σφαίρες ίσου µεγέθους, και οι επιφάνειες απόφασης είναι επίπεδα. d=3

14 Προσέξτε πως οι εκ των προτέρων πιθανότητες αποµακρύνουν το σηµείο κατωφλίου από τον πιο πιθανό µέσο. Περίπτωση 1: Σ = σ I Αυτή η περίπτωση δηµιουργεί γραµµικές συναρτήσεις διάκρισης: T g x = w x + w w ( T = µ, 0 ln ( w = µ µ + P ω σ σ 1-D case

15 Προσέξτε πως οι εκ των προτέρων πιθανότητες αποµακρύνουν την ευθεία απόφασης από τον πιο πιθανό µέσο. Περίπτωση 1: Σ = σ I Αυτή η περίπτωση δηµιουργεί γραµµικές συναρτήσεις διάκρισης: T g x = w x + w w ( T = µ, 0 ln ( w = µ µ + P ω σ σ -D case

16 Προσέξτε πως οι εκ των προτέρων πιθανότητες αποµακρύνουν το επίπεδο απόφασης από τον πιο πιθανό µέσο. Περίπτωση 1: Σ = σ I Αυτή η περίπτωση δηµιουργεί γραµµικές συναρτήσεις διάκρισης: T g x = w x + w w ( T = µ, 0 ln ( w = µ µ + P ω σ σ 3-D case

17 Περίπτωση 1: Σ = σ I Οι επιφάνειες απόφασης είναι υπερ-επίπεδα που ορίζονται από τις γραµµικές εξισώσεις g (x = g (x, που γράφονται ως όπου: w = µ µ x 1 w T σ P ( µ µ ( ω + ln ( µ µ, 0 = µ ( x x 0 = 0 µ P ( ω Επιφάνεια απόφασης: Υπερ-επίπεδo που περνά από το σηµείο x 0 και είναι κάθετο στο διάνυσµα w που ενώνει τις µέσες τιµές µ και µ.

18 Περίπτωση : Σ = Σ Οι πίνακες συνδιασποράς είναι αυθαίρετοι, αλλά ίδιοι για όλες τις κλάσεις. Τα χαρακτηριστικά δηµιουργούν υπερελλειψοειδείς οµάδες ίδιου µεγέθους και σχήµατος µε κέντρα τα µ. Γραµµικές συναρτήσεις απόφασης Υπερεπίπεδα ως επιφάνειες απόφασης g x = w x + T ( w 0 w = Σ 1 µ, 1 T 1 w 0 = µ Σ µ + ln P( ω -D Case

19 Περίπτωση : Σ = Σ Οι πίνακες συνδιασποράς είναι αυθαίρετοι, αλλά ίδιοι για όλες τις κλάσεις. Τα χαρακτηριστικά δηµιουργούν υπερελλειψοειδείς οµάδες ίδιου µεγέθους και σχήµατος µε κέντρα τα µ. Γραµµικές συναρτήσεις απόφασης Υπερεπίπεδα ως επιφάνειες απόφασης 3-D Case

20 Περίπτωση : Σ = Σ Επιφάνειες απόφασης w w T ( x x 0 = 0 όπου: ln( P( ω P( ω ( ( ( µ T µ 1 µ µ Σ µ µ 1 ( 1 ( = Σ µ µ, x0 = µ + µ ( Εφόσον w = Σ 1 µ µ το υπερεπίπεδo απόφασης δεν είναι κάθετο στο διάνυσµα w που ενώνει τις µέσες τιµές µ και µ.

21 Περίπτωση 3: Σ = οποιoδή ποτε Μη γραµµικές αλλά τετραγωνικές συναρτήσεις απόφασης. Επιφάνιες απόφασης hyperquadratcs (υπερελλειψοειδή, υπερπαραβολοειδή κτλ. T T g ( x = x W x + w x + w 0 W = Σ, w = Σ µ 1 T 1 1 w 0 = µ Σ µ ln Σ + ln P( ω

22 Περίπτωση 3: Σ = οποιoδή ποτε Μη γραµµικές αλλά τετραγωνικές συναρτήσεις απόφασης. Επιφάνειες απόφασης hyperquadratcs (υπερελλειψοειδή, υπερπαραβολοειδή κτλ. T T g ( x = x W x + w x + w 0 W = Σ, w = Σ µ 1 T 1 1 w 0 = µ Σ µ ln Σ + ln P( ω

23 Περίπτωση 3: Σ = οποιoδήποτε

24 Περίπτωση 3: Σ = οποι δ ποτε o ή Στην περίπτωση των πολλών τάξεων, τα όρια είναι ακόµα περισσότερο περίπλοκα: Σύνορα Απόφασης

25 Περίπτωση 3: Σ = οποι δή ποτε o 3-D

26 Πιθανότητες Σφάλµατος (Error Probabltes Στην περίπτωση δυο κλάσεων, υπάρχουν δυο περιπτώσεις λάθους: x είναι στο R 1 ενώ ΚτΦ είναι w, και το αντίστροφο. x B : Optmal Bayes soluton x*: Non-optmal soluton P(error = + P( x R1, ω = P( x R1 ω P( ω P( x R, ω1 = P( x R ω1 P( ω1

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή Κεφάλαιο : Θεωρία Απόφασης του Bayes. Εισαγωγή Η θεωρία απόφασης του Bayes αποτελεί μια από τις σημαντικότερες στατιστικές προσεγγίσεις για το πρόβλημα της ταξινόμησης προτύπων. Βασίζεται στη σύγκριση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ATTERN RECOGNITION Τυπικές περιοχές εφαρμογής Μηχανική όραση Machne vson Αναγνώριση χαρακτήρων Character recognton OCR Ιατρική διάγνωση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers) KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μπαεσιανοί Ταξινοητές Bayesan Classfers ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 Ncolas Tsapatsouls Εισαγωγή Θεωρία Bayes και

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων (Pattern Recognition) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Ενότητα 1: Εισαγωγικές Έννοιες Θεωρίας Εκµάθησης Αναγνώριση Προτύπων: Η επιστήµη που προσπαθεί να

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τμήμα Μαθηματικό & Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Τα Μαθηματικά των Υπολογιστών και των Αποφάσεων»

Τμήμα Μαθηματικό & Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Τα Μαθηματικά των Υπολογιστών και των Αποφάσεων» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Τμήμα Μαθηματικό & Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «Τα Μαθηματικά των Υπολογιστών και των Αποφάσεων» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διαχωριστική

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων (DETECTION)

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων (DETECTION) Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων (DETECTION) Χριστόδουλος Χαμζάς Τα περιεχόμενα των παρουσιάσεων προέρχονται από τις παρουσιάσεις του αντίστοιχου διδακτέου μαθήματος του καθ. Παναγιώτη Τσακαλίδη,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Εκτίµηση Παραµέτρων (Parameter Estimation) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Αναγνώριση Προτύπων (Pattern Recognition) Εκτίµηση Παραµέτρων (Parameter Estimation) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπν Patter Recogitio Εκτίµηση Παραµέτρν Parameter Estimatio Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Εκτίµηση Παραµέτρν ΟΜπεϋζιανός ταξινοµητής δεν µπορεί να χρησιµοποιηεί

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΑΠΟΦΑΣΕΩΝ. Διαχωριστική Ανάλυση Λογιστική Παλινδρόμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΑΠΟΦΑΣΕΩΝ. Διαχωριστική Ανάλυση Λογιστική Παλινδρόμηση ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΑΠΟΦΑΣΕΩΝ Διαχωριστική Ανάλυση Λογιστική Παλινδρόμηση Χουντής Βασίλειος Επιβλέπων : Αλεβίζος Φίλιππος, Επίκουρος

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μη Παραµετρικές Τεχνικές (Nonparametric Techniques) Π. Τσακαλίδης Αναγνώριση Προτύπων (Patter Recogitio) Μη Παραµετρικές Τεχνικές (Noparametric Techiques) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μη-Παραµετρικές Τεχνικές Προβλήµατα παραµετρικών τεχνικών:

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

Έστω η συνάρτηση ορισμένη σε μια σ-άλγεβρα με πεδίο τιμών το, δηλαδή

Έστω η συνάρτηση ορισμένη σε μια σ-άλγεβρα με πεδίο τιμών το, δηλαδή Τι εννοούμε με τον όρο «πιθανότητα»? Ο όρος πιθανότητα έχει δυο διαφορετικές πλην όμως σχετιζόμενες ερμηνείες. Η πρώτη είναι η καθαρά μαθηματική ερμηνεία του όρου πιθανότητα σύμφωνα με την οποία η πιθανότητα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition)

Αναγνώριση Προτύπων (Pattern Recognition) Αναγνώριση Προτύπων (Pern Recognon) Γραµµικές Συναρτήσεις ιάκρισης (Lner Dscrmnn Funcons) Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γραµµικές Συναρτήσεις ιάκρισης Στόχος: Η σχεδίαση

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

Λογιστική Παλινδρόμηση & Διαχωριστική Ανάλυση

Λογιστική Παλινδρόμηση & Διαχωριστική Ανάλυση ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» Λογιστική Παλινδρόμηση & Διαχωριστική Ανάλυση ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 13-14

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 13-14 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 13-14 Γραμμικές διαχωριστικές συναρτήσεις(συνέχεια) Επιλογή μοντέλου Δεδομένα επικύρωσης Κανονικοποίηση Bayes Model evidence(τεκμήριο): Η πιθανότητα να παρατηρήσουμε

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 16 εκεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ενδιαφέρον τόσο από ϑεωρητική άποψη, όσο και από άποψη εφαρµογών, παρουσιάζει και η από κοινού µελέτη

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 2 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 4 η Άσκηση... 7 Χρηματοδότηση... 9 Σημείωμα Αναφοράς... 0 Σημείωμα Αδειοδότησης... 2 Ενδεικτικές λύσεις

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί

Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί από τον αριθµό µητρώου του. Συγκεκριµένα υπολογίζει

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Βασικές έννοιες θεωρίας πιθανοτήτων

Βασικές έννοιες θεωρίας πιθανοτήτων Βασικές έννοιες θεωρίας πιθανοτήτων Ορισµός πιθανότητας Έστω Ω το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος Συµβολίζουµε µε ω τα στοιχεία του Ω Ονοµάζουµε ενδεχόµενο (evet ένα υποσύνολο του Ω Για

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ

ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (004), σελ. 03-08 ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ Θεόφιλος

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΕΚΤΙΜΗΣΗΣ ΜΕΘΟ ΩΝ ΤΑΞΙΝΟΜΗΣΗΣ. ΚΕΦΑΛΑΙΟ 1: Μεθοδολογικό πλαίσιο εκτίµησης µεθόδων ταξινόµησης

ΜΕΘΟ ΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΕΚΤΙΜΗΣΗΣ ΜΕΘΟ ΩΝ ΤΑΞΙΝΟΜΗΣΗΣ. ΚΕΦΑΛΑΙΟ 1: Μεθοδολογικό πλαίσιο εκτίµησης µεθόδων ταξινόµησης ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Μεθοδολογικό πλαίσιο εκτίµησης µεθόδων ταξινόµησης 1.1 Εισαγωγή 1 1.2 Αντικείµενο και δοµή διατριβής...3 ΚΕΦΑΛΑΙΟ 2: Εισαγωγή στο πρόβληµα της ταξινόµησης 2.1 Ορισµός της ταξινόµησης..5

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ Η μετρική του χώρου Στην ορίσαμε το εσωτερικό γινόμενο δύο διανυσμάτων μέσω των συντεταγμένων τους, όταν οι συντεταγμένες αυτές λαβαίνονται σε ένα Καρτεσιανό σύστημα αναφοράς του Ερχόμαστε,

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 13

Περιεχόμενα. Πρόλογος... 13 Περιεχόμενα Πρόλογος... 3 Κεφάλαιο : Εισαγωγή... 9. Είδη των προβλημάτων λήψης αποφάσεων... 9.2 Το πρόβλημα της ταξινόμησης και η σημασία του... 24.3 Γενικό περίγραμμα των μεθοδολογιών ταξινόμησης... 29.4

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 7. Παραμετροποίηση αντιστρόφων προβλημάτων Τα διακριτά αντίστροφα προβλήµατα όπως έχουµε δει αντιµετωπίζουν σχέσεις παραµέτρων ενός φυσικού προβλήµατος και µετρήσεις

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ ΑΣΥΜΠΙΕΣΤΗ ΚΑΙ ΑΣΤΡΟΒΙΛΗ ΡΟΗ Μία ροή αποκαλείται αστρόβιλη, όταν ισχύει η σχέση ro όπου 3 3 3 3 3 e e e ro Η απόδειξη της παραπάνω σχέσης δεν αποτελεί αντικείμενο της εξέτασης Αποδείξαμε

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

x π 1 i n Το παραμετρικό μοντέλο πιθανότητας (η

x π 1 i n Το παραμετρικό μοντέλο πιθανότητας (η Η Στατιστική συμπερασματολογία (statstcal ferece είναι η επιστήμη που σκοπό έχει την εξαγωγή συμπερασμάτων για τις παραμέτρους ενός πληθυσμού, δηλαδή την εκτίμηση των παραμέτρων του, μελετώντας δείγμα

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα